Все о светодиодах: Все о светодиодах (LED).

Содержание

Все о светодиодах.


Что такое светодиод?

Светодиоды образуют неотъемлемую часть в современной электроники, простые показатели для оптических коммуникационных устройств. Светоизлучающие диоды используют свойства р-п перехода и испускают фотоны, когда ток в прямом направлении. Светодиоды специально излучают свет, когда потенциалы приложены к аноду и катоду.

История светодиодов начинается с 1907 года, когда капитан Генри Джозефа наблюдал особенности электро-люминесценции карбида кремния. Первый светодиод был разработан в 1962 году. Он был разработан Холоньяк, работал в General Electric (GE). Это был GaAsP устройства. Первая коммерческая версия светодиодов пришли на рынок в 1960-х годов.

Изготовление светодиодной технологии произвела бум в 1970-е годы с введением арсенида галлия алюминия (GaAlAs). Эти светодиоды высокой яркости и во много раз ярче, чем старая рассеянного типа. Синие и белые светодиоды были введены в 1990 году, в котором используется индия нитрида галлия (InGaN) в качестве полупроводника.  Белый светодиод содержит неорганический фосфор. Когда голубой свет внутри светодиода попадает на люминофор, он излучает белый свет.



Что делает светодиод идеальным?

Светодиоды широко используются в электронных схемах из-за его преимущества по сравнению с лампами. Некоторые важные особенностями являются:

  • Светодиоды заключены в пластик, так что они могут выдерживать механические удары.
  • В отличие от ламп, светодиоды не выделяют тепло и потери мощности при нагреве практически отсутствует.
  • Светодиоды требуют очень низкий ток и напряжений обычно 20 мА при 1,8 вольта. Так что это идеально в схемах с батарейками.

Что находится внутри светодиода?

Внутри корпуса LED, есть две клеммы связаны маленький чип изготовлен из галлия соединения. Этот материал обладает свойством излучения фотонов при переходе P-N смещен в прямом. Различные цвета создаются выбиванием основного материала из другого веществама.

Внутри светодиода

Светодиодная технология

Яркость является важным аспектом LED. Глаз человека имеет максимальную чувствительность к свету около 550 нм в области желто — зеленой части видимого спектра. Именно поэтому зеленый светодиод излучается ярче, чем красный светодиод, хотя оба используют тот же ток. Важные параметры светодиодов являются:

  • Световой поток
    Указывает на энергии света, исходящего от светодиодов. Он измеряется в Люмен (лм) или Милли просвет (MLM)
  • Световая интенсивность
    светового потока, охватывающий большую площадь является силой света.Он определяется как Кандела (кд) или милли Кандела (MCD) Яркость светодиода напрямую связана с его силой света.
  • Светоотдача
    Это испускаемых относительной световой энергии к потребляемой мощности.Она измеряется в терминах люмен на ватт (лм Вт).

Прямой ток, прямое напряжение, угол обзора и скорость реагирования это факторы, влияющие на яркость и эффективность светодиодов.  Прямой ток (I) является ток, протекающий через светодиод, когда он смещен в прямом направлении и он должен быть ограничен от 10 до 30 миллиампер, если выше то светодиоды будут уничтожены.

Угол обзора составляет от — угол оси, при котором световая интенсивность падения до половины осевого значения. Вот почему индикатор показывает больше яркости в полном объеме состоянии. Высокие яркие светодиоды имеют узкий угол обзора, так что свет фокусируется в пучок. Рабочее напряжение (V) является падение напряжения на светодиоде. Падение напряжения в диапазоне от 1,8 В до 2,6 вольт для обычных светодиодов, но в голубой и белый он будет идти до 5 вольт. Скорость отклика представляет, как быстро светодиод включается и выключается. Это очень важный фактор, если светодиоды используются в системах связи.

Требуется ли балластный резистор?

Светодиоды всегда подключены к источнику питания через резистор. Этот резистор называют «балластный резистор», которая защищает диод от повреждений, вызванных избыточным током.  Он регулирует прямой тока на светодиод для безопасного предела и защищает ее от жжения.

Номинал резистора определяет прямой тока и, следовательно, яркость светодиодов. Простое уравнение Vs — Vf — используется для выбора резистора. Vs представляет входное напряжения цепи, Vf прямое падение напряжения светодиода(ов) при допустимом токе через светодиод. Полученное значение будет в Омах. Лучше ограничить ток до безопасного предела 20 мА.

Приведенная ниже таблица показывает прямое падение напряжения на светодиоде.

Красный Оранжевый Желтый Зеленый Синий Белый
1,8 В 2 V 2,1 В 2,2 В 3,6 В 3,6 В

Через типичный светодиод может пройти 30 -40 мА безопасный ток через него .Номинальный ток, чтобы дать достаточную яркость, стандартный красный светодиод 20 мА. Но это может быть 40 мА для синего и белого светодиода. Ограничение тока балластным резистором защищает диод от избыточного тока, протекающего через него. Значение балластного резистора должны быть тщательно отобраны, чтобы предотвратить повреждение светодиодов, а также получить достаточную яркость при токе 20 мА. Следующее уравнение объясняет, как выбирать балластный резистор.

R = V / I

Где R — является значение сопротивления в Ом, V — является входное напряжение в цепи, и I — это допустимый ток через светодиод в амперах. Для типичного красного светодиода, прямое падение напряжения составляет 1,8 вольта. Таким образом, если напряжение питания 12 В (Vs), падение напряжения на светодиод 1,8 В (V) и допустимый ток составляет 20 мА (Если), то значение балластного резистора будет

Vs — Vf / Если = 12 — 1,8 / 20 мА = 10,2 / 0,02 = 510 Ом.

Но если 510 Ом резистор не доступен то можно подобрать ближайший, например 470 Ом резистор может быть использован даже если ток через светодиод слегка увеличивается.  Но рекомендуется использовать 1 K резистор для увеличения срока службы светодиодов, хотя там будет небольшое снижение яркости.

Ниже готова арифметические для выбора ограничительного резистора для различных версий светодиодов при различных напряжениях.

 

С добавлением других цветов

Светодиод, который может дать разные цвета полезно в некоторых приложениях. Например, светодиоды могут указывать на все системы OK, когда он становится зеленой, и неисправный, когда он становится красной. Светодиоды, которые могут производить два цвета называются Bicolour (Биколор) светодиодов.

Двухцветный светодиодный охватывает два светодиода (обычно красный и зеленый) в общем пакете. Два кристалла установлены на двух клеммах. Двухцветный светодиодный дает красный цвет, если ток проходит в одном направлении и становится зеленым, когда направление тока меняется на противоположное.

Триколор и многоцветные светодиоды , также доступны, которые имеют два или более кристаллов, заключенных в общий корпус.  Трехцветный светодиодный имеет два анода для красного и зеленого кристалла и общим катодом. Таким образом, он излучает красный и зеленый цвета в зависимости от анода, в котором имеется ток. Если оба анода подключены, то светодиоды испускают свет и получается желтый цвет. Общий анод и отдельные светодиоды типа катода, также имеются.

Двухцветный индикатор светится разными цветами , начиная от зеленого через желтый, оранжевый и красный основной на ток, протекающий через их аноды, выбрав подходящий резистор для ограничения тока анода. Многоцветные светодиоды содержат более двух чипов, обычно красного, зеленого и синего чипы-в одном корпусе. Мигание разными цветами светодиодов, теперь доступны с двумя выводами. Это дает радугу цвета, которые являются весьма привлекательным.

Инфракрасный диод — источник Невидимого света

ИК диоды широко используются в удаленном управлении (пульт ДУ). Инфракрасные диоды на самом деле испускают нормальный свет с определенным цветом, который не чувствителен к человеческим глазом, потому что его длина волны 950 нм, ниже видимого спектра. Многие источники, такие как солнце, лампы, даже человеческое тело испускает инфракрасные лучи. Поэтому необходимо, чтобы модулировать излучение от ИК-диода, чтобы использовать его в электронном приложении, чтобы предотвратить ложное срабатывание. Модуляции делает сигнал от ИК-светодиода значительно выше чем шум. Инфракрасные диоды есть в корпусе, которые являются непрозрачным для видимого света, но прозрачна для инфракрасного. ИК-светодиоды широко используются в системах управления.

Инфракрасные диоды

Фотодиод — Он может увидеть свет

Фотодиод генерирует ток, когда его р-п перехода получает фотоны видимого или инфракрасного света. Основная работа фотодиода зависит от поглощения фотонов в полупроводниковом материале. Фото-генерируемых носителей разделены электрическим полем, и в результате фототок пропорционален падающему свету. Скорость, с которой носители движутся в области обеднения связана с силой электрического поля по всему региону и подвижность носителей.

Фотон, который поглощается полупроводником в области обеднения приведет к образованию электронно-дырочной проводимости.  Дырки и электроны будут транспортироваться под действием электрического поля к краям области обеднения. После носителей покидают область истощения они идут к клеммам фотодиода, чтобы сформировать фото-ток во внешней цепи. Время отклика фотодиода, как правило, 250 наносекунд .

Фотодиоды

Лазерные диоды

Лазерный диод похож на обычные прозрачные светодиодные, но производит Laserwith высокой интенсивности. В лазерном луче число атомов вибрируют в такой цикле, что всё испускаемое излучение одной длины волны в фазе друг с другом. Лазерный свет является монохроматическим и проходит в виде узкого пучка. Луч типичных лазерных диодов составляет 4 мм х 0,6 мм, которая расширяется только до 120 мм на расстоянии 15 метров.

Лазерный диод может включаться и выключаться на более высоких частотах даже выше, чем 1 ГГц. Так что это весьма полезно в телекоммуникационных системах.Поскольку лазер генерирует тепло на поражение тканей тела, он используется в хирургии, чтобы исцелить поражения в очень чувствительных частей, как сетчатки, головного мозга и т. д. лазерные диоды являются важными компонентами в проигрывателях компакт-дисков, чтобы получить данные, записанные в компакт-дисках.

Лазерные Диоды


Все о светодиодах

Все о светодиодах в освещении

В последнее время наблюдается рост интереса к светодиодам, и, причем быстрее, чем рост области их применения. Похоже, что производителям и потребителям, продавцам и покупателям не совсем понятны тенденции в этой области. И лишь одни дизайнеры в рядах пионеров, — смело используют уникальный потенциал светодиодов. Ушло то время, когда светодиодами занимались только ученые в лабораториях.

До того, как будем говорить о применении светодиодов и их преимуществах, а так же об их недостатках, давайте коснемся темы о том, что же представляют собой светодиоды:
Что такое светодиоды?

Светодиодами называют полупроводниковые приборы, предназначенные для преобразования электрического тока в световое (электромагнитное излучение видимой части спектра) излучение. В отношении названия: «светодиод» и аббревиатура «LED» (light emitting diode, — англ.) — это одно и то же.

Из чего состоят светодиоды?
Светодиод представляет собой полупроводниковый кристалл с оптической системой и контактными выводами, и вся эта конструкция облачена в корпус. Нынешние светодиоды почти не похожи на те, что раньше применялись исключительно для индикации.

В чем преимущество светодиодов?

В отличие от классической лампы (люминесцентной или накаливания), светодиодом преобразование электрического тока в световое излучение происходит почти без выделения тепла, а это значить, что КПД светодиода очень высокий. Это свойство делает его незаменимым при использовании в ряде приложений. Помимо этого, свет, вырабатываемый светодиодом, ценен с дизайнерской точки зрения, так как он [свет] относится к узкой части видимого спектра, а значить более чистый.
В сравнении с лампой накаливания, срок службы у светодиода будет примерно в 100 раз больше, а в сравнении с люминесцентной лампой — в 10 раз. Помимо этого, светодиоды весьма прочны и исключительно надежны.

Светодиоды относятся к низковольтным приборам.
Светодиоды, используемые для освещения, рассчитаны на напряжение12 или 24 вольта, хотя сегодня уже есть аналоги ламп и на 220 вольт, где в корпусе лампы установлены понижающие драйвера.
Светодиод работает от постоянного тока, поэтому необходимо соблюдать полярность при подключении, в противном случае прибор не будет работать или выйдет из строя. Обычно на корпусе светодиодного модуля указывается рабочее напряжение. Яркость излучения светодиода обуславливается диаграммой направленности и осевой силой светового потока. Обычно параметры цвета определяются координатами цветности, т. наз., цветовой температурой и длинной волны света например от 2700 Кельвинов (теплый белый свет) и до 6500 Кельвинов (Это холодный белый свет)

Допустимо ли регулировать яркость светодиода?

Яркость светодиода становится управляемой. Незначительно изменить цветовую температуру светодиода можно при помощи специальных приборов диммирования , причем, это не идет, ни в какое сравнение с аналогичным смещением для обычных ламп накаливания.

Что обуславливает срок службы светодиода?

Есть мнение, что светодиоды весьма долговечны. Однако это не совсем верно. Скорость наступления старости светодиодов зависит от того, насколько сильно они нагреваются, а это, в свою очередь, зависит от того, какой силы ток через них пропускается. Поэтому срок службы у светодиодов большой мощности короче, чем у светодиодов небольшой мощности, и составляет у первых 20-50 тыс. часов. Очевидный признак старения светодиодов — это уменьшение яркости. Если яркость снизилась более чем на 30%, светодиод стоит поменять на новый.

Вредно ли светодиодное излучение для человеческого глаза?

Свойство света излучаемым светодиодом очень схоже со свойством света, излучаемым люминесцентной лампой, то есть свет близок к монохроматическому, — это и есть главное отличие от лампы накаливания или солнца. Насколько это хорошо или плохо, точно неизвестно, — в этой области серьезных исследований не производилось. Нет так же данных о вредном воздействии на человека света, излучаемого светодиодами. Будем надеяться, что в ближайшем будущем мы получим ответ на этом вопрос.
Где наиболее целесообразно применять светодиодное освещение?
Применение светодиодов возможно практически везде. Применение светодиодов в дизайнерском освещении и светодинамических устройствах оказалось незаменимым, благодаря их чистому цвету. Светодиодное освещение наиболее целесообразно в условиях жесткой экономии электроэнергии, и при высоких требованиях к электробезопасности.

Все о светодиодах: виды, характеристики, сферы применения, принцип работы

Светодио́д или светоизлучающий диод (СД, СИД, LED англ. Light-emitting diode) — полупроводниковый прибор с электронно-дырочным переходом, создающий оптическое излучение при пропускании через него электрического тока. Излучаемый свет лежит в узком диапазоне спектра. Его спектральные характеристики зависят во многом от химического состава использованных в нём полупроводников. Иными словами, кристалл светодиода излучает конкретный цвет (если речь идёт об СД видимого диапазона), в отличие от лампы, излучающей более широкий спектр и где конкретный цвет отсеивается внешним светофильтром.

Сферы применения

Проще перечислить те сферы нашей жизни, где smd-светодиодов нет, чем те, где они используются. Белые диоды можно встретить:

  • в тактических и карманных фонариках;
  • в автомобильных лампах;
  • в бытовых лампочках различной мощности;
  • в декоративной внутренней и наружной подсветке.

Разноцветные RGB и RGBW применяются не менее широко:

  • в вывесках, дорожных знаках, светофорах, указателях, рекламе;
  • в лампах освещения, с изменяемой цветовой температурой;
  • в ландшафтном дизайне;
  • в декоративной внутренней и наружной подсветке;
  • в приборах индикации.

Примеры использования smd светодиодов

Вот вкратце и все о smd светодиодах. Теперь ты знаешь, почему они так называются, какими бывают и где используются.

В настоящее время светодиоды обрели широкую популярность. При этом четко разделить их по мощности, яркости свечения, области применения, форм-фактору и другим параметрам не представляется возможным, поскольку у каждого производителя своя классификация. Тем не менее, различные виды светодиодов можно объединить в классы по некоторым характерным признакам.

Устройство светодиода

Излучаемый светодиодом свет лежит в узком диапазоне спектра. Иными словами, его кристалл изначально излучает конкретный цвет (если речь идёт об СД видимого диапазона) — в отличие от лампы, излучающей более широкий спектр, где нужный цвет можно получить лишь применением внешнего светофильтра. Диапазон излучения светодиода во многом зависит от химического состава использованных полупроводников.

Светодиод состоит из нескольких частей:

  • анод, по которому подается положительная полуволна на кристалл;
  • катод, по которому подается отрицательная полуволна на кристалл;
  • отражатель;
  • кристалл полупроводника;
  • рассеиватель.

Эти элементы есть в любом светодиоде, вне зависимости от его модели.

Светодиод является низковольтным прибором. Для индикаторных видов напряжение питания должно составлять 2-4 В при токе до 50 мА. Диоды для освещения потребляют такое же напряжение, но их ток выше – достигает 1 Ампер. В модуле суммарное напряжение диодов оказывается равным 12 или 24 В.

Подключать светодиод нужно с соблюдением полярности, иначе он выйдет из строя.

