Светоизлучающий диод
Это наиболее видимый тип диодов, которые излучают довольно узкую полосу пропускания либо видимого света с разными длинами волн, невидимого инфракрасного света для пультов дистанционного управления или света лазерного типа, когда через них проходит прямой ток.
«Светоизлучающий диод » или светодиод, как его чаще называют, в основном представляет собой специализированный тип диода, поскольку они имеют очень похожие электрические характеристики с диодом с PN переходом.Это означает, что светодиод пропускает ток в прямом направлении, но блокирует ток в обратном направлении.
Светоизлучающие диоды изготовлены из очень тонкого слоя полупроводникового материала с достаточно высокой степенью легирования, и в зависимости от используемого полупроводникового материала и количества легирования при прямом смещении светодиод будет излучать цветной свет с определенной спектральной длиной волны.
Когда диод смещен в прямом направлении, электроны из зоны проводимости полупроводников рекомбинируют с дырками из валентной зоны, высвобождая энергию, достаточную для производства фотонов, излучающих монохроматический (одноцветный) свет.Из-за этого тонкого слоя разумное количество этих фотонов может покинуть переход и излучаться, производя цветной световой поток.
Светодиодная конструкция
Тогда мы можем сказать, что при работе в прямом смещенном направлении Светоизлучающие диоды являются полупроводниковыми устройствами, которые преобразуют электрическую энергию в энергию света.
Конструкция светоизлучающего диода сильно отличается от конструкции обычного сигнального диода. PN-переход светодиода окружен прозрачной твердой пластмассовой оболочкой или корпусом из эпоксидной смолы полусферической формы, которая защищает светодиод как от вибрации, так и от ударов.
Удивительно, но переход СИД на самом деле не излучает столько света, поэтому корпус из эпоксидной смолы сконструирован таким образом, что фотоны света, излучаемые переходом, отражаются от окружающей основы подложки, к которой прикреплен диод, и фокусируются вверх через куполообразную верхнюю часть светодиода, который действует как линза, концентрирующая количество света. Вот почему излучаемый свет кажется самым ярким в верхней части светодиода.
Однако не все светодиоды имеют полусферический купол из-за эпоксидной оболочки.Некоторые светодиоды индикации имеют прямоугольную или цилиндрическую конструкцию с плоской поверхностью наверху или их корпус имеет форму полосы или стрелки. Как правило, все светодиоды изготавливаются с двумя ножками, выступающими из нижней части корпуса.
Кроме того, почти все современные светодиоды имеют свой катод, (-) вывод, идентифицируемый либо по выемке, либо по плоской точке на корпусе, либо по тому, что катодный вывод короче другого, поскольку анодный (+) вывод длиннее катода. (k).
В отличие от обычных ламп накаливания и лампочек, которые выделяют большое количество тепла при освещении, светоизлучающий диод производит «холодное» генерирование света, что приводит к более высокой эффективности, чем обычная «лампочка», потому что большая часть генерируемой энергии излучается в пределах видимый спектр.Поскольку светодиоды представляют собой твердотельные устройства, они могут быть чрезвычайно маленькими и прочными и обеспечивать гораздо более длительный срок службы лампы по сравнению с обычными источниками света.
Итак, как светодиоды приобретают свой цвет. В отличие от обычных сигнальных диодов, которые предназначены для обнаружения или выпрямления мощности и которые сделаны из полупроводниковых материалов из германия или кремния, светоизлучающие диоды изготовлены из экзотических полупроводниковых соединений, таких как арсенид галлия (GaAs), фосфид галлия (GaP), Фосфид арсенида галлия (GaAsP), карбид кремния (SiC) или нитрид галлия-индия (GaInN) смешиваются вместе в разных соотношениях, чтобы получить различную длину волны цвета.
Различные светодиодные соединения излучают свет в определенных областях видимого светового спектра и, следовательно, имеют разные уровни интенсивности. Точный выбор используемого полупроводникового материала определит общую длину волны излучения фотонов и, следовательно, результирующий цвет излучаемого света.
Типичные характеристики светодиода | |||
Полупроводник Материал | Длина волны | Цвет | В F при 20 мА |
GaAs | 850-940 нм | Инфракрасный | 1.2в |
GaAsP | 630-660 нм | Красный | 1,8 В |
GaAsP | 605-620 нм | Янтарь | 2,0 В |
GaAsP: N | 585-595 нм | желтый | 2,2 В |
АлГап | 550-570 нм | Зеленый | 3,5 В |
SiC | 430-505 нм | Синий | 3,6 В |
GaInN | 450 нм | Белый | 4.0v |
Таким образом, фактический цвет светоизлучающего диода определяется длиной волны излучаемого света, которая, в свою очередь, определяется фактическим полупроводниковым соединением, используемым при формировании PN-перехода во время производства.
Следовательно, цвет света, излучаемого светодиодом, НЕ определяется окраской пластикового корпуса светодиода, хотя он слегка окрашен как для увеличения светоотдачи, так и для обозначения его цвета, когда он не освещается от источника питания.
Светодиоды доступны в широком диапазоне цветов, наиболее распространенными из которых являются КРАСНЫЙ, ЯНТАРНЫЙ, ЖЕЛТЫЙ и ЗЕЛЕНЫЙ, и поэтому они широко используются в качестве визуальных индикаторов и как движущиеся световые индикаторы.
Также доступны недавно разработанные светодиоды синего и белого цветов, но они, как правило, намного дороже, чем обычные стандартные цвета из-за производственных затрат на смешивание вместе двух или более дополнительных цветов в точном соотношении в полупроводниковом соединении, а также путем введения азота. атомы в кристаллическую структуру в процессе легирования.
Из приведенной выше таблицы видно, что основной легирующей примесью P-типа, используемой при производстве светоизлучающих диодов , является галлий (Ga, атомный номер 31), а основной используемой легирующей добавкой N-типа является мышьяк (As, атомный номер 33), давая полученному соединению кристаллическую структуру арсенида галлия (GaAs).
Проблема с использованием арсенида галлия в качестве полупроводникового соединения заключается в том, что он излучает большое количество инфракрасного излучения низкой яркости (прибл.) от его перехода, когда через него протекает прямой ток.
Количество инфракрасного света, которое он излучает, подходит для пультов дистанционного управления телевизорами, но не очень полезно, если мы хотим использовать светодиод в качестве световой индикации. Но при добавлении фосфора (P, атомный номер 15) в качестве третьей примеси общая длина волны испускаемого излучения уменьшается до менее 680 нм, давая человеческому глазу видимый красный свет. Дальнейшие усовершенствования процесса легирования PN-перехода привели к появлению ряда цветов, охватывающих спектр видимого света, как мы видели выше, а также инфракрасные и ультрафиолетовые длины волн.
Смешивая различные полупроводниковые, металлические и газовые соединения, можно получить следующий список светодиодов.
Как и обычные диоды с PN переходом, светоизлучающие диоды являются устройствами, зависящими от тока, с их прямым падением напряжения V F , которое зависит от полупроводникового соединения (его цвет свечения) и от прямого смещенного тока светодиода.Для наиболее распространенных светодиодов требуется прямое рабочее напряжение примерно от 1,2 до 3,6 вольт с номинальным прямым током примерно от 10 до 30 мА, причем наиболее распространенный диапазон — от 12 до 20 мА.
Как прямое рабочее напряжение, так и прямой ток варьируются в зависимости от используемого полупроводникового материала, но точка, в которой начинается проводимость и возникает свет, составляет примерно 1,2 В для стандартного красного светодиода и примерно 3,6 В для синего светодиода.
Точное падение напряжения, конечно, будет зависеть от производителя из-за различных легирующих материалов и используемых длин волн.Падение напряжения на светодиоде при определенном значении тока, например 20 мА, также будет зависеть от начальной точки проводимости V F . Поскольку светодиод фактически является диодом, его характеристики прямого тока к напряжению могут быть построены для каждого цвета диода, как показано ниже.
ВАХ
Светоизлучающий диод (LED) Схематический символ и кривые ВАХ
, показывающие различные доступные цвета.
Прежде чем светоизлучающий диод сможет «излучать» какую-либо форму света, ему необходим ток, чтобы пройти через него, так как это устройство, зависящее от тока, а его интенсивность светового потока прямо пропорциональна прямому току, протекающему через светодиод.
Поскольку светодиод должен быть подключен в режиме прямого смещения к источнику питания, он должен быть ограничен по току с использованием последовательного резистора для защиты от чрезмерного протекания тока. Никогда не подключайте светодиод напрямую к батарее или источнику питания, так как он будет разрушен почти мгновенно, потому что пройдет слишком большой ток и он сожжет.
Из приведенной выше таблицы мы видим, что каждый светодиод имеет собственное прямое падение напряжения на PN-переходе, и этот параметр, который определяется используемым полупроводниковым материалом, представляет собой прямое падение напряжения для определенной величины тока прямой проводимости, обычно для прямой ток 20 мА.
В большинстве случаев светодиоды работают от источника постоянного тока низкого напряжения с последовательным резистором R S , используемым для ограничения прямого тока до безопасного значения, скажем, от 5 мА для простого светодиодного индикатора до 30 мА или более при высокой яркости света. вывод нужен.
Значение последовательного резистора R S рассчитывается просто с использованием закона Ома, зная требуемый прямой ток I F светодиода, напряжение питания V S на комбинации и ожидаемое прямое падение напряжения светодиода, В F при требуемом уровне тока, токоограничивающий резистор рассчитывается как:
Цепь резистора серии
Светодиод янтарного цвета с прямым падением напряжения 2 В должен быть подключен к 5.Стабилизированный источник питания постоянного тока 0В. Используя приведенную выше схему, рассчитайте значение последовательного резистора, необходимого для ограничения прямого тока до менее 10 мА. Также рассчитайте ток, протекающий через диод, если вместо рассчитанного первым используется резистор 100 Ом.
1). требуется последовательный резистор на 10 мА.
2). с резистором серии 100 Ом.