Цвета светодиодов

Светодиоды бывают разных цветов. Получить нужный оттенок можно несколькими способами.

Первый – покрытие линзы люминофором. Таким способом можно получить практически любой цвет, но чаще всего эта технология используется для создания белых светодиодов.

RGB технология. Оттенок получается за счет применения в одном кристалле трех светодиодов красного, зеленого и синего цветов. Меняется интенсивность каждого из них, и получается нужное свечение.

Применение примесей и различных полупроводников. Подбираются материалы с нужной шириной запрещенной зоны, и из них делается кристалл светодиода.

Принцип работы светодиодов

Любой светодиод имеет p-n-переход. Свечение возникает при рекомбинации электронов и дырок в электронно-дырочном переходе. P-n переход создается при соединении двух полупроводников разного типа электропроводности. Материал n-типа легируется электронами, p-типа – дырками.

При подаче напряжения электроны и дырки в p-n-переходе начинают перемещаться и занимать места. Когда носители заряда подходят к электронно-дырочному переходу, электроны помещаются в материал p-типа. В результате перехода электронов с одного энергетического уровня на другой выделяются фотоны.

Не всякий p-n переход может излучать свет. Для пропускания света нужно соблюсти два условия:

  • ширина запрещенной зоны должна быть близка к энергии кванта света;
  • полупроводниковый кристалл должен иметь минимум дефектов.

Реализовать подобное в структуре с одним p-n-переходом не получится. По этой причине создаются многослойные структуры из нескольких полупроводников, которые называются гетероструктурами.

Для создания светодиодов используются прямозонные проводники с разрешенным прямым оптическим переходом зона-зона. Наиболее распространенные материалы группы А3В5 (арсенид галлия, фосфид индия), А2В4 (теллурид кадмия, селенид цинка).

Цвет светоизлучающего диода зависит от ширины запрещенной зоны, в которой происходит рекомбинация электронов и дырок. Чем больше ширина запрещенной зоны и выше энергия квантов, тем ближе к синему излучаемый свет. Путем изменения состава можно добиться свечения в широком оптическом диапазоне – от ультрафиолета до среднего инфракрасного излучения.

Светодиоды инфракрасного, красного и желтого цветов изготавливаются на основе фосфида галлия, зеленый, синий и фиолетовый – на основе нитридов галлия.

Индикаторные и осветительные LED

Чтобы яснее представлять, какие бывают светодиоды, их можно разделить на две большие группы: индикаторные и осветительные.

Индикаторные используются в основном в целях цветовой индикации, а также при подсветке дисплеев, приборных панелей и других приборов. То есть это светодиоды сравнительно небольшой мощности (до 0.2 Вт) с умеренной яркостью.

Осветительные LED используются при освещении помещений в составе светодиодных ламп и лент, в автомобильных фарах и везде, где требуется получить высокую интенсивность свечения. Мощность таких светодиодов может достигать десятков ватт.

Индикаторные LED

Индикаторные светодиоды, в свою очередь, можно разбить на несколько групп.

1. DIP светодиоды

Светодиоды этого типа представляют собой светоизлучающий кристалл в выводном корпусе, часто с выпуклой линзой. Типы корпусов: цилиндрические, диаметром 3, 4, 5, 8, 10… мм, и прямоугольные.

Выпускаются в очень широком диапазоне цветов – вплоть до ИК и УФ диапазонов. Могут быть как одноцветными, так и многоцветными (когда в одном корпусе сосредоточено несколько кристаллов разных цветов), — например, RGB.

Одним из недостатков этих LED можно отметить невысокий угол рассеяния светового потока: обычно не более 60⁰.

2. Super Flux “Piranha”

Конструктивно светодиоды Пиранья представляют собой сверхъяркие светодиоды в прямоугольном корпусе с четырьмя выводами. Такая конструкция позволяет надежно закрепить светодиод на плате.

Доступные разновидности: красный, зеленый, синий и три белых (различаются температурой свечения). Выпускаются в корпусах с линзой (3 и 5 мм) и без нее. Угол рассеяния варьируется в пределах от 40⁰ до 120⁰.

Область применения Piranha – подсветка автомобильных приборов, дневных ходовых огней, рекламных вывесок и т.д.

3. Straw Hat

Наряду с Piranha, большим углом рассеяния светового потока обладают светодиоды типа Straw Hat («соломенная шляпа»). Внешне они напоминают обычные цилиндрические двухвыводныне LED, но с меньшей высотой и увеличенным радиусом линзы, за что и получили свое название.

Излучающий кристалл в этих светодиодах расположен ближе к передней стенке линзы (не забудьте почитать про назначение линзы для светодиода), благодаря чему достигается угол рассеяния порядка 100-140⁰.

Выпускаются красные, синие, зеленые, желтые и белые LED. Благодаря способности создавать ненаправленное излучение, могут использоваться в декоративных целях, в качестве замены ламп аварийной тревоги и других местах, где требуется равномерная подсветка с низким энергопотреблением.

4. SMD светодиоды

Кроме выводных LED, выпускаются светодиоды типа SMD. Сюда следует отнести сверхъяркие цветные и белые светодиоды мощностью около 0.1 Вт в корпусе для поверхностного монтажа. Размеры корпусов обычно стандартные для любых элементов типа SMD: 0603, 0805, 1210 и т.д., где маркировка обозначает длину и ширину в сотых долях дюйма или в миллиметрах. При этом существуют как разновидности с выпуклой линзой, так и без нее.

Благодаря простоте монтажа, на основе этих LED выпускаются светодиодные ленты. Например, широкую известность в этой области приобрел светодиод Cree SMD 3528.

Осветительные LED

Эти светодиоды применяются при освещении помещений и улиц в составе фонарей, автомобильных фар, светодиодных лент и т. д. В связи с этим обладают большой мощностью, высокой интенсивностью излучения, и выпускаются только в белом цвете в корпусах для поверхностного монтажа.

Обычно производятся две разновидности, различающиеся цветовой температурой: cool white (холодный белый) и warm white (теплый белый).

Поскольку кристаллов, излучающих белый свет, в природе не существует, при производстве осветительных светодиодов прибегают к различным технологиям смешения трех базовых цветов (RGB). От способа их сложения зависит цветовая температура получаемого белого света.

Одним из способов получения белого свечения является покрытие излучающего кристалла тремя слоями люминофора, причем каждый слой отвечает за свой базовый цвет. Другой метод состоит в нанесении двух слоев люминофора на кристалл голубого цвета.

1. Осветительные SMD LED

Большинство осветительных светодиодов также выпускаются в корпусах SMD. В отличие от индикаторных, характеризуются большей мощностью и производятся только в белом цвете.

Стоит отметить, что некоторые осветительные LED небольшой мощности, например упомянутые выше SMD 3528, могут использоваться в качестве индикаторных, поэтому здесь разделение на типы довольно условное.

Основная область применения SMD – светодиодные ленты и лампы, переносные фонари, фары автотранспорта. При этом они дают довольно направленное излучение (порядка 100⁰-130⁰), поэтому при освещении больших территорий приходится использовать большое количество этих LED для равномерной засветки площади.

Конструктивно осветительные SMD представляют собой покрытый люминофором излучающий кристалл на теплоотводящей подложке, обычно медной или алюминиевой. Встречаются как разновидности с линзой, так и без нее.

2. COB светодиоды

Большое распространение получили светодиоды типа COB (Chip On Board, чип на плате). По сути, это интеграция большого количества (обычно несколько десятков) кристаллов SMD в одном корпусе, которые потом покрываются люминофором.

На картинке вверху показаны для сравнения Cree SMD 5050 (слева) и COB – матрица из 36 чипов (справа).

COB используются только для освещения. Их световой поток на порядок больше, чем у одиночных SMD. Однако следует учесть, что эти светодиоды не подойдут для создания узконаправленного излучения ввиду большого угла рассеяния светового потока. При этом создать абсолютно ненаправленное излучение тоже не получится – угол рассеяния светодиодов менее 180⁰.

Замечено, что некоторым людям неприятен спектр свечения светодиодов типа SMD или COB. Кроме того, недостаточное количество светодиодов при засветке больших площадей приводит к тому, что освещенность носит дискретный характер, то есть сильно освещенные участки чередуются со слабо освещенными. Это нужно учитывать при выборе осветительных LED.

3. Filament LED

Этот тип светодиодов также используется пока только для освещения. Широкое распространение получили в качестве декоративной подсветки помещений. Спектр свечения, в отличие от SMD и COB, гораздо приятнее человеческому глазу и напоминает свет лампы накаливания. При этом сохраняются все присущие LED достоинства: низкое энергопотребление и долгий срок службы.

В этом ролике демонстрируется сравнение декоративной лампы накаливания мощностью 40 Вт и лампы Filament на 4 Вт:

Здесь видно, что при мощности в 10 раз меньше, световой поток, отдаваемый лампой Filament, в 3-4 раза больше.

В то же время КПД Filament даже выше, чем у тех же SMD, — при одинаковой мощности первые позволяют получить большую освещенность. Это достигается за счет технологии COG (Chip On Glass, чип на стекле), при которой светоизлучающие кристаллы устанавливаются на стеклянную подложку, а затем покрываются люминофором.

Сама подложка имеет цилиндрическую форму, что позволяет получить угол рассеяния светового потока 360⁰. То есть такие LED очень хороши при создании ненаправленного излучения.

Лазерные диоды

И напоследок еще об одном типе, который нельзя отнести ни к индикаторным, ни к осветительным LED, – лазерный диод. Собственно, светодиодом его можно считать с натяжкой, поскольку по технологии производства он не имеет ничего общего с обычными LED.

Лазерные диоды представляют собой особым образом обработанные полупроводниковые кристаллы, которые при подаче напряжения генерируют очень узкий пучок света. При этом образцы нового поколения позволяют получить угол расхождения луча в пределах 5-10⁰. Встречаются как модели, работающие в видимом диапазоне, так и вне его (УФ и ИК).

Широкое применение эти диоды нашли в лазерных указках, целеуказателях, DVD-приводах, оптических компьютерных мышах, линиях оптоволоконной связи.

Основные характеристики светодиодов:

Величина тока потребления светодиода

Как правило, для обычных светодиодов предусмотрена сила тока величиной 0,02А. Однако бывают светодиоды, рассчитанные на 0,08А. К таким светодиодам относят более мощные приборы, в устройстве которых задействованы четыре кристалла. Они располагаются в одном корпусе. Так как каждый из кристаллов потребляет по 0,02А, в сумме один прибор будет потреблять 0,08А.

Стабильность работы светодиодных приборов зависит от величины тока. Даже незначительное увеличение силы тока способствует снижению интенсивности излучения (старению) кристалла и увеличению цветовой температуры. Это в конечном результате приводит к тому, что светодиоды начинают отливать синим цветом и преждевременно выходят из строя. А если показатель силы тока увеличивается существенно, светодиод сразу перегорает.

Чтобы ограничить потребляемый ток, в конструкциях LED-ламп и светильников предусмотрены стабилизаторы тока для светодиодов (драйверы). Они преобразуют ток, доводя его до нужной светодиодам величины. В случае, когда требуется подключить отдельный светодиод к сети, нужно использовать токоограничительные резисторы. Расчет сопротивления резистора для светодиода выполняют с учетом его конкретных характеристик.


Полезный совет! Чтобы правильно подобрать резистор, можно воспользоваться калькулятором расчета резистора для светодиода, размещенным в сети интернет.

Эффективность (светоотдача).

Отношение светового потока к потребляемой мощности (Лм/Вт). Это та величина, которая в первую очередь попадает во внимание специалистов, потому что именно по эффективности определяется применимость светодиодов для систем освещения. Для сравнения:

  • лампочка накаливания 8-12 Лм/Вт;
  • люминесцентные (энергосберегающие) лампы 30-40 Лм/Вт;
  • современные светодиоды 120-140 Лм/Вт;
  • газоразрядные лампы (ДРЛ) 50-60 Лм/Вт.

Показатели очень хорошие, что позволяет успешно конкурировать с люминесцентными, натриевыми, галогеновыми лампами. Более того, светодиоды уже выигрывают по этому показателю у газоразрядных ламп, т.к. весь световой поток у них идет в одну полуплоскость, поэтому не требуются разного рода отражатели.

Цветовая температура.

Шкала световых температур

Цветовая температура используемых светодиодов: 2500 Кельвинов- 9500 Кельвинов.

2500-3000 Кельвинов: теплый белый свет. (warm white или сокращенно WW) Он ближе к лампам накаливания.
4000-5000 Кельвинов: нейтральный белый свет.( white neutral или сокращенно NW)
6500-9500 Кельвинов: холодный белый свет. (cold white или сокращенно CW)

По источникам независимых исследований, именно нейтральный белый свет является наиболее комфортным для офисной работы, и в нем предметы становятся наиболее четкими.Нашей компание используются светодиоды с нейтральным светом .Кроме того, в осветительных приборах мы используем цветные светодиоды (основные цвета : красный, синий, зеленый, желтый) и светодиоды RGB(полноцветный светодиод).

Мощность светодиодов.

Малой мощности: до 0,5 Вт (20-60 мА).

Маломощные индикаторные светодиоды

Маломощные smd (slt) светодиоды

Средней мощности: 0,5-3 Вт (100-700 мА).

Светодиоды SEOULSEMICONDUCTOR, Корея, 0,5 Вт (150 мА)

Светодиоды Epistar , Тайвань, 1 Вт , 300 мА

Светодиоды NICHIA, Япония, 1 Вт, 300 мА

 

Большой мощности: более 3-х Вт (1000 мА и более).

Рис.9 Сверхмощный светодиод 20W

Угол свечения.

Как правило 120-140 градусов, в индикаторных 15-45 градусов.

Деградация (ресурс) светодиодов.

Очень важный показатель. Многие производители декларируют около 100 тысяч часов и даже более. Какие факторы оказывают влияние на ресурс светодиодов? В первую очередь это токовая деградация. Если через диод пропустить силу тока большую, чем та, на которую он рассчитан, то наступает быстрая деградация. Как правило: в пределах первых 1000 часов. Этим пользуются недобросовестные производители.

Следующий фактор – температурная деградация. Светодиод в процессе работы нагревается. И, если не отводить тепло, то диод быстро потускнеет. Для отвода тепла применяется много конструкторских решений. В наших светильниках применяется плата с алюминиевой подложкой. Подложка в свою очередь имеет механический контакт с корпусом светильника, что дополнительно отводит тепло. Главное: в точке пайки светодиода соблюдать температурный режим не более 65 градусов Цельсия. В наших светильниках это достигается. Соответственно, находясь в рабочем режиме, ресурс диодов в предлагаемых светильниках составляет декларируемые 40-50 тысяч часов.

Угол рассеивания.

Ну последнее, на что стоит обратить внимание – угол рассеивания. Большинство диодов выпускается с углом рассеивания в 120 градусов. Но это не конечная цифра. Разброс углов начинается от 15 и заканчивается 360 градусами ( к примеру филаментные ).

Здесь Вам стоит определиться опять же, что хотите получить. Узконаправленный свет или рассеянный по всей комнате. Для комнаты подойдет и 120 градусов, но лучше применить линзы, чтобы увеличить угол.

Для узконаправленного луча с лихвой хватит диодов с рассеивание в 40 градусов.

Есть еще несколько характеристик светодиодов. Но они более интересны для промышленного производства. А нам, простым обывателям, с лихвой хватает этих.

Я могу понять, что для кого-то эту информацию тяжело понять, но это только первое время. Если Вы один раз разберетесь, то в дальнейшем никаких трудностей правильно выбрать светодиод под свои нужды не составит труда. Во всяком случае я уже не «болею» муками подбора.

Срок эксплуатации

Этот параметр указывает на предполагаемую продолжительность работы LED кристалла. Индикационные светодиоды имеют продолжительность работы до 100 000 часов. Для сверхярких источников этот показатель составляет максимум 60 000 часов. Производители из Поднебесной зачастую завышают и этот показатель.

Для продления срока эксплуатации необходимо соблюдать температурный режим работы лед светильника. Другими словами, чем эффективней охлаждение, тем дольше живет источник.

Для наглядного ознакомления рекомендуется посмотреть видео. Автор видео всего за несколько минут лаконично описывает основные параметры и характеристики, которые действительно важны при выборе светодиодов.

Итоги:

При выборе светодиодов желательно отдавать предпочтение маркам, зарекомендовавших себя брендов. Стоимость данных источников света значительно выше традиционных, следовательно, срок окупаемости тоже увеличен.

Позарившись на дешевое изделие с плохими характеристиками, можно просто выбросить деньги на ветер и, напротив, светодиодные изделия от проверенных производителей обычно отрабатывают заявленный срок.

 

Источники: http://ledno.ru/svetodiody/vidy-led.html; https://colorleds.ru/stati/upravlenie-osveshcheniem-v-kvartire-s-telefona.html; https://arduinomaster.ru/datchiki-arduino/printsip-raboty-i-vidy-svetodiodov/

Устройство светодиода принцип работы светодиода преимущества

Светодиод: устройство, принцип работы, преимущества


Интерес к светодиодам растет быстрее, чем территория их применения в светотехнике. Производители и потребители, продавцы и покупатели — все как будто замерли на старте, боясь отстать от других. И только дизайнеры уже вовсю пользуются уникальными возможностями светодиодов. Давно прошло то время, когда светодиоды были интересны одним лишь ученым. Теперь светодиодная тема у всех на слуху. Говорят, за ними будущее.


Светодиоды излучают не только уникальный по своим характеристикам свет, но и завидный оптимизм по поводу своего места на рынке светотехники. Особенно активно экспансия LED разворачивается в области интерьерного оформления и светодизайна.


Настоящая публикация не случайно построена в форме вопросов и ответов (FAQ, frequently asked questions — часто задаваемые вопросы). Именно так заинтересованный человек подходит к новому для него объекту, с тем чтобы «пощупать» его с разных сторон и уж потом решить: нужен — не нужен. А мне задавать правильные вопросы и находить на них верные ответы помогал профессор МГУ Александр Эммануилович Юнович, один из ведущих российских специалистов по светодиодам.

1. Что такое светодиод?


Светодиод — это полупроводниковый прибор, преобразующий электрический ток непосредственно в световое излучение. Кстати, по-английски светодиод называется light emitting diode, или LED.

2. Из чего состоит светодиод?


Из полупроводникового кристалла на подложке, корпуса с контактными выводами и оптической системы. Современные светодиоды мало похожи на первые корпусные светодиоды, применявшиеся для индикации.


Рис. 1. Конструкция светодиода Luxeon фирмы Lumileds lighting.

3. Как работает светодиод?


Свечение возникает при рекомбинации электронов и дырок в области p-n-перехода. Значит, прежде всего нужен p-n-переход, то есть контакт двух полупроводников с разными типами проводимости. Для этого приконтактные слои полупроводникового кристалла легируют разными примесями: по одну сторону акцепторными, по другую — донорскими.


Но не всякий p-n-переход излучает свет. Почему? Во-первых, ширина запрещенной зоны в активной области светодиода должна быть близка к энергии квантов света видимого диапазона. Во-вторых, вероятность излучения при рекомбинации электронно-дырочных пар должна быть высокой, для чего полупроводниковый кристалл должен содержать мало дефектов, из-за которых рекомбинация происходит без излучения. Эти условия в той или иной степени противоречат друг другу.


Реально, чтобы соблюсти оба условия, одного р-п-перехода в кристалле оказывается недостаточно, и приходится изготавливать многослойные полупроводниковые структуры, так называемые гетероструктуры, за изучение которых российский физик академик Жорес Алферов получил Нобелевскую премию 2000 года.

4. Означает ли это, что чем больший ток проходит через светодиод, тем он светит ярче?


Разумеется, да. Ведь чем больше ток, тем больше электронов и дырок поступают в зону рекомбинации в единицу времени. Но ток нельзя увеличивать до бесконечности. Из-за внутреннего сопротивления полупроводника и p-n-перехода диод перегреется и выйдет из строя.

5. Чем хорош светодиод?


В светодиоде, в отличие от лампы накаливания или люминесцентной лампы, электрический ток преобразуется непосредственно в световое излучение, и, теоретически, это можно сделать почти без потерь. Действительно, светодиод (при должном теплоотводе) мало нагревается, что делает его незаменимым для некоторых приложений. Далее, светодиод излучает в узкой части спектра, его цвет чист, что особенно ценят дизайнеры, а УФ- и ИК-излучения, как правило, отсутствуют. Светодиод механически прочен и исключительно надежен, его срок службы достигает 100 тысяч часов, что в 100 раз больше, чем у лампочки накаливания, и в 10 раз больше, чем у люминесцентной лампы. Наконец, светодиод — низковольтный электроприбор, а стало быть, безопасный.

6. Чем плох светодиод?


Только одним — ценой. Пока что цена одного люмена, излученного светодиодом, в 100 раз выше, чем галогенной лампой. Но специалисты утверждают, что в ближайшие 2-3 года этот показатель будет снижен в 10 раз.

7. Когда светодиоды начали применяться для освещения?


Первоначально светодиоды применялись исключительно для индикации. Чтобы сделать их пригодными для освещения, необходимо было прежде всего научиться изготавливать белые светодиоды, а также увеличить их яркость, а точнее светоотдачу, то есть отношение светового потока к потребляемой энергии.


В 60-х и 70-х годах были созданы светодиоды на основе фосфида и арсенида галлия, излучающие в желто-зеленой, желтой и красной областях спектра. Их применяли в световых индикаторах, табло, приборных панелях автомобилей и самолетов, рекламных экранах, различных системах визуализации информации. По светоотдаче светодиоды обогнали обычные лампы накаливания. По долговечности, надежности, безопасности они тоже их превзошли. Одно было плохо — не существовало светодиодов синего, сине-зеленого и белого цвета.


К концу 80-х годов в СССР выпускалось более 100 млн светодиодов в год, а мировое производство составляло несколько десятков миллиардов.

8. От чего зависит цвет светодиода?


Исключительно от ширины запрещенной зоны, в которой рекомбинируют электроны и дырки, то есть от материала полупроводника, и от легирующих примесей. Чем «синее» светодиод, тем выше энергия квантов, а значит, тем больше должна быть ширина запрещенной зоны.

9. Какие трудности пришлось преодолеть ученым, чтобы изготовить голубой светодиод?


Голубые светодиоды можно сделать на основе полупроводников с большой шириной запрещенной зоны — карбида кремния, соединений элементов II и IV группы или нитридов элементов III группы. (Помните таблицу Менделеева?)


У светодиодов на основе SiC оказался слишком мал КПД и низок квантовый выход излучения (то есть число излученных квантов на одну рекомбинировавшую пару). У светодиодов на основе твердых растворов селенида цинка ZnSe квантовый выход был выше, но они перегревались из-за большого сопротивления и служили недолго. Оставалась надежда на нитриды.


Нитрид галлия GaN плавится при 2000 °С, при этом равновесное давление паров азота составляет 40 атмосфер; ясно, что растить такие кристаллы непросто. Аналогичные соединения — нитрилы алюминия и индия — тоже полупроводники. Их соединения образуют тройные твердые растворы с шириной запрещенной зоны, зависящей от состава, который можно подобрать так, чтобы генерировать свет нужной длины волны, в том числе и синий. Но… проблему не удавалось решить до конца 80-х годов.


Первым, еще в 70-х, голубой светодиод на основе пленок нитрида галлия на сапфировой подложке удалось получить профессору Жаку Панкову (Якову Исаевичу Панчечникову) из фирмы IBM (США). Квантовый выход был достаточен для практических применений, однако руководство сказало: «Ну, это ж на сапфире — дорого и не так уж ярко, к тому же p-n-переход нехорош…» — и работы Панкова не поддержали.


Между тем группа Сапарина и Чукичева из МГУ обнаружила, что под действием электронного пучка GaN с примесью цинка становится ярким люминофором, и даже запатентовала устройство оптической памяти. Но тогда загадочное явление объяснить не удалось.


Это сделали японцы — профессор И. Акасаки и доктор X. Амано из университета Нагоя. Обработав пленку GaN с примесью магния электронным пучком со сканированием, они получили ярко люминесцирующий слой р-типа с высокой концентрацией дырок. Однако разработчики светодиодов не обратили должного внимания на их публикации.


Лишь в 1989 году доктор Ш. Накамура из фирмы Nichia Chemical, исследуя пленки нитридов элементов III группы, сумел воспользоваться результатами профессора Акасаки. Он так подобрал легирование (Мд, Zn) и термообработку, заменив ею электронное сканирование, что смог получить эффективно инжектирующие слои р-типа в GaN-гетероструктурах. Вот как был получен голубой светодиод.


Фирма Nichia запатентовала ключевые этапы технологии и к концу 1997 года выпускала уже 10-20 млн голубых и зеленых светодиодов в месяц, а в январе 1998 года приступила к выпуску белых светодиодов.

10. Что такое квантовый выход светодиода?


Квантовый выход — это число излученных квантов света на одну рекомбинировавшую электроннодырочную пару. Различают внутренний и внешний квантовый выход. Внутренний — в самом p-n-переходе, внешний — для прибора в целом (ведь свет может теряться «по дороге» — поглощаться, рассеиваться). Внутренний квантовый выход для хороших кристаллов с хорошим теплоотводом достигает почти 100%, рекорд внешнего квантового выхода для красных светодиодов составляет 55%, а для синих — 35%.


Внешний квантовый выход — одна из основных характеристик эффективности светодиода.

11. Как получить белый свет с использованием светодиодов?


Существует три способа получения белого света от светодиодов. Первый — смешивание цветов по технологии RGB. На одной матрице плотно размещаются красные, голубые и зеленые светодиоды, излучение которых смешивается при помощи оптической системы, например линзы. В результате получается белый свет. Второй способ заключается в том, что на поверхность светодиода, излучающего в ультрафиолетовом диапазоне (есть и такие), наносится три люминофора, излучающих, соответственно, голубой, зеленый и красный свет. Это похоже на то, как светит люминесцентная лампа. И, наконец, в третьем способе желто-зеленый или зеленый плюс красный люминофор наносятся на голубой светодиод, так что два или три излучения смешиваются, образуя белый или близкий к белому свет.

12. Какой из трех способов лучше?


У каждого способа есть свои достоинства и недостатки. Технология RGB в принципе позволяет не только получить белый цвет, но и перемещаться по цветовой диаграмме при изменении тока через разные светодиоды. Этим процессом можно управлять вручную или посредством программы, можно также получать различные цветовые температуры. Поэтому RGB-матрицы широко используются в светодинамических системах. Кроме того, большое количество светодиодов в матрице обеспечивает высокий суммарный световой поток и большую осевую силу света. Но световое пятно из-за аберраций оптической системы имеет неодинаковый цвет в центре и по краям, а главное, из-за неравномерного отвода тепла с краев матрицы и из ее середины светодиоды нагреваются по-разному, и, соответственно, по-разному изменяется их цвет в процессе старения — суммарные цветовая температура и цвет «плывут» за время эксплуатации. Это неприятное явление достаточно сложно и дорого скомпенсировать.


Белые светодиоды с люминофорами существенно дешевле, чем светодиодные RGB-матрицы (в пересчете на единицу светового потока), и позволяют получить хороший белый цвет. И для них в принципе не проблема попасть в точку с координатами (0.33, 0.33) на цветовой диаграмме МКО. Недостатки же таковы: во-первых, у них меньше, чем у RGB-матриц, светоотдача из-за преобразования света в слое люминофора; во-вторых, достаточно трудно точно проконтролировать равномерность нанесения люминофора в технологическом процессе и, следовательно, цветовую температуру; и наконец в-третьих — люминофор тоже стареет, причем быстрее, чем сам светодиод. Промышленность выпускает как светодиоды с люминофором, так и RGB-матрицы — у них разные области применения.

13. Каковы электрические и оптические характеристики светодиодов?


Светодиод — низковольтный прибор. Обычный светодиод, применяемый для индикации, потребляет от 2 до 4 В постоянного напряжения при токе до 50 мА. Светодиод, который используется для освещения, потребляет такое же напряжение, но ток выше — от нескольких сотен мА до 1А в проекте. В светодиодном модуле отдельные светодиоды могут быть включены последовательно, и суммарное напряжение оказывается более высоким (обычно 12 или 24 В).


При подключении светодиода необходимо соблюдать полярность, иначе прибор может выйти из строя. Напряжение пробоя указывается изготовителем и обычно составляет более 5В для одного светодиода. Яркость светодиода характеризуется световым потоком и осевой силой света, а также диаграммой направленности. Существующие светодиоды разных конструкций излучают в телесном угле от 4 до 140 градусов. Цвет, как обычно, определяется координатами цветности и цветовой температурой, а также длиной волны излучения.


Для сравнения эффективности светодиодов между собой и с другими источниками света используется светоотдача: величина светового потока на один ватт электрической мощности. Также интересной маркетинговой характеристикой оказывается цена одного люмена.

14. Как реагирует светодиод на повышение температуры?


Говоря о температуре светодиода, необходимо различать температуру на поверхности кристалла и в области p-n-перехода. От первой зависит срок службы, от второй — световой выход. В целом с повышением температуры p-n-перехода яркость светодиода падает, потому что уменьшается внутренний квантовый выход из-за влияния колебаний кристаллической решетки. Поэтому так важен хороший теплоотвод.


Падение яркости с повышением температуры не одинаково у светодиодов разных цветов. Оно больше у AlGalnP- и AeGaAs-светодиодов, то есть у красных и желтых, и меньше у InGaN, то есть у зеленых, синих и белых.

15. Почему нужно стабилизировать ток через светодиод?


Как видно из рисунка 2, в рабочих режимах ток экспоненциально зависит от напряжения и незначительные изменения напряжения приводят к большим изменениям тока. Поскольку световой выход прямо пропорционален току, то и яркость светодиода оказывается нестабильной. Поэтому ток необходимо стабилизировать. Кроме того, если ток превысит допустимый предел, то перегрев светодиода может привести к его ускоренному старению.




Рис. 2. Зависимость силы тока от напряжения питания светодиода.

16. Для чего светодиоду требуется конвертор?


Конвертор (в англоязычной терминологии driver) для светодиода — то же, что балласт для лампы. Он стабилизирует ток, протекающий через светодиод.

17. Можно ли регулировать яркость светодиода?


Яркость светодиодов очень хорошо поддается регулированию, но не за счет снижения напряжения питания — этого-то как раз делать нельзя, — а так называемым методом широтно-импульсной модуляции (ШИМ), для чего необходим специальный управляющий блок (реально он может быть совмещен с блоком питания и конвертором, а также с контроллером управления цветом RGB-матрицы). Метод ШИМ заключается в том, что на светодиод подается не постоянный, а импульсно-модулированный ток, причем частота сигнала должна составлять сотни или тысячи герц, а ширина импульсов и пауз между ними может изменяться. Средняя яркость светодиода становится управляемой, в то же время светодиод не гаснет. Небольшое изменение цветовой температуры светодиода при диммировании несравнимо с аналогичным смещением для ламп накаливания.

18. Чем определяется срок службы светодиода?


Считается, что светодиоды исключительно долговечны. Но это не совсем так. Чем больший ток пропускается через светодиод в процессе его службы, тем выше его температура и тем быстрее наступает старение. Поэтому срок службы у мощных светодиодов короче, чем у маломощных сигнальных, и составляет в настоящее время 20-50 тысяч часов. Старение выражается в первую очередь в уменьшении яркости. Когда яркость снижается на 30% или наполовину, светодиод надо менять.

19. «Портится» ли цвет светодиода с течением времени?


Старение светодиода связано не только со снижением его яркости, но и с изменением цвета. В настоящее время нет стандартов, которые позволили бы выразить количественно изменение цвета светодиодов в процессе старения и сравнить с другими источниками.

20. Не вреден ли светодиод для человеческого глаза?


Спектр излучения светодиода близок к монохроматическому, в чем его кардинальное отличие от спектра солнца или лампы накаливания. Хорошо это или плохо — доподлинно не известно, потому что, насколько я знаю, серьезных исследований в этой области нигде не проводилось. Какие-либо данные о вредном воздействии светодиодов на человеческий глаз отсутствуют.


Есть надежда, что вскоре влияние светодиодов на зрение будет изучено досконально. Проблемой заинтересовался академик Михаил Аркадьевич Островский — крупный специалист в области цветного зрения. Тема, за решение которой он взялся, называется так: «Психофизическое восприятие светодиодного освещения системой зрения человека».

21. Когда и как сверхъяркие светодиоды появились в России?


Об этом лучше всех расскажет профессор Юнович.


Люминесценцию карбида кремния впервые наблюдал Олег Владимирович Лосев в Нижегородской радиотехнической лаборатории в 1923 г. и показал, что она возникает вблизи p-n-перехода. Первая научная статья о кристаллах нитрида галлия была опубликована профессором МГУ Г.С. Ждановым в 30-х гг. Люминесценцию в гетероструктурах на основе арсенида галлия впервые исследовали в лаборатории Ж.И. Алферова в 60-х гг. и показали, что можно создать структуры с внутренним квантовым выходом близким к 100%. Разработки структур и светодиодов на основе нитрида галлия велись в ленинградских Политехническом и Электротехническом институтах, в Калуге, в Зеленограде в 70-х гг., но они тогда не привели к созданию эффективных голубых светодиодов.