Мы помним из руководств по резисторам, что резисторы бывают стандартных предпочтительных значений.Наш первый расчет выше показывает, что для ограничения тока, протекающего через светодиод, до 10 мА, нам потребуется резистор 300 Ом. В серии резисторов E12 нет резистора 300 Ом, поэтому нам нужно будет выбрать следующее по величине значение, которое составляет 330 Ом. Быстрый пересчет показывает, что новое значение прямого тока теперь составляет 9,1 мА, и это нормально.
Мы можем соединять светодиоды последовательно, чтобы увеличить необходимое количество или увеличить уровень освещенности при использовании в дисплеях.Как и в случае с последовательными резисторами, последовательно соединенные светодиоды имеют одинаковый прямой ток, I F протекает через них как через один. Поскольку все светодиоды, подключенные последовательно, пропускают один и тот же ток, обычно лучше, если они будут одного цвета или типа.
Хотя в последовательной цепи светодиодов протекает одинаковый ток, при расчете необходимого сопротивления токоограничивающего резистора R S необходимо учитывать последовательное падение напряжения на них.Если мы предположим, что каждый светодиод имеет падение напряжения на 1,2 В при включении, то падение напряжения на всех трех будет 3 x 1,2 В = 3,6 В.
Если мы также предположим, что три светодиода должны светиться от одного и того же логического устройства на 5 В или от источника прямого тока около 10 мА, то же самое, что и выше. Тогда падение напряжения на резисторе R S и его значение сопротивления будут рассчитаны как:
Опять же, в серии резисторов E12 (допуск 10%) нет резистора 140 Ом, поэтому нам нужно будет выбрать следующее по величине значение, которое составляет 150 Ом.
Теперь, когда мы знаем, что такое светодиод, нам нужно каким-то образом управлять им, переключая его в положение «ВКЛ» и «ВЫКЛ». Выходные каскады логических вентилей TTL и CMOS могут как источник, так и приемник полезного тока, поэтому их можно использовать для управления светодиодом. Нормальные интегральные схемы (ИС) имеют выходной ток возбуждения до 50 мА в конфигурации режима стока, но имеют внутренне ограниченный выходной ток около 30 мА в конфигурации режима источника.
В любом случае ток светодиода должен быть ограничен до безопасного значения с помощью последовательного резистора, как мы уже видели.Ниже приведены некоторые примеры управления светодиодами с использованием инвертирующих ИС, но идея одинакова для любого типа вывода интегральной схемы, будь то комбинационный или последовательный.
Если более одного светодиода требует одновременного управления, например, в больших массивах светодиодов, или ток нагрузки слишком высок для интегральной схемы, или мы можем просто использовать дискретные компоненты вместо микросхем, тогда альтернативный способ управления светодиоды, использующие биполярные транзисторы NPN или PNP в качестве переключателей, приведены ниже.Как и раньше, для ограничения тока светодиода требуется последовательный резистор R S .
Яркость светодиода нельзя контролировать, просто изменяя ток, протекающий через него. Если через светодиод будет протекать больший ток, он будет светиться ярче, но также приведет к рассеиванию большего количества тепла. Светодиоды предназначены для получения заданного количества света, работающего при определенном прямом токе в диапазоне от 10 до 20 мА.
В ситуациях, когда важна экономия энергии, возможно снижение тока. Однако уменьшение тока до уровня ниже 5 мА может привести к слишком сильному уменьшению светового потока или даже к полному выключению светодиода. Намного лучший способ контролировать яркость светодиодов — использовать процесс управления, известный как «широтно-импульсная модуляция» или ШИМ, при котором светодиод многократно включается и выключается с различной частотой в зависимости от требуемой интенсивности света. светодиод.
Когда требуются более высокие световые потоки, ток с широтно-импульсной модуляцией с довольно коротким рабочим циклом (соотношение «ВКЛ-ВЫКЛ») позволяет значительно увеличить ток диода и, следовательно, интенсивность выходного света во время фактических импульсов, сохраняя при этом Светодиоды «средний уровень тока» и рассеиваемая мощность в безопасных пределах.
Это состояние мигания «ВКЛ-ВЫКЛ» не влияет на то, что видит человеческий глаз, поскольку оно «заполняет» промежутки между световыми импульсами «ВКЛ» и «ВЫКЛ», при условии, что частота импульсов достаточно высока, что заставляет их казаться как непрерывный световой поток. Таким образом, импульсы с частотой 100 Гц или более на самом деле кажутся глазу ярче, чем непрерывный свет той же средней интенсивности.
Светодиоды
доступны в широком диапазоне форм, цветов и различных размеров с различной доступной светоотдачей, причем наиболее распространенным (и самым дешевым в производстве) является стандартный 5-миллиметровый светодиод на основе красного арсенида галлия (GaAsP).
Светодиоды
также доступны в различных «упаковках», предназначенных для отображения как букв, так и цифр, наиболее распространенной из которых является «семисегментный дисплей».
В настоящее время доступны полноцветные светодиодные дисплеи с плоскими экранами, портативные устройства и телевизоры, в которых используется огромное количество разноцветных светодиодов, и все они управляются непосредственно их собственной специализированной ИС.
Большинство светоизлучающих диодов излучают только один цветной свет, однако теперь доступны многоцветные светодиоды, которые могут воспроизводить диапазон разных цветов в одном устройстве.Большинство из них на самом деле представляют собой два или три светодиода, изготовленных в одном корпусе.
Двухцветный светодиод состоит из двух светодиодных чипов, соединенных вместе «обратно параллельно» (один вперед, один назад), объединенных в один корпус. Двухцветные светодиоды могут воспроизводить один из трех цветов, например, красный цвет излучается, когда устройство подключено к току, текущему в одном направлении, и зеленый цвет излучается, когда он смещен в другом направлении.
Этот тип двунаправленной компоновки полезен для указания полярности, например, правильного подключения батарей или источников питания и т. Д. Кроме того, двунаправленный ток производит оба цвета, смешанные вместе, поскольку два светодиода будут принимать его по очереди, чтобы горит, если устройство было подключено (через подходящий резистор) к низковольтному низкочастотному источнику переменного тока.
|
Самый популярный тип трехцветного светодиода состоит из одного красного и зеленого светодиода, объединенных в один корпус, катодные выводы которых соединены вместе, образуя трехконтактное устройство.Их называют трехцветными светодиодами, потому что они могут выдавать один красный или зеленый цвет, включая «ВКЛ» только один светодиод за раз.
Эти трехцветные светодиоды могут также генерировать дополнительные оттенки своих основных цветов (третьего цвета), например, оранжевого или желтого, путем включения двух светодиодов с разными соотношениями прямого тока, как показано в таблице, тем самым генерируя четыре разных цвета всего из двух. диодные переходы.
|
Помимо отдельных цветных или многоцветных светодиодов, несколько светодиодов могут быть объединены вместе в одном корпусе для создания дисплеев, таких как гистограммы, полосы, массивы и семисегментные дисплеи.
7-сегментный светодиодный дисплей обеспечивает очень удобный способ при правильном декодировании отображения информации или цифровых данных в форме цифр, букв или даже буквенно-цифровых символов, и, как следует из их названия, они состоят из семи отдельных светодиодов (сегментов) в одном пакете дисплея.
Для вывода требуемых цифр или символов от 0 до 9 и от A до F, соответственно, на дисплее должна быть освещена правильная комбинация сегментов светодиода. Стандартный семисегментный светодиодный дисплей обычно имеет восемь входных соединений, по одному на каждый светодиодный сегмент и одно, которое действует как общий терминал или соединение для всех внутренних сегментов.
Наконец, еще одно полезное применение светодиодов — это оптронная связь . Оптопара или оптоизолятор, как его еще называют, представляет собой единое электронное устройство, состоящее из светоизлучающего диода в сочетании с фотодиодом, фототранзистором или фототиаком, чтобы обеспечить путь оптического сигнала между входом. соединение и выходное соединение с сохранением гальванической развязки между двумя цепями.
Оптоизолятор состоит из светонепроницаемого пластикового корпуса, в котором типичное напряжение пробоя между входом (фотодиод) и выходом (фототранзистор) составляет до 5000 вольт. Эта электрическая изоляция особенно полезна, когда сигнал от цепи низкого напряжения, такой как цепь с батарейным питанием, компьютер или микроконтроллер, требуется для работы или управления другой внешней схемой, работающей при потенциально опасном сетевом напряжении.
Два компонента, используемые в оптоизоляторе, оптический передатчик, такой как светодиод на арсениде галлия, излучающий инфракрасное излучение, и оптический приемник, такой как фототранзистор, тесно оптически связаны и используют свет для передачи сигналов и / или информации между своими ввод и вывод.Это позволяет передавать информацию между цепями без электрического соединения или общего потенциала земли.
Оптоизоляторы
представляют собой цифровые или переключающие устройства, поэтому они передают управляющие сигналы «ВКЛ-ВЫКЛ» или цифровые данные. Аналоговые сигналы могут передаваться посредством частотной или широтно-импульсной модуляции.
Светодиод или светоизлучающий диод — это полупроводниковое устройство, излучающее свет за счет эффекта электролюминесценции.Светодиод в основном представляет собой PN-диод, который излучает свет при прямом смещении.
Светодиоды есть почти везде. Вы можете найти светодиоды в автомобилях, велосипедах, уличных фонарях, домашнем освещении, офисном освещении, мобильных телефонах, телевизорах и многом другом.
Причина столь широкого внедрения светодиодов в их преимуществах перед традиционными лампами накаливания и современными компактными люминесцентными лампами (КЛЛ). Ниже приведены некоторые преимущества светодиодов перед источниками света накаливания и КЛЛ:
Благодаря этим преимуществам светодиоды стали довольно популярными среди большой набор людей.Инженеры-электронщики, любители электроники и энтузиасты электроники часто работают со светодиодами для различных проектов.
Следовательно, статья о светоизлучающих диодах, посвященная различным темам, таким как основы светодиодов, типы светодиодов и характеристики светодиода, принесет пользу всем. Итак, давайте начнем с основ светодиодов.