В 1995 году я прочел первые статьи Накамуры и понял, что «голубая проблема» в принципе решена. Тогда же я получил грант соросовского фонда. В декабре на эти деньги я смог поехать на конференцию в США, и там профессор Жак Панков познакомил меня с Ш. Накамурой. Я забросил наживку: мол, хочу приобщить студентов Московского университета к передовым достижениям в области голубых светодиодов и рассказать им о столь замечательном изобретении. Рыбка клюнула, и в феврале я получил от д-ра Ш. Накамуры из Японии бандеролью 10 светодиодов от фиолетового до зеленого. Все потом оказалось просто — фирма Nichia Chemical начинала выпуск светодиодов на рынок и была заинтересована в научной рекламе. В лаборатории МГУ мы их досконально исследовали, сняли все характеристики и получили новые научные результаты. Д-р Ш. Накамура дал любезное согласие на совместную публикацию наших первых статей.


Одновременно специалисты из группы Бориса Ферапонтовича Тринчука в Зеленограде продемонстрировали образцы зеленых светодиодов начальникам из ГАИ и получили положительный отзыв. Все дело в том, что эта группа сделала опытный образец светодиодного светофора, но у них не было хороших зеленых светодиодов. Светофоры с новыми сверхъяркими зелеными светодиодами намного превосходили светофоры с лампами, и московское правительство сделало заказ на 1000 светодиодных светофоров к 850-летию Москвы. Такое везение!


Как раз тогда у нас гостила киргизская скрипачка Райкан Карагулова — выпускница Московской консерватории, ученица моей жены, которая работала в Японии первым концертмейстером симфонического оркестра в Осаке. Выяснилось, что место ее работы находится неподалеку от фирмы Nichia Chemical! Б.Ф. Тринчук дал ей тысячу долларов и попросил купить на них и прислать на мой адрес 200 зеленых светодиодов. Из них были изготовлены первые светофоры из той юбилейной тысячи. Москва стала первым в мире городом с массовым применением светодиодных светофоров.


Наши ученые и инженеры в НИИ «Сапфир» пытались повторить достижение японцев и изготовить структуры на основе нитридов для голубых и зеленых светодиодов на старой эпитаксиальной установке, которую пришлось модернизировать, чтобы достичь более высоких температур и давлений. Но инициатива заглохла из-за отсутствия денег и интереса руководства.

22. Какие на сегодняшний день существуют технологии изготовления светодиодов и светодиодных модулей?


Что касается выращивания кристаллов, то основная технология — металлоорганическая эпитаксия. Для этого процесса необходимы особо чистые газы. В современных установках предусмотрены автоматизация и контроль состава газов, их раздельные потоки, точная регулировка температуры газов и подложек. Толщины выращиваемых слоев измеряются и контролируются в пределах от десятков ангстрем до нескольких микрон. Разные слои необходимо легировать примесями, донорами или акцепторами, чтобы создать p-n-переход с большой концентрацией электронов в n-области и дырок — в р-области.




Рис. 3. Схематическое представления светодиода.


За один процесс, который длится несколько часов, можно вырастить структуры на 6-12 подложках диаметром 50-75 мм. Очень важно обеспечить и проконтролировать однородность структур на поверхности подложек. Стоимость установок для эпитаксиального роста полупроводниковых нитридов, разработанных в Европе (фирмы Aixtron и Thomas Swan) и США (Emcore), достигает 1,5-2 млн долларов. Опыт разных фирм показал, что научиться получать на такой установке конкурентоспособные структуры с необходимыми параметрами можно за время от одного года до трех лет. Это технология, требующая высокой культуры.


Важным этапом технологии является планарная обработка пленок: их травление, создание контактов к n- и р-слоям, покрытие металлическими пленками для контактных выводов. Пленку, выращенную на одной подложке, можно разрезать на несколько тысяч чипов размерами от 0,24 x 0,24 до 1 x 1 мм2/.


Следующим шагом является создание светодиодов из этих чипов. Необходимо смонтировать кристалл в корпусе, сделать контактные выводы, изготовить оптические покрытия, просветляющие поверхность для вывода излучения или отражающие его. Если это белый светодиод, то нужно равномерно нанести люминофор. Надо обеспечить теплоотвод от кристалла и корпуса, сделать пластиковый купол, фокусирующий излучение в нужный телесный угол. Около половины стоимости светодиода определяется этими этапами высокой технологии.


Необходимость повышения мощности для увеличения светового потока привела к тому, что традиционная форма корпусного светодиода перестала удовлетворять производителей из-за недостаточного теплоотвода. Надо было максимально приблизить чип к теплопроводящей поверхности. В связи с этим на смену традиционной технологии и несколько более совершенной SMD-технологии (surface montage details — поверхностный монтаж деталей) приходит наиболее передовая технология СОВ (chip on board). Светодиод, изготовленный по технологии СОВ, схематически изображен на рисунке.


Светодиоды, выполненные по SMD- и СОВ-технологии, монтируются (приклеиваются) непосредственно на общую подложку, которая может исполнять роль радиатора — в этом случае она делается из металла. Так создаются светодиодные модули, которые могут иметь линейную, прямоугольную или круглую форму, быть жесткими или гибкими, короче, призваны удовлетворить любую прихоть дизайнера. Появляются и светодиодные лампы с таким же цоколем, как у низковольтных галогенных, призванные им на замену. А для мощных светильников и прожекторов изготавливаются светодиодные сборки на круглом массивном радиаторе.


Раньше в светодиодных сборках было очень много светодиодов. Сейчас, по мере увеличения мощности, светодиодов становится меньше, зато оптическая система, направляющая световой поток в нужный телесный угол, играет все большую роль.

23. Кто в мире сегодня производит светодиоды?


Чтобы делать качественные светодиоды в нужном количестве, понадобилось слияние двух отраслей — электронной и светотехнической. Все западные гиганты, производящие светодиоды для светотехники по полному циклу, начиная с производства чипов и заканчивая различными светодиодными модулями и сборками, а также светильниками на их основе, идут по этому пути. General Electric заключила союз с производителем полупроводниковых приборов Emcore, создав компанию GEL Core. Philips Lighting совместно с Agilent, дочерней компанией Hewlett-Packard, создали предприятие LumiLeds. Osram объединяет усилия с полупроводниковыми предприятиями своей материнской компании Siemens. Как заметил Макаранд Чипалкатти, менеджер по маркетингу из подразделения Opto Semiconductors компании Osram Sylvania, специализирующемуся на устройствах LED, производители светотехники сами уничтожают свой бизнес. Но если сегодня не «наступить на горло собственной песне», то завтра придут другие и сделают это куда более жестко.


Впрочем, существуют компании, специализирующиеся только на производстве чипов. Это предприятия радиоэлектронной промышленности, и они не занимаются светотехникой. К их числу относится Nichia Corporation.

24. Каковы основные производители светодиодных модулей и сборок и представленные ими модельные ряды?


Чипы и отдельные светодиоды производят компании Nichia Corporation, Сгее, LumiLeds Lighting, Opto Technology, Osram Opto Semiconductors, GEL Core. Массовое производство структур и чипов для светодиодов ведут тайваньские фирмы Lite-On, Taiwan Oasis и др.


В России светодиоды производят компании Корвет Лайт, Светлана Оптоэлектроника, Оптэл, Оптоника. По конструкции и технологическому исполнению наши светодиоды не уступают зарубежным, специалисты перечисленных компаний имеют соответствующие патенты. В Москве и Санкт-Петербурге есть возможность выращивать собственные чипы — например, эпитаксиальная установка имеется в Санкт-Петербургском физтехе, — но для промышленного производства необходимо крупное финансирование, и пока наши компании используют зарубежные чипы.

25. Где сегодня целесообразно применять светодиоды?


Светодиоды находят применение практически во всех областях светотехники, за исключением освещения производственных площадей, да и там могут использоваться в аварийном освещении. Светодиоды оказываются незаменимы в дизайнерском освещении благодаря их чистому цвету, а также в светодинамических системах. Выгодно же их применять там, где дорого обходится частое обслуживание, где необходимо жестко экономить электроэнергию, и где высоки требования по электробезопасности.

26. Возможности и применение


Изобретение первых светодиодов — полупроводниковых диодов в эпоксидной оболочке, выделяющих монохроматический свет при подключении к электротоку — относится к 1960-м годам. Однако до 1980-х низкая яркость, отсутствие светодиодов синего и белого цветов, а также высокие затраты на их производство ограничивали их массовое применение в качестве источников света. Поэтому светодиоды в основном использовали в наружных электронных табло, ими оборудовали системы регулирования дорожного движения, применяли в оптоволоконных системах передачи данных и медицинском оборудовании.


Появление сверх ярких, а также синих (в середине 1990-х годов) и белых диодов (в начале XXI века) и постоянное снижение их рыночной стоимости привлекли внимание многих производителей к данным источникам света. Светодиоды стали использовать в качестве индикаторов режимов работы электронных устройств, в подсветке жидкокристаллических экранов различных приборов, в том числе — мобильных телефонов и пр. Впоследствии применение светодиодов основных цветов (красного, синего и зеленого) позволило получать цвета вывесок фактически любых оттенков, а также конструировать из них дисплеи с выводом полноцветной графики и анимации.


Светодиоды, за счет их малой потребности в электроэнергии, — оптимальный выбор декоративного освещения в местах, где существуют проблемы с энергетикой.


Срок службы светодиодов, превышающий в 6-8 раз долговечность люминесцентных ламп, относительная простота в работе с ними на этапе сборки изделий, отсутствие необходимости в регулярном обслуживании и их антивандальные качества делают эти источники света конкурентоспособными с более традиционными газоразрядными, люминесцентными лампами и лампами накаливания. Одним из немногих и существенных аспектов, за счет которого неон удерживает свои позиции в сегменте подсветки вывесок, является пока еще более высокая стоимость светодиодов.

27. Преимущества


Экономично…


Одним из достоинств светодиодов является их долговечность. Данные источники света обладают ресурсом использования 100 000 часов, а ведь это 10-12 лет непрерывной работы. Для сравнения — максимальный срок работы неоновых и люминесцентных ламп составляет 10 тыс. часов.


За это же время в световом модуле, использующем люминесцентные лампы, их нужно будет сменить 8-10 раз, а лампы накаливания придется заново «вкручивать» от 30 до 40 раз. Использование светодиодных модулей позволяет снизить затраты на электроэнергию до 87%!


Удобно…


Светодиодный модуль — многокомпонентная структура с неприхотливой схемой подключения. В цепочке, скажем, из полусотни светодиодов один-два неисправных не только не выводят рекламный фрагмент из строя, но даже не влияют на суммарное световое излучение. Гигантский ресурс работы светодиодов практически решает проблемы, связанные с необходимостью их замены. Кроме того, светоизлучающие диоды способны надежно функционировать в самом широком диапазоне рабочих температур.


Надежно…


Есть надежность совершенно особого рода — та, от которой порою зависят человеческие жизни. Применение светодиодов в устройствах отображения информации (дорожные знаки, светофоры, информационные табло и т.д.) ведет к значительному увеличению расстояния их восприятия человеческим глазом. Неслучайно во многих крупных городах развитых стран уже нет обычных светофоров, а светодиодные схемы используются в воздушных и надводных навигационных системах.


Другим аспектом, благодаря которому светодиодам некоторыми заказчиками отдается предпочтение, являются их прочность и антивандальные качества. В отличие от стеклянных трубок данные источники света изготовлены из пластика. За счет этого их нелегко вывести из строя посредством механических повреждений. Характерное напряжение, необходимое для работы одного светодиода, — 3-4 вольта. Поэтому в условиях, когда требуется соблюдение повышенных мер безопасности или нет возможности использовать высокие напряжения, светодиоды являются оптимальным выбором. Рабочее напряжение светодиодных модулей, как упоминалось ранее, составляет 10-12 В. Очевидно, что при низком напряжении не требуется применять провода большого сечения с сильной изоляцией. Это также облегчает подключение светодиодов к электросети. У газоразрядных трубок, в отличие от светодиодов, есть порог срабатывания: чтобы источник света загорелся, в начале необходимо подать на разряд необходимое напряжение. Светодиоды же начинают излучать свет сразу при подключении к электросети, и их яркость легко регулировать наращиванием или снижением напряжения практически сразу после включения. Одним из важных преимуществ светодиодов является устойчивость к воздействию низких температур. Известно, что на морозе внутри газоразрядных источников света происходит вымерзание ртути, и это приводит к снижению яркости свечения. При отрицательных температурах также возникают проблемы с включением неона. Светодиоды лишены этих минусов.


Красиво…


Если бы LED-технологии не изобрели светотехники, их бы создали дизайнеры. Светодиоды, в отличие от ламп с неоном, имеют практически неограниченные возможности для «игры» со спектрами, цепочки которых можно выстроить таким образом, чтобы световые акценты точно работали на образ. Плавные, почти незаметные для глаза световые переходы от пика к пику в плане выразительности, конечно, уступают живописи, но оставляют далеко позади другие источники света. Изощренная цветодинамика, характерная для светодиодных модулей, способна удовлетворить требования самого требовательного дизайнера. Интересно, что игра со спектрами имеет и экологическое значение. Ведь кривые чувствительности, скажем, растений и человеческого глаза не совпадают: те спектры, которые комфортны для нашего глаза, часто дискомфортны для растений, и наоборот. Зональное использование различных светодиодных «цепочек» в тех интерьерах, где одновременно пребывают и растения, и человек, снимают эту проблему.


Представительно…


Светодиодные модули необычайно компактны. Различные сувениры, миниатюрные стенды и компактные табло, украшенные светодиодной символикой компании, смотрятся на удивление выразительно и необычно. Доля рынка светотехнических изделий, занимаемая светодиодами, составляет ничтожную долю. В развитых странах, особенно в крупных городах и столицах, она медленно, но верно возрастает. Своеобразным символом этой нежной и неизбежной революции стало гигантское 500-метровое полотно из светодиодов, непрерывно протянувшееся над главной улицей Лас-Вегаса.

Всё о светодиоде

Что такое светодиод

Светодиод — это полупроводниковый прибор, преобразующий электрический ток непосредственно в световое излучение. Кстати, по-английски светодиод называется light emitting diode, или LED, по-русски — СИД.

Из чего состоит светодиод?

Из полупроводникового кристалла на подложке, корпуса с контактными выводами и оптической системы. Современные светодиоды мало похожи на первые корпусные светодиоды, применявшиеся для индикации. Конструкция мощного современного светодиода схематически изображена на рисунке.

Чем хорош светодиод?

В светодиоде, в отличие от лампы накаливания или люминесцентной лампы,электрический ток преобразуется непосредственно в световое излучение, и теоретически это можно сделать почти без потерь. Действительно, светодиод (при должном теплоотводе) мало нагревается, что делает его незаменимым для некоторых приложений. Далее, светодиод излучает в узкой части спектра, его цвет чист, а УФ- и ИК-излучения, как правило, отсутствуют. Светодиод механически прочен и исключительно надежен, его срок службы может достигать 100 тысяч часов, что почти в 100 раз больше, чем у лампочки накаливания, и в 10 раз больше, чем у люминесцентной лампы. Наконец, светодиод — низковольтный электроприбор, а стало быть, безопасный.

Каковы электрические и оптические характеристики светодиодов?

Светодиод — низковольтный прибор. Обычный светодиод, применяемый для индикации, потребляет от 2 до 4В постоянного напряжения при токе до 50 мА.Светодиод, который используется для освещения, потребляет такое же напряжение,но ток выше — от нескольких сотен мА до 1А в проекте. В светодиодном модуле отдельные светодиоды могут быть включены последовательно и суммарное напряжение оказывается более высоким (обычно 12 или 24 В).

При подключении светодиода необходимо соблюдать полярность, иначе прибор может выйти из строя. Напряжение пробоя указывается изготовителем и обычно составляет более 5В для одного светодиода. Яркость светодиода характеризуется световым потоком и осевой силой света, а также диаграммой направленности.Существующие светодиоды разных конструкций излучают в телесном угле от 4 до 140градусов. Цвет, как обычно, определяется координатами цветности и цветовой температурой, а также длиной волны излучения.

Для сравнения эффективности светодиодов между собой и с другими источниками света используется светоотдача: величина светового потока на один ватт электрической мощности. Также интересной маркетинговой характеристикой оказывается цена одного люмена.

Почему нужно стабилизировать ток через светодиод?

В рабочих режимах ток экспоненциально зависит от напряжения и незначительные изменения напряжения приводят к большим изменениям тока. Поскольку световой выход прямо пропорционален току, то и яркость светодиода оказывается нестабильной. Поэтому ток необходимо стабилизировать. Кроме того, если ток превысит допустимый предел, то перегрев светодиода может привести к его ускоренному старению.

Чем определяется срок службы светодиода?

Считается, что светодиоды исключительно долговечны. Чем больший ток пропускается через светодиод в процессе его службы, тем выше его температура и тем быстрее наступает старение. Поэтому срок службы у мощных светодиодов короче, чем у маломощных сигнальных, и составляет в настоящее время 50 — 100тысяч часов. Старение выражается в первую очередь в уменьшении яркости.

Не вреден ли светодиод для человеческого глаза?

Спектр излучения светодиода близок к монохроматическому, в чем его кардинальное отличие от спектра солнца или лампы накаливания. Хорошо это или плохо — доподлинно не известно, потому что, серьезных исследований в этой области нигде не проводилось. Какие-либо данные о вредном воздействии светодиодов на человеческий глаз отсутствуют. Есть надежда, что вскоре влияние светодиодов на зрение будет изучено досконально.

Где сегодня целесообразно применять светодиоды?

Светодиоды находят применение практически во всех областях светотехники. Светодиоды оказываются незаменимы в дизайнерском освещении благодаря их чистому цвету, а также в светодинамических системах.Выгодно же их применять там, где дорого обходится частое обслуживание, где необходимо жестко экономить электроэнергию и где высоки требования по электробезопасности.

Возможности и применение

Изобретение первых светодиодов — полупроводниковых диодов в эпоксидной оболочке, выделяющих монохроматический свет при подключении к электротоку -относится к 1960-м годам. Однако до 1980-х низкая яркость, отсутствие светодиодов синего и белого цветов, а также высокие затраты на их производство ограничивали их массовое применение в качестве источников света. Поэтому светодиоды в основном использовали в наружных электронных табло, ими оборудовали системы регулирования дорожного движения, применяли в оптоволоконных системах передачи данных и медицинском оборудовании.

Появление сверхярких, а также синих (в середине 1990-х годов) и белых диодов(в начале XXI века) и постоянное снижение их рыночной стоимости привлекли внимание многих производителей к данным источникам света. Светодиоды стали использовать в качестве индикаторов режимов работы электронных устройств, в подсветке жидкокристаллических экранов различных приборов, в том числе — мобильных телефонов и пр. Впоследствии применение светодиодов основных цветов (красного,синего и зеленого) позволило получать цвета вывесок фактически любых оттенков,а также конструировать из них дисплеи с выводом полноцветной графики и анимации.

Срок службы светодиодов, превышающий в 6-8 раз долговечность люминесцентных ламп, относительная простота в работе с ними на этапе сборки изделий,отсутствие необходимости в регулярном обслуживании и их антивандальные качества делают эти источники света конкурентоспособными с более традиционными-газоразрядными, люминесцентными лампами и лампами накаливания. Одним из немногих и существенных аспектов, за счет которого светодиоды еще недостаточно распространены является пока еще высокая стоимость светодиодов.

Преимущества

Экономично

Одним из достоинств светодиодов является их долговечность. Данные источники света обладают ресурсом использования 100 000 часов, а ведь это 10-12 лет непрерывной работы. Для сравнения — максимальный срок работы газоразрядных и люминесцентных ламп составляет 10 тыс. часов.

За это же время в световом модуле, использующем люминесцентные лампы, их нужно будет сменить 8-10 раз, а лампы накаливания придется заново «вкручивать»от 30 до 40 раз. Использование светодиодных модулей позволяет снизить затраты на электроэнергию до 87%!

Работа при низких температурах

Благодаря полупроводниковой природе светодиодов их яркость обратно пропорциональна температуре окружающей среды, что делает их применение особенно актуальным в наших климатических условиях. Диапазон температуры эксплуатации светодиодов от -50…+60 град С.

Стойкость к механическим воздействиям

Отсутствие стеклянных деталей, нитей накаливание делает светодиоды устойчивыми к механическим воздействиям, ударам и вибрации.

Высокая светоотдача

Яркость светодиодов сравнима с неоном. Для сравнения: обычная лампа накаливания дает до 10 люмен на 1 Вт потребленной энергии, светодиоды — 70 люмен и выше.Сверхяркие светодиоды обеспечивают сильный световой поток для изделий такого класса.

Чистота цвета

Возможность получения любого цвета и оттенка излучения светодиодов: например,чистый синий, чистый белый, оранжевый, сине-зеленый и десятки других чистых цветов и оттенков — чего нельзя получить, используя лампы накаливания.

Высокий уровень безопасности

Обеспечивается малым тепловыделением светодиодов и низким питающим напряжением.

Простой электромонтаж

А также легкое крепление к любой поверхности существенно облегчают монтаж и ремонт, и соответственно расходы связанные с ними.

Безинерционность

Возможность управления через контроллеры, диммеры, в том числе с плавным изменением яркости и цвета свечения. Управляя интенсивностью и режимом свечения можно достичь фантастического эффекта «живого света».

Замена существующих источников света

Светотехнические и электрические параметры модулей позволяют легко заменить любые ранее установленные источники света и значительно сократить расходы на эксплуатацию и обслуживание.

Экологическая и пожарная безопасность

Не содержат вредных веществ, побочного ультрафиолетового или инфракрасного излучения и почти не нагреваются.

Недостатки

Поверхностный взгляд на использование светодиодов сразу отмечает их высокую стоимость — главный недостаток по сравнению с лампами накаливания и газоразрядными лампами различных типов. Если говорить о цене изделия как таковой, то LED-изделия действительно «не каждому по карману». Однако производители по всему миру продолжают наращивать мощности по изготовлению светодиодов, и цены на данные источники света неуклонно понижаются. Практика показывает, что совокупные затраты на приобретение и эксплуатацию светодиодных изделий, в конечном итоге оказываются в 2 — 2,5 раза ниже затрат на обычные светильники.

✅ О светодиодах для новичков, Полезная информация завода светотехники «СВЕТОРЕЗЕРВ»

Что такое светодиоды?

      Светодиод — это полупроводниковый прибор, преобразующий электрический ток непосредственно в световое излучение. Кстати, по-английски светодиод называется light emitting diode, или LED. Светодиод состоит из полупроводникового кристалла на подложке, корпуса с контактными выводами и оптической системы. Современные светодиоды мало похожи на первые корпусные светодиоды, применявшиеся для индикации. Конструкция мощного современного светодиода схематически изображена на рисунке.



 

 

1 — пластиковая линза

2 — силиконовый герметик

3 — кристалл полупроводника InGaN

4 — спайка

5 — вмонтированный кремниевый чип с защитой от статического электричества

6 — теплоотвод

7 — золотая проволока

8 — катод

Каковы преимущества светодиодов?

       В светодиоде, в отличие от лампы накаливания или люминесцентной лампы, электрический ток преобразуется непосредственно в световое излучение, и теоретически это можно сделать почти без потерь. Действительно, светодиод (при должном теплоотводе) мало нагревается, что делает его незаменимым для некоторых приложений. Далее, светодиод излучает в узкой части спектра, его цвет чист, что особенно ценят дизайнеры, а УФ- и ИК-излучения, как правило, отсутствуют. Светодиод механически прочен и исключительно надежен, его срок службы может достигать 100 тысяч часов, что почти в 100 раз больше, чем у лампочки накаливания, и в 10 раз больше, чем у люминесцентной лампы. Наконец, светодиод — низковольтный электроприбор, а стало быть, безопасный.

Как получить белый свет с использованием светодиодов?

       Существует три способа получения белого света от светодиодов. Первый — смешивание цветов по технологии RGB. На одной матрице плотно размещаются красные, голубые и зеленые светодиоды, излучение которых смешивается при помощи оптической системы, например линзы. В результате получается белый свет. Второй способ заключается в том, что на поверхность светодиода, излучающего в ультрафиолетовом диапазоне (есть и такие), наносится три люминофора, излучающих, соответственно, голубой, зеленый и красный свет. Это похоже на то, как светит люминесцентная лампа. И, наконец, в третьем способе желто-зеленый или зеленый плюс красный люминофор наносятся на голубой светодиод, так что два или три излучения смешиваются, образуя белый или близкий к белому свет.

Каковы электрические и оптические характеристики светодиодов?

       Светодиод — низковольтный прибор. Обычный светодиод, применяемый для индикации, потребляет от 2 до 4В постоянного напряжения при токе до 50 мА. Светодиод, который используется для освещения, потребляет такое же напряжение, но ток выше — от нескольких сотен мА до 1А в проекте. В светодиодном модуле отдельные светодиоды могут быть включены последовательно, и суммарное напряжение оказывается более высоким (обычно 12 или 24 В).

При подключении светодиода необходимо соблюдать полярность, иначе прибор может выйти из строя. Напряжение пробоя указывается изготовителем и обычно составляет более 5В для одного светодиода. Яркость светодиода характеризуется световым потоком и осевой силой света, а также диаграммой направленности. Существующие светодиоды разных конструкций излучают в телесном угле от 4 до 140 градусов. Цвет, как обычно, определяется координатами цветности и цветовой температурой, а также длиной волны излучения.

Для сравнения эффективности светодиодов между собой и с другими источниками света используется светоотдача: величина светового потока на один ватт электрической мощности. Также интересной маркетинговой характеристикой оказывается цена одного люмена.

Почему нужно стабилизировать ток через светодиод?

        В рабочих режимах ток экспоненциально зависит от напряжения и незначительные изменения напряжения приводят к большим изменениям тока. Поскольку световой выход прямо пропорционален току, то и яркость светодиода оказывается нестабильной. Поэтому ток необходимо стабилизировать. Кроме того, если ток превысит допустимый предел, то перегрев светодиода может привести к его ускоренному старению.

Можно ли регулировать яркость светодиода?

        Яркость светодиодов очень хорошо поддается регулированию, но не за счет снижения напряжения питания — этого-то как раз делать нельзя, — а так называемым методом широтно-импульсной модуляции (ШИМ), для чего необходим специальный управляющий блок (реально он может быть совмещен с блоком питания и конвертором, а также с контроллером управления цветом RGB-матрицы). Метод ШИМ заключается в том, что на светодиод подается не постоянный, а импульсно-модулированный ток, причем частота сигнала должна составлять сотни или тысячи герц, а ширина импульсов и пауз между ними может изменяться. Средняя яркость светодиода становится управляемой, в то же время светодиод не гаснет. Небольшое изменение цветовой температуры светодиода при диммировании несравнимо с аналогичным смещением для ламп накаливания.

Чем определяется срок службы светодиода?

         Считается, что светодиоды исключительно долговечны. Но это не совсем так. Чем больший ток пропускается через светодиод в процессе его службы, тем выше его температура и тем быстрее наступает старение. Поэтому срок службы у мощных светодиодов короче, чем у маломощных сигнальных, и составляет в настоящее время 20 — 50 тысяч часов. Старение выражается в первую очередь в уменьшении яркости. Когда яркость снижается на 30% или наполовину, светодиод надо менять.

Не вреден ли светодиод для человеческого глаза?

          Спектр излучения светодиода близок к монохроматическому, в чем его кардинальное отличие от спектра солнца или лампы накаливания. Хорошо это или плохо — доподлинно не известно, потому что, серьезных исследований в этой области нигде не проводилось. Какие-либо данные о вредном воздействии светодиодов на человеческий глаз отсутствуют. Есть надежда, что вскоре влияние светодиодов на зрение будет изучено досконально.

Где сегодня целесообразно применять светодиодные изделия?

          Светодиодные изделия находят применение практически во всех областях светотехники, незаменимы в дизайнерском освещении благодаря их чистому цвету, а также в светодинамических системах. Выгодно же их применять там, где дорого обходится частое обслуживание, где необходимо жестко экономить электроэнергию, и где высоки требования по электробезопасности.

Всё о светодиодах || BATTERY TEAM

Всё о светодиодах

Интерес к светодиодам растет быстрее, чем территория их применения в
светотехнике. Производители и потребители, продавцы и покупатели — все как будто
замерли на старте, боясь отстать от других. И только дизайнеры уже вовсю
пользуются уникальными возможностями светодиодов. Давно прошло то время, когда
светодиоды были интересны одним лишь ученым. Теперь светодиодная тема у всех на
слуху. Говорят, за ними будущее.

Светодиоды излучают не только уникальный по своим характеристикам свет, но и
завидный оптимизм по поводу своего места на рынке светотехники. Особенно активно
экспансия LED разворачивается в области интерьерного оформления и светодизайна.

Прежде чем говорить о применении светодиодов, их достоинствах и недостатках,
ответим на несколько вопросов о сущности самого светодиода:

Что такое светодиод?

Светодиод — это полупроводниковый прибор, преобразующий электрический ток
непосредственно в световое излучение. Кстати, по-английски светодиод называется
light emitting diode, или LED.

Из чего состоит светодиод?

Из полупроводникового кристалла на подложке, корпуса с контактными выводами и
оптической системы. Современные светодиоды мало похожи на первые корпусные
светодиоды, применявшиеся для индикации. Конструкция мощного современного
светодиода схематически изображена на рисунке.

Чем хорош светодиод?

В светодиоде, в отличие от лампы накаливания или люминесцентной лампы,
электрический ток преобразуется непосредственно в световое излучение, и
теоретически это можно сделать почти без потерь. Действительно, светодиод (при
должном теплоотводе) мало нагревается, что делает его незаменимым для некоторых
приложений. Далее, светодиод излучает в узкой части спектра, его цвет чист, что
особенно ценят дизайнеры, а УФ- и ИК-излучения, как правило, отсутствуют.
Светодиод механически прочен и исключительно надежен, его срок службы может
достигать 100 тысяч часов, что почти в 100 раз больше, чем у лампочки
накаливания, и в 10 раз больше, чем у люминесцентной лампы. Наконец, светодиод —
низковольтный электроприбор, а стало быть, безопасный.

Как получить белый свет с использованием светодиодов?

Существует три способа получения белого света от светодиодов. Первый —
смешивание цветов по технологии RGB. На одной матрице плотно размещаются
красные, голубые и зеленые светодиоды, излучение которых смешивается при помощи
оптической системы, например линзы. В результате получается белый свет. Второй
способ заключается в том, что на поверхность светодиода, излучающего в
ультрафиолетовом диапазоне (есть и такие), наносится три люминофора, излучающих,
соответственно, голубой, зеленый и красный свет. Это похоже на то, как светит
люминесцентная лампа. И, наконец, в третьем способе желто-зеленый или зеленый
плюс красный люминофор наносятся на голубой светодиод, так что два или три
излучения смешиваются, образуя белый или близкий к белому свет.

Каковы электрические и оптические характеристики светодиодов?

Светодиод — низковольтный прибор. Обычный светодиод, применяемый для индикации,
потребляет от 2 до 4В постоянного напряжения при токе до 50 мА. Светодиод,
который используется для освещения, потребляет такое же напряжение, но ток выше
— от нескольких сотен мА до 1А в проекте. В светодиодном модуле отдельные
светодиоды могут быть включены последовательно, и суммарное напряжение
оказывается более высоким (обычно 12 или 24 В).

При подключении светодиода необходимо соблюдать полярность, иначе прибор может
выйти из строя. Напряжение пробоя указывается изготовителем и обычно составляет
более 5В для одного светодиода. Яркость светодиода характеризуется световым
потоком и осевой силой света, а также диаграммой направленности. Существующие
светодиоды разных конструкций излучают в телесном угле от 4 до 140 градусов.
Цвет, как обычно, определяется координатами цветности и цветовой температурой, а
также длиной волны излучения.

Для сравнения эффективности светодиодов между собой и с другими источниками
света используется светоотдача: величина светового потока на один ватт
электрической мощности. Также интересной маркетинговой характеристикой
оказывается цена одного люмена.

Почему нужно стабилизировать ток через светодиод?

В рабочих режимах ток экспоненциально зависит от напряжения и незначительные
изменения напряжения приводят к большим изменениям тока. Поскольку световой
выход прямо пропорционален току, то и яркость светодиода оказывается
нестабильной. Поэтому ток необходимо стабилизировать. Кроме того, если ток
превысит допустимый предел, то перегрев светодиода может привести к его
ускоренному старению.

Можно ли регулировать яркость светодиода?

Яркость светодиодов очень хорошо поддается регулированию, но не за счет снижения
напряжения питания — этого-то как раз делать нельзя, — а так называемым методом
широтно-импульсной модуляции (ШИМ), для чего необходим специальный управляющий
блок (реально он может быть совмещен с блоком питания и конвертором, а также с
контроллером управления цветом RGB-матрицы). Метод ШИМ заключается в том, что на
светодиод подается не постоянный, а импульсно-модулированный ток, причем частота
сигнала должна составлять сотни или тысячи герц, а ширина импульсов и пауз между
ними может изменяться. Средняя яркость светодиода становится управляемой, в то
же время светодиод не гаснет. Небольшое изменение цветовой температуры
светодиода при диммировании несравнимо с аналогичным смещением для ламп
накаливания.

Чем определяется срок службы светодиода?

Считается, что светодиоды исключительно долговечны. Но это не совсем так. Чем
больший ток пропускается через светодиод в процессе его службы, тем выше его
температура и тем быстрее наступает старение. Поэтому срок службы у мощных
светодиодов короче, чем у маломощных сигнальных, и составляет в настоящее время
20 — 50 тысяч часов. Старение выражается в первую очередь в уменьшении яркости.
Когда яркость снижается на 30% или наполовину, светодиод надо менять.

Не вреден ли светодиод для человеческого глаза?