Как упоминалось во введении, светодиод — это полупроводниковый источник света. Он состоит из диода с PN-переходом, и когда на светодиод подается напряжение, электроны и дырки рекомбинируют в PN-переходе и выделяют энергию в виде света (фотонов).
Свет, излучаемый светодиодом, обычно монохроматический, то есть одноцветный, и цвет зависит от ширины запрещенной зоны полупроводника.
Светоизлучающие диоды могут быть изготовлены для излучения всех длин волн видимого спектра, то есть от красного (620–750 нм) до сине-фиолетового (380–490 нм).
Электрический символ светодиода аналогичен символу PN переходного диода. На следующем изображении показан красный светодиод вместе с символами PN-диода и светодиода.
Перед тем, как подключить светодиодную схему и начать ее использовать, есть несколько характеристик светодиода, которые стоит знать (на самом деле, они очень важны). Если вы обратитесь к любому из технических паспортов, предоставленных производителем, вы можете найти спецификацию партии, соответствующую электрическим характеристикам, абсолютным максимальным номинальным характеристикам, физическим размерам и т. Д.
Я не буду утомлять вас всеми характеристиками, а только тремя важными. .Это полярность, прямое напряжение и прямой ток.
Полярность указывает на симметричность электронного компонента. Светоизлучающий диод, аналогичный диоду с PN-переходом, не является симметричным, то есть позволяет току течь только в одном направлении.
В светодиодах положительный вывод называется анодом, а отрицательный вывод называется катодом. Для правильной работы светодиода анод светодиода должен иметь более высокий потенциал, чем катод, поскольку ток в светодиодах течет от анода к катоду.
Что будет, если подключить светодиод в обратном направлении? Что ж, ничего не происходит, так как светодиод не проводит. Вы можете легко идентифицировать анодный вывод светодиода, поскольку они обычно имеют более длинные выводы.
Светодиоды — очень чувствительные устройства, и величина тока, протекающего через светодиод, очень важна. Кроме того, яркость светодиода зависит от силы тока, потребляемого светодиодом.
Каждый светодиод рассчитан на максимальный прямой ток, который может безопасно проходить через него, не перегорая светодиод.да. Если допустить ток, превышающий номинальный, светодиод фактически сгорит.
Например, наиболее часто используемые светодиоды 5 мм имеют номинальный ток от 20 мА до 30 мА, а светодиоды 8 мм имеют номинальный ток 150 мА (точные значения см. В таблице данных).
Как регулировать ток, протекающий через светодиод? Чтобы контролировать ток, протекающий через светодиод, мы используем резисторы, ограничивающие ток.
Дополнительная информация о светодиодах и токоограничивающих резисторах SIMPLE LED CIRCUITS.
Светоизлучающие диоды также рассчитаны на прямое напряжение, то есть количество напряжения, необходимое для того, чтобы светодиод проводил электричество. Например, все 5-миллиметровые светодиоды имеют номинальный ток 20 мА, но прямое напряжение меняется от одного светодиода к другому.
Красные светодиоды имеют максимальное номинальное напряжение 2,2 В, синие светодиоды — максимальное номинальное напряжение 3,4 В, а белые светодиоды — максимальное номинальное напряжение 3,6 В.
На следующем изображении показана схема простой светодиодной схемы, состоящей из 5-миллиметрового белого светодиода с источником питания 5 В.
Так как это белый светодиод, номинальные ток и напряжение следующие: типичный прямой ток составляет 20 мА, а типичное прямое напряжение — 2 В.
Итак, чтобы регулировать ток и напряжение, мы использовали резистор 180 Ом, рассчитанный на Вт рассеиваемой мощности.
Они доступны в различных формах и размерах, наиболее распространенными из которых являются светодиоды 3 мм, 5 мм и 8 мм. Эти светодиоды доступны в разных цветах, таких как красный, синий, желтый, зеленый, белый и т. Д.
Светодиоды для поверхностного монтажа или SMD — это специальные корпуса, которые можно легко установить на печатной плате. Светодиоды SMD обычно различаются по физическим размерам. Например, наиболее распространенными светодиодами SMD являются 3528 и 5050.
Следующим типом светодиодов являются двухцветные светодиоды, как следует из названия, могут излучать два цвета. Двухцветные светодиоды имеют три вывода, обычно два анода и общий катод.В зависимости от конфигурации отведений цвет будет активирован.
Светодиоды RGB — самые любимые и самые популярные светодиоды среди любителей и дизайнеров. Даже компьютерные сборки очень популярны для реализации светодиодов RGB в корпусах компьютеров, материнских платах, ОЗУ и т. Д.
Светодиод RGB содержит 3 светодиода на одном кристалле, и с помощью метода, называемого ШИМ (широтно-импульсная модуляция), мы можем контролировать выход RGB-светодиода для получения широкого диапазона цветов.
Светодиод с номинальной мощностью не менее 1 Вт называется светодиодом высокой мощности. Это связано с тем, что обычные светодиоды имеют рассеиваемую мощность в несколько милливатт.
Светодиоды высокой мощности очень яркие и часто используются в фонариках, автомобильных фарах, прожекторах и т. Д.