Спектр излучения светодиода близок к монохроматическому, в чем его кардинальное
отличие от спектра солнца или лампы накаливания. Хорошо это или плохо —
доподлинно не известно, потому что, серьезных исследований в этой области нигде
не проводилось. Какие-либо данные о вредном воздействии светодиодов на
человеческий глаз отсутствуют. Есть надежда, что вскоре влияние светодиодов на
зрение будет изучено досконально.

Где сегодня целесообразно применять светодиоды?

Светодиоды находят применение практически во всех областях светотехники, за
исключением освещения производственных площадей, да и там могут использоваться в
аварийном освещении. Светодиоды оказываются незаменимы в дизайнерском освещении
благодаря их чистому цвету, а также в светодинамических системах. Выгодно же их
применять там, где дорого обходится частое обслуживание, где необходимо жестко
экономить электроэнергию, и где высоки требования по электробезопасности.

Возможности и применение

Изобретение первых светодиодов — полупроводниковых диодов в эпоксидной оболочке, выделяющих
монохроматический свет при подключении к электротоку — относится к 1960-м годам.
Однако до 1980-х низкая яркость, отсутствие светодиодов синего и белого цветов,
а также высокие затраты на их производство ограничивали их массовое применение в
качестве источников света. Поэтому светодиоды в основном использовали в наружных
электронных табло, ими оборудовали системы регулирования дорожного движения,
применяли в оптоволоконных системах передачи данных и медицинском оборудовании.

Появление сверх ярких, а также синих (в середине 1990-х годов) и белых диодов (в
начале XXI века) и постоянное снижение их рыночной стоимости привлекли внимание
многих производителей к данным источникам света. Светодиоды стали использовать в
качестве индикаторов режимов работы электронных устройств, в подсветке
жидкокристаллических экранов различных приборов, в том числе — мобильных
телефонов и пр. Впоследствии применение светодиодов основных цветов (красного,
синего и зеленого) позволило получать цвета вывесок фактически любых оттенков, а
также конструировать из них дисплеи с выводом полноцветной графики и анимации.
Светодиоды, за счет их малой потребности в электроэнергии, —
оптимальный выбор декоративного освещения в местах, где существуют проблемы с
энергетикой.

Срок службы светодиодов, превышающий в 6-8 раз долговечность люминесцентных ламп,
относительная простота в работе с ними на этапе сборки изделий, отсутствие
необходимости в регулярном обслуживании и их антивандальные качества делают эти
источники света конкурентоспособными с более традиционными -газоразрядными,
люминесцентными лампами и лампами накаливания. Одним из немногих и существенных
аспектов, за счет которого неон удерживает свои позиции в сегменте подсветки
вывесок, является пока еще более высокая стоимость светодиодов.

Преимущества

Экономично…

Одним из достоинств светодиодов является их долговечность. Данные источники света
обладают ресурсом использования 100 000 часов, а ведь это 10-12 лет непрерывной
работы. Для сравнения — максимальный срок работы неоновых и люминесцентных ламп
составляет 10 тыс. часов. За это же время в световом модуле, использующем
люминесцентные лампы, их нужно будет сменить 8-10 раз, а лампы накаливания
придется заново «вкручивать» от 30 до 40 раз. Использование светодиодных
модулей позволяет снизить затраты на электроэнергию до 87%!

Удобно…

Светодиодный модуль — многокомпонентная структура с неприхотливой схемой
подключения. В цепочке, скажем, из полусотни светодиодов один-два неисправных не
только не выводят рекламный фрагмент из строя, но даже не влияют на суммарное
световое излучение. Гигантский ресурс работы светодиодов практически решает
проблемы, связанные с необходимостью их замены. Кроме того, светоизлучающие
диоды способны надежно функционировать в самом широком диапазоне рабочих
температур.

Надежно…

Есть надежность совершенно особого рода — та, от которой порою зависят
человеческие жизни. Применение светодиодов в устройствах отображения информации
(дорожные знаки, светофоры, информационные табло и т.д.) ведет к значительному
увеличению расстояния их восприятия человеческим глазом. Неслучайно во многих
крупных городах развитых стран уже нет обычных светофоров, а светодиодные схемы
используются в воздушных и надводных навигационных системах.

Другим аспектом, благодаря которому светодиодам некоторыми заказчиками
отдается предпочтение, являются их прочность и антивандальные
качества. В отличие от стеклянных трубок данные источники света изготовлены из
пластика. За счет этого их нелегко вывести из строя посредством механических
повреждений. Характерное напряжение, необходимое для работы одного светодиода, —
3-4 вольта. Поэтому в условиях, когда требуется соблюдение повышенных мер
безопасности или нет возможности использовать высокие напряжения, светодиоды
являются оптимальным выбором. Рабочее напряжение светодиодных модулей, как
упоминалось ранее, составляет 10-12В. Очевидно, что при низком напряжении не
требуется применять провода большого сечения с сильной изоляцией. Это также
облегчает подключение светодиодов к электросети. У газоразрядных трубок, в
отличие от светодиодов, есть порог срабатывания: чтобы источник света
загорелся, в начале необходимо подать на разряд необходимое напряжение.
Светодиоды же начинают излучать свет сразу при подключении к электросети, и их
яркость легко регулировать наращиванием или снижением напряжения практически
сразу после включения. Одним из важных преимуществ светодиодов является
устойчивость к воздействию низких температур. Известно, что на морозе внутри
газоразрядных источников света происходит вымерзание ртути, и это приводит к
снижению яркости свечения. При отрицательных температурах также возникают
проблемы с включением неона. Светодиоды лишены этих минусов.

Красиво…

Если бы LED-технологии не изобрели светотехники, их бы создали дизайнеры.
Светодиоды, в отличие от ламп с неоном, имеют практически неограниченные
возможности для «игры» со спектрами, цепочки которых можно выстроить таким
образом, чтобы световые акценты точно работали на образ. Плавные, почти
незаметные для глаза световые переходы от пика к пику в плане выразительности,
конечно, уступают живописи, но оставляют далеко позади другие источники света.
Изощренная цветодинамика, характерная для светодиодных модулей, способна
удовлетворить требования самого требовательного дизайнера. Интересно, что игра
со спектрами имеет и экологическое значение. Ведь кривые чувствительности,
скажем, растений и человеческого глаза не совпадают: те спектры, которые
комфортны для нашего глаза, часто дискомфортны для растений, и наоборот.
Зональное использование различных светодиодных «цепочек» в тех интерьерах, где
одновременно пребывают и растения, и человек, снимают эту проблему.

Представительно…

Светодиоднве модули необычайно компактны. Различные сувениры, миниатюрные стенды
и компактные табло, украшенные светодиодной символикой компании, смотрятся на
удивление выразительно и необычно. Доля рынка светотехнических изделий,
занимаемая светодиодами, составляет ничтожную долю. В развитых странах, особенно
в крупных городах и столицах, она медленно, но верно возрастает. Своеобразным
символом этой нежной и неизбежной революции стало гигантское 500-метровое
полотно из светодиодов, непрерывно протянувшееся над главной улицей Лас-Вегаса.

Недостатки

Поверхностный взгляд на использование светодиодов сразу отмечает их высокую
стоимость — главный недостаток по сравнению с лампами накаливания и неоновыми
трубками различных типов. Если говорить о цене изделия как таковой, то LED-изделия
действительно «не каждому по карману». До сих пор затраты на светодиодные модули
— два раза выше стоимости неонового изделия аналогичной яркости. Однако
производители по всему миру продолжают наращивать мощности по изготовлению
светодиодов, и цены на данные источники света неуклонно понижаются. По оценкам
специалистов, к 2007 году цены на светодиоды (LEDs) понизятся в 10 раз по
отношению к существующим. Практика показывает, что совокупные затраты на
приобретение и эксплуатацию светодиодных изделий, в конечном итоге оказываются в
2 — 2,5 раза ниже затрат на обычные светильники.

Также недостатком при использовании светодиодов в конструировании объемных букв
средних и крупных размеров можно считать их миниатюрность, из-за которой
требуется объединять многочисленные отдельные светодиоды в группы. Чтобы
обеспечить яркий и красочный свет, мгновенно привлекающий внимание, требуется
большое количество светодиодов. В данном случае возникает необходимость
использования универсальных модулей: один или два светодиода, которые можно
интегрировать практически в любой рекламный образ.

Где применяют светодиоды?

  • все виды световой рекламы (вывески, щиты, световые короба и др.)
  • замена неона
  • дизайн помещений
  • дизайн мебели
  • архитектурная и ландшафтная подсветка
  • одноцветные дисплеи с бегущей строкой
  • магистральные информационные табло
  • полноцветные дисплеи для больших видео экранов
  • внутреннее и внешнее освещение в автомобилях, грузовиках и автобусах
  • дорожные знаки и светофоры

Другие сферы применения включают подсветку жидкокристаллических дисплеев в
сотовых телефонах, цифровые камеры, а также архитектурное и другие виды
освещения. Сектор электронного оборудования включает применение светодиодов в
качестве индикаторных ламп в промышленных и потребительских товарах.

Будущее за светодиодами?

Специалисты подчеркивают, что в ближайшие несколько лет цены на светодиоды
упадут до уровня, при котором готовые изделия из них будут стоить дешевле
неоновых. В этом случае необходимости в квалификации по работе с неоном,
электропроводке высоковольтных проводов для подключения газоразрядных трубок и
мерах для предотвращения ошибок, ведущих к перегоранию источников света, нет.

Еще более перспективны светодиодные модули — исключительный по гибкости «конструктор»
для дизайнера и изготовителя рекламы, включающий разнообразные простейшие
геометрические формы — линии, кольца, звезды, прямоугольники… Подобно
разноцветным пластиковым модулям LEGO светодиодные модули легко объединяются
друг с другом и не менее легко присоединяются к любой поверхности. Если
светодиоды открывают новую эру в освещении вообще, светодиодные модули —
бесспорно, новая эра светодизайна. Осветительный прибор как автономное
устройство перестает быть главным компонентом архитектурного и интерьерного
освещения; светодиодные модули делают шаг «вглубь», встраивая, интегрируя свет в
различные объекты, можно получить совершенно новую степень свободы в
формировании световой среды, выходя на фантастический уровень детальности,
согласованности, управляемости.

Пожалуй, самое интересное — это процесс вторжения светодиодных технологий в «традиционное»
освещение. Начался он с установок, где не требуется высокий уровень освещенности:
дежурное и аварийное освещение, ночное интерьерное освещение, знаки и таблички,
«маркировочное» освещение. Насыщенный цвет светодиодных модулей позволяет
использовать светодиоды для цветового зонирования пространства, создания
цветовых акцентов. Сочетание светопрозрачных конструкций (окна, стеновые панели,
стеклянная мебель) с гибкими линейными светодиодными модулями позволяет
создавать светящиеся и меняющие цвет формы. Применение сверхминиатюрных
источников света позволяет создать «альтернативные» яркие световые образы для
привычных предметов интерьера. С ростом световой отдачи и удешевлением приборов,
светодиодная «экспансия» распространяется не только на локальное, но и на общее
освещение, в котором лидирующее положение пока занимают традиционные и
галогенные лампы накаливания (жилые помещения) и люминесцентные лампы (офисные
помещения).

Наиболее остры вопросы обслуживания в наружном освещении, поэтому внедрение
светодиодов в архитектурное освещение происходит очень быстро. Заманчивой идеей
для архитекторов является применение светодиодных «линий» для создания световых
карнизов. Характеристики светодиодных модулей по эксплуатационным параметрам
многократно превышают существующие альтернативы, а по стоимости оказываются
вполне сравнимыми с ними. Нужно только не забывать, что холодный свет
светодиодов не в состоянии растопить скапливающийся на карнизах снег, поэтому
использовать их (в наших краях) в архитектурной подсветке нужно в положении «светим
вниз». Тот же аргумент справедлив для ландшафтного освещения, поэтому
встраиваемые в дорожку или газон светодиодные «аплайты» зимой видны не будут.
Однако здесь есть и плюсы: светодиоды, как и оптоволоконо, можно использовать
для подсветки ледяных скульптур, замерзших прудиков из-под льда и т. д.).

Насыщенные
цвета светодиодов создают фантастические эффекты при подсветке воды.
Светодиодное освещение фонтанов создает ни с чем не сравнимые «флюоресцирующие»
световые картины, одну из которых мы можем наблюдать в Москве (площадь Европы
перед Киевским вокзалом).

Описание серии

и параллельных цепей

Надеюсь, те, кто ищет практическую информацию об электрических схемах и подключении светодиодных компонентов, первыми нашли это руководство. Однако вполне вероятно, что вы уже читали здесь страницу Википедии о последовательных и параллельных схемах, возможно, несколько других результатов поиска Google по этому вопросу, но все еще неясны или вам нужна более конкретная информация, касающаяся светодиодов. За годы обучения, обучения и разъяснения клиентам концепции электронных схем мы собрали и подготовили всю критически важную информацию, которая поможет вам понять концепцию электрических цепей и их связь со светодиодами.

Перво-наперво, не позволяйте, чтобы электрические схемы и компоненты проводки светодиодов казались устрашающими или сбивающими с толку — правильное подключение светодиодов может быть простым и понятным, если вы следите за этим постом. Давайте начнем с самого основного вопроса…

Какой тип цепи мне следует использовать?
Один лучше другого… Последовательный, Параллельный или Последовательный / Параллельный?

Требования к освещению часто диктуют, какой тип схемы можно использовать, но если есть выбор, то наиболее эффективным способом использования светодиодов высокой мощности является использование последовательной схемы с драйвером светодиодов постоянного тока.Последовательная схема помогает обеспечить одинаковое количество тока для каждого светодиода. Это означает, что каждый светодиод в цепи будет иметь одинаковую яркость и не позволит одному светодиоду потреблять больше тока, чем другому. Когда каждый светодиод получает одинаковый ток, это помогает устранить такие проблемы, как тепловой выход из строя.

Не волнуйтесь, параллельная схема по-прежнему является жизнеспособным вариантом и часто используется; позже мы обрисуем этот тип схемы.

Но сначала давайте рассмотрим схему серии :

Часто называемый «гирляндным» или «замкнутым» током в последовательной цепи следует один путь от начала до конца, при этом анод (положительный) второго светодиода соединен с катодом (отрицательным) первого.На изображении справа показан пример: Для подключения последовательной цепи, подобной показанной, положительный выход драйвера подключается к положительному выводу первого светодиода, а от этого светодиода выполняется соединение от отрицательного к положительному полюсу второго. Светодиод и так далее, до последнего светодиода в цепи. Наконец, последнее соединение светодиода идет от отрицательного полюса светодиода к отрицательному выходу драйвера постоянного тока, создавая непрерывную петлю или гирляндную цепь.

Вот несколько пунктов для справки о последовательной цепи:

  1. Одинаковый ток течет через каждый светодиод
  2. Полное напряжение цепи — это сумма напряжений на каждом светодиоде
  3. При выходе из строя одного светодиода вся схема не работает.
  4. Цепи серии

  5. проще подключать и устранять неисправности
  6. Различное напряжение на каждом светодиодах — это нормально

Питание последовательной цепи:

Концепция петли к настоящему времени не проблема, и вы определенно можете понять, как ее подключить, но как насчет питания последовательной цепи.

Второй маркер выше гласит: «Общее напряжение цепи — это сумма напряжений на каждом светодиоде». Это означает, что вы должны подавать как минимум сумму прямых напряжений каждого светодиода. Давайте посмотрим на это, снова используя приведенную выше схему в качестве примера, и предположим, что светодиод представляет собой Cree XP-L, работающий от 1050 мА с прямым напряжением 2,95 В. Сумма прямых напряжений трех из этих светодиодов равна 8,85 В, постоянного тока, . Таким образом, теоретически 8,85 В — это минимальное необходимое входное напряжение для управления этой схемой.

В начале мы упоминали об использовании драйвера светодиода с постоянным током, потому что эти силовые модули могут изменять свое выходное напряжение в соответствии с последовательной схемой. Поскольку светодиоды нагреваются, их прямое напряжение изменяется, поэтому важно использовать драйвер, который может изменять свое выходное напряжение, но сохранять тот же выходной ток. Чтобы получить более полное представление о драйверах светодиодов, загляните сюда. Но в целом важно убедиться, что ваше входное напряжение в драйвере может обеспечивать выходное напряжение, равное или превышающее 8.85V мы рассчитали выше. Некоторым драйверам требуется вводить немного больше, чтобы учесть питание внутренней схемы драйвера (драйвер BuckBlock требует накладных расходов 2 В), в то время как другие имеют функции повышения (FlexBlock), которые позволяют вводить меньше.

Надеюсь, вы сможете найти драйвер, который сможет дополнить вашу светодиодную схему последовательно включенными диодами, однако существуют обстоятельства, которые могут сделать это невозможным. Иногда входного напряжения может быть недостаточно для питания нескольких последовательно включенных светодиодов, или, может быть, светодиодов слишком много для подключения последовательно, или вы просто хотите ограничить стоимость драйверов светодиодов.Какой бы ни была причина, вот как понять и настроить параллельную схему светодиодов.

Параллельная цепь:

Если последовательная схема получает одинаковый ток к каждому светодиоду, параллельная схема получает одинаковое напряжение на каждый светодиод, а общий ток на каждый светодиод представляет собой общий выходной ток драйвера, деленный на количество параллельных светодиодов.

Опять же, не волнуйтесь, здесь мы увидим, как подключить параллельную светодиодную схему, и это должно помочь связать идеи воедино.

В параллельной схеме все положительные соединения связаны вместе и обратно к положительному выходу драйвера светодиода, а все отрицательные соединения связаны вместе и обратно к отрицательному выходу драйвера.Давайте посмотрим на это на изображении справа.

В примере, показанном с выходным драйвером 1000 мА, каждый светодиод будет получать 333 мА; общий выход драйвера (1000 мА), деленный на количество параллельных цепочек (3).

Вот несколько пунктов для справки о параллельной цепи:

  1. Напряжение на каждом светодиоде одинаковое
  2. Полный ток — это сумма токов, протекающих через каждый светодиод.
  3. Общий выходной ток распределяется через каждую параллельную цепочку
  4. Требуется точное напряжение в каждой параллельной цепочке, чтобы избежать перегрузки по току

Теперь давайте немного повеселимся, объединим их вместе и наметим схему серии / параллельной цепи :

Как следует из названия, последовательная / параллельная цепь объединяет элементы каждой цепи.Начнем с последовательной части схемы. Допустим, мы хотим запустить в общей сложности 9 светодиодов Cree XP-L на 700 мА каждый с напряжением 12 В постоянного тока ; прямое напряжение каждого светодиода при 700 мА составляет 2,98 В постоянного тока . Правило номер 2 из маркированного списка последовательной цепи доказывает, что 12 В постоянного тока недостаточно для последовательного включения всех 9 светодиодов (9 x 2,98 = 26,82 В, постоянного тока, ). Тем не менее, 12 В постоянного тока достаточно для работы трех последовательно соединенных (3 x 2,98 = 8,94 В постоянного тока ). И из правила № 3 параллельной схемы мы знаем, что общий выходной ток делится на количество параллельных цепочек.Итак, если бы мы использовали BuckBlock на 2100 мА и три параллельных ряда по 3 последовательно соединенных светодиода, то 2100 мА было бы разделено на три, и каждая серия получила бы 700 мА. На изображении в качестве примера показана эта установка.

Если вы пытаетесь настроить светодиодную матрицу, этот инструмент планирования светодиодных схем поможет вам решить, какую схему использовать. На самом деле он дает вам несколько различных вариантов различных последовательных и последовательных / параллельных цепей, которые будут работать. Все, что вам нужно знать, это ваше входное напряжение, прямое напряжение светодиодов и количество светодиодов, которые вы хотите использовать.

Падение нескольких светодиодных цепочек:

При работе с параллельными и последовательными / параллельными цепями следует помнить, что если цепочка или светодиод перегорят, светодиод / цепочка будет отключена из цепи, так что дополнительная токовая нагрузка, которая шла на этот светодиод, будет раздать остальным. Это не большая проблема для массивов большего размера, поскольку ток будет рассеиваться в меньших количествах, но как насчет схемы с двумя светодиодами на цепочку? Затем ток будет удвоен для оставшегося светодиода / цепочки, что может быть более высокой нагрузкой, чем светодиод может выдержать, что приведет к перегоранию и разрушению вашего светодиода! Обязательно помните об этом и постарайтесь создать такую ​​настройку, которая не испортит все ваши светодиоды, если один из них перегорит.

Другая потенциальная проблема заключается в том, что даже когда светодиоды поступают из одной производственной партии (одного и того же бункера), прямое напряжение все еще может иметь допуск 20%. Варьирование напряжений в отдельных цепочках приводит к тому, что ток не делится поровну. Когда одна струна потребляет больше тока, чем другая, перегруженные светодиоды нагреваются, и их прямое напряжение будет изменяться сильнее, что приведет к более неравномерному распределению тока; это называется тепловым разгоном. Мы видели, как многие схемы, настроенные таким образом, работают хорошо, но требуется осторожность.Для получения дополнительной информации об этой концепции и способах ее избежать (текущее зеркало) есть отличная статья на сайте LEDmagazine.com.

Все о светодиодах — Учебное пособие Австралия

Привет и добро пожаловать в наш учебник, в котором мы рассмотрим все, что касается светодиодов. Прежде всего, что такое светодиод? Светодиод означает «светоизлучающий диод» и представляет собой электронный компонент, используемый для преобразования электрической энергии в световую. Этот процесс называется электролюминесценцией. Светодиодные технологии повсюду вокруг нас, индикаторы на бытовой электронике, автомобильные стоп-сигналы, экраны телевизоров, почти каждый электронный продукт будет использовать светодиоды в той или иной форме или форме.Широкое распространение светодиодной технологии объясняется энергоэффективностью, компактной формой, прочностью и простотой использования по сравнению с традиционными формами освещения. Итак, теперь, когда мы знаем, что они полезны, как они на самом деле работают?

В этой статье мы будем использовать основную теорию и термины в области электроники, поэтому, если вы не знакомы с законом Ома, напряжением, током и другими подобными терминами, сначала прочтите наш ускоренный курс по аналоговой электронике.

Принцип работы светодиодов

Светодиод, как следует из названия, представляет собой диод особого типа, который при активации излучает электромагнитную энергию (свет).Мы не будем вдаваться в подробности физики полупроводников, но диод состоит из P-N перехода. PN-переход — это два полупроводниковых материала, один из которых обрабатывается (« легируется »), чтобы иметь большое количество электронов (N для отрицательных, поскольку электроны являются отрицательно заряженными частицами), а другой, который легирован, чтобы иметь меньше электронов или дырок. ‘где электроны отсутствуют (P означает положительный, поскольку отсутствие электронов создает положительный заряд). Когда через этот переход проходит ток, электроны прыгают со стороны N на сторону P, чтобы заполнить дырки, когда электроны движутся по цепи, и когда электроны пересекают этот зазор, выделяется энергия (в случае светодиодов, световая энергия) .Физика нижнего уровня немного сложнее, но достаточно сказать, что вы можете контролировать длину волны излучаемой энергии (длина волны соответствует цвету видимого света), изменяя конструкцию светодиода и материалы, используемые для создания светодиода. PN переход.

Пользователь: S-kei — Файл: PnJunction-LED-E.PNG, CC BY-SA 2.5

Говоря о цветах, светодиоды доступны в самых разных цветах, формах, размерах и интенсивности (яркости), однако людей часто сбивает с толку то, почему синие светодиоды обычно дороже, чем светодиоды других цветов.Это связано с тем, что в то время как цвета, такие как красный, зеленый и инфракрасные светодиоды, существуют уже почти полвека, синие светодиоды существуют только десять или два десятилетия, потому что для их изготовления требуется другой материал и другой процесс (нитрид галлия GaN). В настоящее время вы можете получить светодиоды практически любого цвета, включая светодиоды невидимого спектра, такие как инфракрасные (используемые в пультах дистанционного управления) и ультрафиолетовые.

Конструкция светодиода

Светодиод — это довольно простое устройство, оно состоит из эпоксидного корпуса (прозрачного или цветного) с полупроводниковым кристаллом посередине, прикрепленным к двум выводам.Два вывода диода известны как анод и катод. Анод светодиода — это положительный вывод, а катод — отрицательный вывод. На стандартных светодиодах со сквозным отверстием корпус будет иметь плоский край с одной стороны, вывод на этой стороне является катодом и обычно также является более коротким выводом. Светодиоды, как и диоды, являются поляризованными устройствами, что означает, что они пропускают ток только в одном направлении. Если вы неправильно вставите светодиод в свою схему, он не сломается, просто не загорится.

By Inductiveload — собственная работа загрузчиком, нарисованная в Solid Edge и Inkscape., Общественное достояние

Приятно знать и все такое, но как на самом деле использовать светодиоды? Давайте взглянем.

Использование светодиодов

Несмотря на то, что существует множество различных типов светодиодов для различных приложений, включая автомобильное и домашнее освещение, сегодня мы сосредоточимся конкретно на стандартных типах светодиодов, используемых в электронике. Эти светодиоды доступны в различных формах, таких как корпуса со сквозными отверстиями 10–3 мм и корпуса SMD, однако принцип тот же. При использовании светодиодов необходимо учитывать 2 важные характеристики, чтобы они работали должным образом.Поскольку светодиоды — это просто особый тип диодов, многие из обсуждаемых здесь принципов применимы и к диодам.

Автор Afrank99 — Собственная работа, CC BY-SA 2.0

прямое напряжение:

Чтобы светодиод излучал свет, необходимо приложить к нему определенное напряжение. Это известно как «прямое напряжение», или, другими словами, светодиод вызывает потерю фиксированного напряжения на нем, что необходимо для генерации света. Для большинства светодиодов это значение находится в пределах 1.7–3,3 В в зависимости от цвета излучаемого света (для синего светодиода требуется более высокое прямое напряжение, чем для красного светодиода).

прямой ток:

Как и в случае с электронным компонентом, светодиод является нагрузкой в ​​цепи, и когда цепь замыкается, течет ток. Прямой ток светодиода относится к количеству тока, который он будет потреблять при работе с заданной яркостью. Для большинства светодиодов это значение находится в диапазоне 15-20 мА, и важно принять это к сведению, поскольку если светодиоды потребляют слишком большой ток, он значительно сократит его срок службы (синий светодиод, подключенный напрямую к источнику питания 12 В без ограничения тока, будет разрушен в несколько секунд).Из-за чрезвычайно низкого потребления тока по сравнению с яркостью светодиоды заменяют традиционные формы освещения почти во всех областях благодаря своей эффективности.

Защита светодиодов с помощью токоограничивающего резистора:

Итак, прямой ток и напряжение важны, так как же обеспечить безопасное и эффективное питание наших светодиодов? Что ж, поскольку большинство источников питания будут иметь напряжение больше, чем прямое напряжение, и быть кабелем для подачи большего, чем прямой ток, нам нужно создать дополнительную нагрузку на нашу схему, поэтому мы используем резистор.

Если вы прочитали наш ускоренный курс по аналоговой электронике, вы получите хорошее представление о том, как работают резисторы, но давайте быстро подведем итоги. Задача резисторов — (как вы уже догадались) противостоять потоку электронов (току), и любая резистивная нагрузка вызовет падение напряжения на ней. Таким образом, мы можем использовать резистор для ограничения тока, подаваемого на наш светодиод, и вычислить необходимое сопротивление — это простой вопрос применения закона Ома: V = IR (напряжение = ток x сопротивление). Так что давайте копаться!

Рассмотрим следующие характеристики типичного красного светодиода с прямым напряжением 1.8 В и прямой ток 20 мА. Для моделирования мы будем использовать источник питания 9 В.

Итак, мы будем использовать закон Ома, чтобы найти необходимое значение сопротивления, поэтому мы изменим формулу так, чтобы R = V / I, нам просто нужно найти падение напряжения на резисторе и ток, чтобы получить сопротивление. Если на светодиоде падает 1,8 В, еще 7,2 В упадет на остальную часть цепи (наш резистор), поэтому V = 7,8. Поскольку мы хотим ограничить ток в цепи до 20 мА, I = 0.02 (Амперы). Итак, теперь мы можем разделить 7,2 на 0,02 и получить: 360. Следовательно, нам нужен ограничивающий ток резистор на 360 Ом.

Вот и все, теперь вы можете рассчитать номинал резистора, необходимого для управления любым светодиодом. Попробуйте решить другую проблему, используя V = IR, где у светодиода прямое напряжение 2,2 В, прямой ток 18 мА, а источник питания — 12 В, и опубликуйте свои ответы в комментариях ниже!

Управление яркостью

Если вы хотите отрегулировать яркость светодиода, вы можете увеличить резистор ограничения тока, чтобы уменьшить ток светодиода и уменьшить яркость, однако убедитесь, что вы не опускаетесь ниже расчетного значения резистора.Это нормально для постоянной фиксации яркости, однако, в отличие от ламп накаливания (традиционных световых шаров, использующих многожильную нить накала), вы не можете регулировать яркость, просто изменяя напряжение на светодиодах. Вы получите странный ответ, и это не будет приятным плавным изменением. Вместо этого для управления яркостью светодиода вы используете ШИМ.

PWM более подробно обсуждается в других наших руководствах, однако концепция довольно проста. Вы включаете и выключаете светодиод быстрее, чем человеческий глаз может воспринимать как отдельные вспышки, и соотношение времени включения / выключения на определенной частоте воспринимается человеческим глазом как увеличение / уменьшение яркости.Для получения более подробной информации о том, как работает PWM, ознакомьтесь с этим руководством по DAC для Raspberry Pi.

Использование нескольких светодиодов: последовательный и параллельный

Итак, использование одного светодиода — это нормально, но как насчет того, чтобы подключить более одного светодиода к источнику питания, и все они загорятся? Вы могли подумать, что мы могли бы просто соединить один за другим с помощью резистора на конце, это называется последовательным соединением. Однако, если мы это сделаем, у каждого светодиода будет падение напряжения, что означает, что каждый последующий светодиод будет иметь все меньше и меньше доступного напряжения, а это означает, что светодиоды будут становиться тусклее и тусклее по мере того, как вы спускаетесь по цепи.Что нам нужно сделать, так это соединить их параллельно, как показано:

Таким образом, каждый светодиод находится в своем собственном контуре цепи, и ни один светодиод не получает больше энергии, чем другой. Но будьте осторожны, скажем, вам нужен резистор на 360 Ом для одного светодиода, как показано выше, вы не можете использовать один резистор на 360 Ом для всех светодиодов, потому что это значение предназначено для ограничения тока до 20 мА, но если у вас есть несколько светодиодов, подключенных параллельно, ток, потребляемый для них, складывается, поэтому нам нужно пересчитать текущее потребление всех светодиодов вместе взятых.

RGB и цифровые светодиоды

Каким бы захватывающим ни был одноцветный светодиод, большим преимуществом светодиодов является то, что из-за их небольшого размера вы можете объединить несколько светодиодов в один корпус, чтобы создать светодиод RGB (красный, синий, зеленый), который создает цвета в видимом диапазоне. спектр благодаря аддитивному свету. Использовать эти светодиоды просто: у них есть общий вывод (катод или анод) и отдельный вывод для каждого цвета, который вы можете использовать для независимого управления каждым цветовым каналом.Это здорово, но представьте, что вы используете их много и сколько контактов потребуется для их управления. В последние годы мы стали свидетелями разработки светодиодов с цифровой адресацией, которые объединяют светодиод RGB и крошечный чип контроллера в стандартный корпус и позволяют управлять огромными их полосами с помощью одного вывода микроконтроллера! Для получения дополнительной информации об этих типах светодиодов ознакомьтесь с нашим руководством по NeoPixels with Particle.

Что теперь?

Это почти все основы использования светодиодов. Вы можете пойти и создать свои собственные впечатляющие устройства с использованием света и чудес.Если у вас есть другие вопросы, дайте нам знать в комментариях ниже. Удачи!

Привет и добро пожаловать в наш учебник, в котором мы рассмотрим все, что касается светодиодов. Прежде всего, что такое светодиод? LED означает Light E …

Все, что вам нужно знать о светодиодном освещении

Светодиод — это самый современный и энергоэффективный источник света на рынке. Светодиодная технология меняется с каждым днем, цвет и яркость постоянно улучшаются, а стоимость продолжает снижаться.Светодиод является очень энергоэффективным источником света, излучает мало тепла и служит до 5 раз дольше, чем ближайший ближайший источник света. Светодиоды отлично подходят для освещения под шкафами, переносных ламп, светильников для картин и многого другого.

Светоизлучающие диоды (СИД) излучают свет, когда напряжение подается на отрицательно заряженные полупроводники, заставляя электроны объединяться и создавать единицу света (фотон). Проще говоря, светодиод — это химический чип, заключенный в пластиковую капсулу. Поскольку они маленькие, несколько светодиодов иногда объединяются в одну лампочку.Светодиодное освещение в целом является более эффективным и долговечным, чем любой другой тип источника света, и оно разрабатывается для все большего и большего числа применений. Светодиоды в настоящее время популярны в планках под шкафом и в светильниках вниз.

Многие светодиодные продукты рассчитаны на срок службы до 50 000 часов. Невероятная долговечность означает, что вы никогда больше не сможете поменять другой свет.

Что такое 50 000 часов? Это в 50 раз больше срока службы обычной лампы накаливания и в 5 раз больше срока службы средней компактной люминесцентной лампы (КЛЛ).Фактически, если вы запускаете светодиод на 6 часов в день каждый день, он прослужит почти 23 года. Это пять президентских выборов, время ремонта дома и простор для целого поколения.