Поскольку рассеиваемая мощность светодиодов высокой мощности высока, требуется надлежащее охлаждение и использование радиаторов. Кроме того, потребляемая мощность для этих светодиодов обычно очень высока.
В этой статье мы рассмотрели основы светодиодов и несколько важных характеристик светодиодов. В следующем уроке мы увидим, как работает светодиод и как устроен светодиод.
Светодиоды (светодиоды) | Клуб электроники
Тестирование | Цвет |
Размеры и формы | Резистор |
Светодиоды последовательно | Светодиодные данные |
Мигает | Подставки
Смотрите также: Лампы | Диоды
светодиода излучают свет, когда через них проходит электрический ток.
Электрические характеристики светодиода сильно отличаются от поведения лампы, и он должен быть защищен от
пропускание чрезмерного тока, обычно это достигается подключением резистора последовательно со светодиодом.
Никогда не подключайте светодиод напрямую к батарее или источнику питания.
светодиода должны быть подключены правильно, на схеме может быть указано , или
+ для анода и k или — для катода (да, это действительно k, а не c,
для катода).Катод — это короткий вывод, и на корпусе может быть небольшое сглаживание.
круглых светодиодов. Если вы видите внутри светодиода, катод — это электрод большего размера, но
это не официальный метод идентификации.
Светодиоды
могут быть повреждены нагреванием при пайке, но риск невелик, если вы не будете очень медленными.
При пайке большинства светодиодов особых мер предосторожности не требуется.
Rapid Electronics: светодиоды
Никогда не подключайте светодиод напрямую к батарее или источнику питания , потому что светодиод может
быть разрушенным чрезмерным током, проходящим через него.
Светодиоды
должны иметь последовательно включенный резистор для ограничения тока до безопасного значения, для
в целях тестирования 1к
резистор подходит для большинства светодиодов, если напряжение питания составляет 12 В или меньше.
Не забудьте правильно подключить светодиод.
Пожалуйста, смотрите ниже объяснение того, как разработать подходящий резистор.
значение для светодиода.
Цвет светодиода определяется его полупроводниковым материалом, а не окраской.
«упаковки» (пластиковый корпус).Светодиоды всех цветов доступны в неокрашенном виде.
упаковки, которые могут быть рассеянными (молочными) или прозрачными (часто называемыми «прозрачными от воды»).
Цветные упаковки также доступны в диффузных (стандартный тип) или прозрачных.
Синие и белые светодиоды могут быть дороже других цветов.
Двухцветный светодиод имеет два светодиода, подключенных «обратно параллельно» (один вперед, один назад).
объединены в один корпус с двумя выводами. Одновременно может гореть только один из светодиодов и
они менее полезны, чем трехцветные светодиоды и светодиоды RGB, описанные ниже.
Самый популярный тип трехцветного светодиода, в котором красный и зеленый светодиоды объединены в один.
пакет с тремя выводами. Их называют трехцветными, потому что смешанные красный и зеленый свет
кажется желтым, и он появляется, когда горят и красный, и зеленый светодиоды.
На схеме показана конструкция трехцветного светодиода. Обратите внимание на разные
длины трех выводов. Центральный вывод (k) является общим катодом для
оба светодиода, внешние выводы (a1 и a2) являются анодами для светодиодов, что позволяет
каждый должен быть освещен отдельно, или оба вместе, чтобы дать третий цвет.
Rapid Electronics: красный / зеленый светодиод
светодиодов RGB содержат красный, зеленый и синий светодиоды в одном корпусе. Каждый внутренний светодиод можно переключить
включается и выключается по отдельности, позволяя производить диапазон цветов:
Можно получить более широкий диапазон цветов, изменяя яркость каждого внутреннего светодиода.
Rapid Electronics: RGB LED
Светодиоды
доступны в самых разных размерах и формах.
«Стандартный» светодиод имеет круглое поперечное сечение диаметром 5 мм, и это, вероятно,
лучший тип для общего использования, но также популярны круглые светодиоды диаметром 3 мм.
Светодиоды круглого сечения используются часто и их очень легко установить на
коробки, просверлив отверстие под диаметр светодиода, добавив пятно клея, поможет удержать
светодиод, если необходимо.Также доступны зажимы для светодиодов (изображенные на рисунке) для фиксации светодиодов в отверстиях.
Другие формы поперечного сечения включают квадрат, прямоугольник и треугольник.
Фотография © Rapid Electronics
Светодиоды различаются не только цветами, размерами и формами, но и углом обзора.
Это говорит вам, насколько распространяется луч света. Стандартные светодиоды имеют обзор
угол 60 °, но другие имеют узкий луч 30 ° или меньше.
Склад Rapid Electronics
особенно широкий выбор светодиодов и их веб-сайт является хорошим проводником по широкому ассортименту доступных
включая новейшие светодиоды высокой мощности.
Светодиод должен иметь последовательно подключенный резистор для ограничения тока через светодиод.
иначе он перегорит практически мгновенно.
Номинал резистора R определяется по формуле:
R = номинал резистора в омах ().
В S = напряжение питания.
В L = напряжение светодиода (2 В или 4 В для синих и белых светодиодов).
I = ток светодиода в амперах (A)
Ток светодиода должен быть меньше максимально допустимого для вашего светодиода.Для светодиодов стандартного диаметра 5 мм максимальный ток обычно составляет 20 мА, поэтому значения 10 мА или 15 мА подходят для многих цепей.
Для расчета ток должен быть в амперах (А). Чтобы преобразовать мА в А, разделите ток в мА на 1000.
Если расчетное значение недоступно, выберите ближайшее стандартное значение резистора.
что на больше , так что ток будет немного меньше, чем вы выбрали.
На самом деле вы можете выбрать резистор большего номинала, чтобы уменьшить ток.
(например, для увеличения срока службы батареи), но это сделает светодиод менее ярким.
Если напряжение питания V S = 9V, и у вас красный светодиод (V L = 2V),
требующий тока I = 20 мА = 0,020 А,
R = (9В — 2В) / 0,02А = 350,
так что выберите 390
(ближайшее стандартное значение, которое больше).
Напряжение светодиода V L определяется цветом светодиода.
Красные светодиоды имеют самое низкое напряжение, желтые и зеленые немного выше. Наибольшее напряжение имеют синий и белый светодиоды.
Для большинства целей точное значение не критично, и вы можете использовать 2 В для красных, желтых и зеленых светодиодов или 4 В для синих и белых светодиодов.
Закон Ома гласит, что сопротивление резистора R = V / I, где:
В = напряжение на резисторе (в данном случае = В S — В L )
I = ток через резистор
Итак, R = (V S — V L ) / I
Для получения дополнительной информации о расчетах см. Страницу закона Ома.
Если вы хотите, чтобы несколько светодиодов горели одновременно, их можно соединить последовательно.
Это продлевает срок службы батареи за счет освещения нескольких светодиодов таким же током, как и только один светодиод.
Все светодиоды, соединенные последовательно, пропускают одинаковый ток , поэтому лучше, если они все
того же типа. Источник питания должен иметь достаточное напряжение, чтобы обеспечить около 2 В для каждого светодиода.
(4 В для синего и белого) плюс еще минимум 2 В для резистора.Чтобы выработать ценность
для резистора вы должны сложить все напряжения светодиодов и использовать это для V L .
Для последовательного красного, желтого и зеленого светодиода требуется напряжение питания не менее
3 × 2 В + 2 В = 8 В, поэтому батарея будет идеальной.
В L = 2 В + 2 В + 2 В = 6 В (три напряжения светодиодов суммируются).
Если напряжение питания V S составляет 9 В, а ток I должен быть 15 мА = 0,015 А,
Резистор R = ( В — В L ) / I = (9 — 6) / 0.015 = 3 / 0,015
= 200,
, поэтому выберите R = 220
(ближайшее стандартное значение, которое больше).
Соединение нескольких светодиодов параллельно с одним общим резистором, как правило, является плохой идеей.
Если для светодиодов требуется немного другое напряжение, загорится только светодиод с самым низким напряжением, и он
может быть разрушен более сильным током, протекающим через него. Хотя идентичные светодиоды могут быть
успешно подключены параллельно с одним резистором, что редко дает какую-либо полезную пользу
потому что резисторы очень дешевые, а ток такой же, как при подключении светодиодов по отдельности.
Если светодиоды включены параллельно, у каждого из них должен быть свой резистор.
Веб-сайты и каталоги поставщиков обычно содержат таблицы технических данных для таких компонентов, как светодиоды.
Эти таблицы содержат много полезной информации в компактной форме, но они могут
быть трудным для понимания, если вы не знакомы с используемыми сокращениями.
Вот важные свойства светодиодов:
Следующие два свойства можно игнорировать для большинства цепей:
Мигающие светодиоды выглядят как обычные светодиоды, но содержат ИС (интегральную схему).
а также сам светодиод.Микросхема мигает светодиодом с низкой частотой, например 3 Гц (3 вспышки в секунду).
Мигающие светодиоды предназначены для непосредственного подключения к определенному напряжению питания, например 5 В или 12 В.
без последовательного резистора. Обратитесь к поставщику, чтобы узнать безопасный диапазон напряжения питания для
конкретный мигающий светодиод. Частота вспышек фиксированная, поэтому их использование ограничено, и вы можете предпочесть
построить свою собственную схему для мигания обычного светодиода, например
Проект мигающего светодиода, в котором используется
555 нестабильная схема.
Rapid Electronics: мигающие светодиоды
Светодиодные экраны
представляют собой пакеты из множества светодиодов, расположенных по схеме, наиболее знакомой схеме.
является 7-сегментным дисплеем для отображения чисел (цифры 0–9).Картинки ниже
проиллюстрировать некоторые из популярных дизайнов.
Гистограмма, 7-сегментные, звездообразные и матричные светодиодные дисплеи
Фотографии © Rapid Electronics
Rapid Electronics: светодиодные дисплеи
Существует много типов светодиодных дисплеев, поэтому для получения дополнительной информации обратитесь к каталогу или на веб-сайте поставщика.
штыревые соединения. На диаграмме справа показан пример из
Быстрая электроника.