У всех нас есть по крайней мере одна труднодоступная лампочка, и для ее замены нужна лестница или столб. Для домовладельца срок службы в пятьдесят раз дольше, чем у ламп накаливания, означает на 50 меньше шансов упасть с лестницы. Для владельца бизнеса это означает значительно меньшие затраты на обслуживание и рабочую силу.

Производство и использование светодиодов требует значительно меньше энергии, чем лампы накаливания или КЛЛ. Благодаря светодиодным осветительным приборам вы выбрасываете меньше ламп и перестанете беспокоиться о содержании в них ртути. Светодиодные осветительные приборы не содержат ртути и других токсичных материалов, что является очевидным преимуществом для окружающей среды.

* Информация предоставлена ​​Американской ассоциацией освещения и Cree LED Lighting

Светодиодная технология

: обзор — поставщик и установщик коммерческого светодиодного освещения

Хотя развитие светодиодной технологии началось в 1907 году, первые светодиодные лампы для коммерческого использования начали распространяться в 1994 году.До этого момента их производство было слишком дорогим для обычных потребителей.

Даже тогда светодиоды были очень дорогими, около 200 долларов за штуку. Сегодня они намного доступнее и регулярно используются в коммерческих, промышленных и жилых помещениях.

Какие бывают типы светодиодного освещения?

  • Цвет — светодиодные лампы излучают теплый белый, холодный белый и дневной цвет, который является абсолютно белым с оттенком синего.Каждый цвет используется для разных приложений; теплый белый цвет для дома, холодный белый для магазинов и офисов, а также дневной свет для наружного применения и настоящие цвета.
  • Dimmable — светодиодами можно управлять с помощью диммерных переключателей, так что свет можно настроить по своему вкусу.

Светодиодные лампы

потребляют намного меньше энергии, чем лампы накаливания и люминесцентные лампы (КЛЛ). Как упоминалось ранее, они преобразуют 100% энергии, используемой для их питания, в свет, устраняя огромные потери энергии традиционных лампочек.

Поскольку светодиоды потребляют меньше энергии, результатом является значительное сокращение выбросов парниковых газов электростанциями. Фактически, по оценкам, одна светодиодная лампа минимизирует выбросы почти на полтонны.

Поскольку светодиодные лампы служат намного дольше, их нужно менять намного реже. Это означает меньше производственных отходов и меньше физических отходов! В зависимости от технических характеристик светодиодная лампа будет работать от 25 000 до 50 000 часов. Это по сравнению с лампами накаливания на 1200 и CFL на 8000.

Ниже приведены некоторые другие преимущества перехода на светодиодное освещение для окружающей среды.

  • Поскольку светодиоды служат очень долго и не требуют частой замены, сокращается загрязнение на производстве, например при транспортировке, утилизации, продаже и производственных отходах.
  • Светодиоды

  • не сжигают ископаемое топливо, что снижает загрязнение воздуха.
  • Светодиоды

  • не содержат токсичных веществ, таких как ртуть, которые могут представлять серьезную опасность для заводских рабочих и других лиц, работающих с лампами.
  • В то время как традиционные лампы излучают ультрафиолетовое излучение, эта потребность полностью устраняется при использовании светодиодов. Известно, что УФ-излучение повреждает клетки кожи и может увеличить риск рака. Он также может подавлять рост растений.
  • Светодиоды

  • выделяют очень мало углерода. Если вы хотите уменьшить свой углеродный след, переход на светодиодное освещение окажет серьезное влияние.

светодиода перестали быть самым дорогим вариантом освещения. С помощью поставщика светодиодного освещения любой может оборудовать светодиодами свое пространство, будь то жилое, коммерческое или промышленное.Эти лампы обеспечивают большую четкость и несравненное качество освещения. Это делает их отличным выбором для открытых и подземных помещений, где особенно важно чувствовать себя в безопасности и осознавать свое окружение.

Некоторые распространенные применения светодиодных ламп включают:

  • Парковочные места
  • Лифты
  • Бары / ночные клубы
  • Шкатулки
  • Рестораны
  • Освещение лестничной клетки
  • Витрины
  • Фары и салон автомобилей
  • Галереи (без вредных ультрафиолетовых лучей, которые могут повредить работы!)
  • Освещение заднего двора / террасы / террасы
  • Шкаф под / над шкафом
  • Праздничное освещение

Светодиоды — лучший выбор для помещений, в которых приоритетным является хорошее четкое освещение.Некоторым зданиям требуется иное освещение, чем другим. Настроенное освещение с регулируемой яркостью может быть правильным выбором. Это также может быть четкое и яркое освещение для предотвращения травм и повышения безопасности. Все помещения индивидуальны — лучше проконсультироваться с компанией по светодиодному освещению, чтобы обсудить ваши конкретные потребности.

Переход на светодиодное освещение для жилых, коммерческих или промышленных помещений — отличный способ сэкономить. Хотя на начальном этапе это может быть довольно затратно, экономия обязательно будет отражена в вашем ежемесячном счете за электроэнергию.

Светодиодные лампы

нужно менять гораздо реже, чем КЛЛ и лампы накаливания. Это означает меньшее количество покупок новых лампочек и меньшее обслуживание, посвященное их замене! Поскольку они потребляют значительно меньше энергии, чем традиционные осветительные приборы, это означает снижение потребления энергии и меньшие затраты. Представьте, сколько вы можете сэкономить на здании, которое нужно освещать круглосуточно, без выходных или значительную часть дня.

Если вы заинтересованы в переходе на светодиодное освещение или просто хотите узнать больше, не стесняйтесь обращаться в Bay Lighting.Как дистрибьютор коммерческого освещения в Вашингтоне, Мэриленде и Вирджинии, мы уделяем первоочередное внимание обучению и консультированию наших клиентов в выборе наилучшего освещения для своего объекта. Свяжитесь с нами по телефону 301-858-9494, чтобы поговорить с консультантом по освещению сегодня.

Калькулятор светодиодного резистора

— Инструменты для электротехники и электроники

Калькулятор сопротивления светодиодов идеально подходит, когда у вас есть один светодиод и вам нужно знать, какой резистор вам следует использовать.

Обзор

Каждый светоизлучающий диод (LED) имеет ток, с которым они могут безопасно работать.Превышение этого максимального тока даже на короткое время приведет к повреждению светодиода. Таким образом, ограничение тока через светодиод с помощью последовательного резистора — обычная и простая практика. Обратите внимание, что этот метод не рекомендуется для сильноточных светодиодов, которым нужен более надежный стабилизатор тока переключения.

Этот калькулятор поможет вам определить номинал резистора, который нужно добавить последовательно со светодиодом для ограничения тока. Просто введите указанные значения и нажмите кнопку «Рассчитать». В качестве бонуса он также рассчитает мощность, потребляемую светодиодом.

Уравнение

$$ R = \ frac {V_ {s} -V_ {led} * X} {I_ {led}} $$

Где:

$$ V_ {s} $$ = Напряжение питания

$$ I_ {led} $$ = ток светодиода. Обычный рабочий диапазон обычных светодиодов 3 мм и 5 мм составляет 10-30 мА. Если доступ к таблице данных светодиода невозможен, можно предположить, что 20 мА.

$$ V_ {led} $$ = падение напряжения светодиода. Падение напряжения на светодиоде зависит от цвета, который он излучает. Вот аккуратная таблица каждого цвета и соответствующего им падения напряжения:

$$ X $$ = количество светодиодов в серии

Цвет Падение напряжения (В)
красный 2
зеленый 2.1
синий 3,6
белый 3,6
желтый 2,1
оранжевый 2,2
янтарь 2,1
инфракрасный 1,7
прочие 2

Бонус: идентификация светодиодных клемм

Светодиод имеет положительный (анодный) вывод и отрицательный (катодный) вывод.Схематический символ светодиода аналогичен диоду (как показано выше), за исключением двух стрелок, направленных наружу. Анод (+) отмечен треугольником, а катод (-) отмечен линией.

Более длинный вывод светодиода почти всегда является положительным (анодным) проводом, а более короткий — отрицательным (катодом). Кроме того, если вы посмотрите внутрь светодиода, то меньшая из металлических частей подключена к аноду, а большая — к катоду (см. Диаграмму выше).

Дополнительная литература

Учебник

— Схемы простых серий

Учебник — Построение простых резисторных схем

Учебник — Светодиоды

Что такое светодиоды — DioT Labs

Множество маленьких огней

Светодиоды бывают разных форм, размеров и цветов, но все они делают одно: излучают свет.

Когда электричество проходит через компонент, он выделяет эту энергию в виде света в процессе, называемом электролюминесценцией.

Хотя светодиоды имеют два вывода или провода, такие как резистор и другие компоненты, у них есть различие: они являются направленными. Компоненты, которые работают только в «одном направлении», называются поляризованными компонентами .

Вы заметите, что одна из ножек короче другой, и это важно. Более длинная ветвь называется анодом (положительным).Более короткая ветвь называется катодом (отрицательным). Анод необходимо подключить к источнику питания (положительный), а катод — заземлить (отрицательный). Из-за этого нам нужно знать, какая нога какая.

Знайте, какой конец светодиода и какой конец.

Светодиоды бывают разных уровней яркости и бывают двух основных типов. Уровень яркости обозначается шкалой мини-чандала, где 10 означает тусклый свет, 5000 — яркий, а 50 000 — сверхяркий.Светодиоды также могут быть прозрачными или рассеянными , и это влияет на видимость света. Свет от прозрачного светодиода часто направлен и мощный, в то время как рассеянный свет имеет более мягкое свечение и его можно увидеть практически под любым углом. Подумайте о прозрачном светодиоде как о фонаре, который светит в определенном направлении, а рассеянный свет будет больше похож на стоп-сигнал на автомобиле.

Яркость можно изменить несколькими способами. Вы можете добавить другой резистор перед светодиодом, чтобы препятствовать подаче на него напряжения, или вы можете подключить его напрямую к разному напряжению (мощность 9 В будет светить ярче, чем 5 В, что будет ярче, чем 3.Мощность 3В). Мы также можем программно изменить яркость с помощью трюка, называемого широтно-импульсной модуляцией. Мы рассмотрим это позже.

Помните, что светодиод является направленным и что анод (более длинная ножка) должен идти к положительному напряжению. Перевернутые светодиоды не работают, но и не выходят из строя.

Если светодиод не загорается, попробуйте повернуть его. Даже если вы все сделали правильно, вы не навредите ему, изменив его.


Далее: написание вашего первого эскиза — мигание светодиода


Copyright © 2015-2020 Daragh Byrne.Этот сайт использует Just the Docs, тему документации для Jekyll ..

LED FAQs | Светодиодное Освещение

Что означает светодиод?

LED — сокращение от LED.

Как долго работают светодиоды?

Светодиоды

отличаются исключительно долгим сроком службы. Многие светодиоды имеют номинальный срок службы до 50 000 часов. Это примерно в 50 раз дольше, чем у обычной лампы накаливания, в 20-25 раз дольше, чем у типичного галогена, и в 8-10 раз дольше, чем у типичного КЛЛ.При использовании 12 часов в день 50 000 лампочек прослужат более 11 лет. Используется 8 часов в день, прослужит 17 лет!

Где можно использовать светодиоды?

Их можно использовать практически везде. Замена светодиодов уже доступна для таких типов ламп, как A-образные, отражатели PAR, отражатели MR, декоративные, подкладные и другие. При использовании с диммерами, особенно с системами диммирования, которые поддерживают множество ламп, мы рекомендуем сначала протестировать несколько светодиодов для проверки совместимости.

Следует ли использовать светодиоды в закрытых светильниках?

Закрытые приспособления определяются не только как воздухонепроницаемые, но также как приспособления, которые закрываются сбоку, сзади и открываются спереди, например, многие головки гусениц.Светодиоды, которые используются в светильниках, где длина окружности лампы менее 1/2 дюйма при установке в светильник, также считаются закрытым приложением. Если вы планируете использовать светодиоды в этих типах приложений, вы должны использовать светодиоды с номиналом для закрытых светильников.Использование светодиодной лампы, не предназначенной для закрытых светильников в этом типе применения, может вызвать мерцание светодиодной лампы и значительно сократить срок ее службы.

Bulbs.com теперь предлагает широкий ассортимент закрытых светодиодов с различными формами ламп.Светодиоды, не предназначенные для закрытых светильников, следует использовать только в светильниках, открытых спереди, где линзы лампы открыты по бокам и сзади, и должны иметь пространство не менее 1/2 дюйма по окружности лампы.

Каковы преимущества перехода на светодиоды?

Преимущества перехода на светодиоды многочисленны. Вот лишь некоторые из преимуществ: светодиоды потребляют гораздо меньше электроэнергии, чем другие лампы, имеют чрезвычайно длительный срок службы, выделяют очень мало тепла, не излучают ультрафиолетовое или инфракрасное излучение, не содержат ртути, устойчивы к ударам и вибрации и могут эффективно работать. в очень холодных условиях.Для получения дополнительной информации о преимуществах светодиодов см. Светодиод: подходит ли он вам ?.

Почему светодиоды стоят дороже, чем другие типы лампочек? Они того стоят?

Светодиод

— это все еще новая технология, и затраты на производство качественной продукции по-прежнему высоки. Однако цены резко снизились всего несколько лет назад, и ожидается, что цены будут продолжать падать. Что касается того, стоят ли светодиоды дополнительных затрат, полезно посмотреть на стоимость эксплуатации лампы в дополнение к первоначальным затратам.Экономия энергии, реализованная при переходе на светодиоды, означает, что дополнительные первоначальные затраты часто окупаются довольно быстро, и в результате вы экономите деньги в течение всего срока службы лампы. Если вы хотите увидеть это в действии, ознакомьтесь с нашим калькулятором экономии энергии. Вот пример: для частного потребителя, у которого свет может гореть всего 10 часов в неделю, окупаемость составляет более 10 лет. С другой стороны, клиент розничной торговли или ресторана, который горит светом 90-100 часов в неделю, рассчитывает, что окупаемость светодиодного PAR за 70 долларов составит менее 18 месяцев.При принятии решения о том, подходит ли вам светодиодный светильник, обязательно следует учитывать оценку окупаемости.

Есть ли разница между светодиодом за 10 долларов и светодиодом за 50 долларов?

Да. Светодиоды очень похожи на бытовую электронику, и качество действительно имеет значение. Чтобы светодиод работал должным образом и обеспечивал приемлемый световой поток, все компоненты должны быть долговечными. Всегда полезно покупать у производителя или продавца, который, как вы уверены, будет поддерживать продукт.Если вы хотите узнать больше о компонентах и ​​о том, как дешевые светодиоды сочетаются с высококачественным продуктом, посмотрите «Рассказ о двух лампочках».

Будет ли светодиод давать достаточно света, чтобы заменить мою нынешнюю лампочку?

Для большинства приложений да. Стандартные светодиодные продукты теперь надежно заменяют лампы накаливания мощностью до 100 Вт, а специальные продукты доступны для замены даже более высоких ватт. Если вы хотите узнать больше о светоотдаче светодиодов, прочтите эту статью о светоотдаче.

Какое качество светодиодного освещения?

Если покупать качественный товар, качество света отличное. Индекс цветопередачи (CRI) обычно используется для измерения качества света по шкале от 1 до 100. Большинство светодиодов имеют рейтинг CRI не менее 80, а многие — от 90 и выше.

CRI

Индекс цветопередачи

— это международная система, используемая для оценки способности лампы отображать цвета объекта.Чем выше индекс цветопередачи (по шкале от 0 до 100), тем более насыщенными и точными становятся цвета. Различия CRI между лампами обычно не видны глазу, если разница не превышает 3-5 баллов.

Насколько зеленые светодиоды?

светодиода очень зеленые. Во-первых, они потребляют гораздо меньше электроэнергии, чем многие другие осветительные приборы. Это означает, что для их эксплуатации необходимо производить меньше электроэнергии, что приводит к снижению выбросов электростанций, особенно в районах, где распространены угольные электростанции.В отличие от КЛЛ они не содержат ртути. Благодаря своему долгому сроку службы они также сокращают объем твердых отходов: если вы замените лампу накаливания на светодиодную, вы предотвратите выброс 50 ламп накаливания на 1000 часов работы. Кроме того, они выделяют очень мало тепла и могут снизить потребление энергии, связанной с HVAC. Министерство энергетики США подсчитало, что более широкое внедрение светодиодов в течение следующих 15 лет также снизит потребность в электроэнергии от освещения на 62 процента, предотвратит выбросы углерода на 258 миллионов метрических тонн и устранит необходимость в 133 новых электростанциях.

Можно ли использовать светодиоды с диммерами?

Обычно да. Многие светодиоды специально указаны как регулируемые. Некоторые системы затемнения работают со светодиодами лучше, чем другие, поэтому лучше всего протестировать одну или две, прежде чем полностью повторно осветить пространство.

Существуют ли скидки / льготы / налоговые льготы при переходе на LED?

Во многих случаях да.

Добавить комментарий

Ваш адрес email не будет опубликован.