Как и многие 7-сегментные дисплеи, этот пример доступен в двух версиях:
Общий анод (SA) со всеми светодиодными анодами, соединенными вместе, и общий катод (SC)
со всеми катодами, соединенными вместе.Буквы a-g относятся к 7 сегментам, A / C
является общим анодом или катодом в зависимости от ситуации (на 2 штыря). Обратите внимание, что некоторые контакты
нет (NP), но их позиция все еще пронумерована.
См. Также: Драйверы дисплея.
Rapid Electronics
любезно разрешили мне использовать их изображения на этом веб-сайте, и я очень благодарен за их поддержку.
У них есть широкий ассортимент светодиодов, других компонентов и инструментов для электроники, и я рад
рекомендую их как поставщика.
Этот сайт не собирает личную информацию.Если вы отправите электронное письмо, ваш адрес электронной почты и любая личная информация будет
используется только для ответа на ваше сообщение, оно не будет передано никому.
На этом веб-сайте отображается реклама, если вы нажмете на
рекламодатель может знать, что вы пришли с этого сайта, и я могу быть вознагражден.
Рекламодателям не передается никакая личная информация.
Этот веб-сайт использует некоторые файлы cookie, которые классифицируются как «строго необходимые», они необходимы для работы веб-сайта и не могут быть отклонены, но они не содержат никакой личной информации.Этот веб-сайт использует службу Google AdSense, которая использует файлы cookie для показа рекламы на основе использования вами веб-сайтов.
(включая этот), как объяснил Google.
Чтобы узнать, как удалить файлы cookie и управлять ими в своем браузере, пожалуйста,
посетите AboutCookies.org.
electronicsclub.info © Джон Хьюс 2021 г.
Некоторые характеристики светодиода зависят от температуры кристалла (Tj: температура перехода светоизлучающего блока), которая включает температуру окружающей среды и тепловыделение светодиода во время работы.
Типичные изменения характеристик описаны ниже.
Обычно, когда Tj увеличивается, интенсивность света уменьшается. Это связано с повышенной рекомбинацией электронов и дырок, которые не вносят вклад в излучение света.
Длина волны излучения изменяется в зависимости от изменений температуры так же, как изменяется светимость. В первую очередь, ширина запрещенной зоны полупроводника изменяется в зависимости от температуры, что приводит к изменению длины волны.
Величина изменения длины волны будет отличаться в зависимости от материала, но для светодиодов InGaAlP изменение будет происходить в сторону более длинных волн, при этом? D будет изменяться на 0,1 нм / ° C в зависимости от повышения температуры. В приложениях с ограниченными требованиями к температуре необходимо учитывать изменение длины волны в пределах гарантированного диапазона рабочих температур устройства.
За исключением особых случаев, изменения VF вызваны вариациями длины волны излучения и ширины запрещенной зоны полупроводника.При повышении температуры VF уменьшается на 2 мВ / ° C. Изменение VF — важное соображение при проектировании схем.
Когда светодиод работает при постоянном токе, изменение VF не должно создавать серьезных проблем в качестве постоянной цепи. Однако при постоянном напряжении VF будет падать при повышении температуры, вызывая увеличение тока.
По мере увеличения тока Tj будет продолжать увеличиваться, что приведет к дальнейшему падению VF до тех пор, пока не будет достигнуто равновесие. Напротив, при низких температурах VF увеличивается, вызывая падение тока, что может затруднить получение требуемой яркости при работе с постоянным напряжением.
Светодиоды
по своей природе обладают распределенными характеристиками и вариациями в процессе производства. По этой причине были установлены минимальные значения ранга светимости и даже электрических характеристик.
В результате необходимо учитывать эти различия в оптических и схемотехнических конструкциях. Например, до того, как возникнут какие-либо колебания V F из-за температуры, изменения будут основаны на конкретном распределении.
Следовательно, при недостаточном расчетном запасе, когда изменение V F велико, важно учитывать, можно ли получить желаемые характеристики с учетом колебаний температуры. В зависимости от схемы и заданных характеристик может потребоваться сузить диапазон вариаций характеристик. В этом случае важно определить, можно ли рассмотреть и поддержать введение специальных стандартов.
Определение светодиодных диодов
Светодиод (LED, LED диод) — тип полупроводникового диода , который также относится к разряду оптоэлектронных компонентов.Типовая конструкция светодиода основана на «полупроводниковом кристаллическом переходе p-n» (подробнее о «p-n переходе» здесь ) . После того, как светодиод будет поляризован положительным электрическим напряжением (прямое смещение), которое превышает его пороговое значение напряжения, он начнет излучать электромагнитное излучение в видимом и инфракрасном спектре света.
Рис. 1. Светодиодный символ
Светодиодная конструкция
Цвет и длина волны светового излучения, излучаемого светодиодами, тесно связаны с полупроводниковым материалом, из которого он был изготовлен.Обычно их изготавливают из соединений (двухкомпонентных и многокомпонентных) химических элементов 3-й и 5-й группы Периодической таблицы Менделеева (например, GaAs — арсенид галлия, GaP — фосфид галлия, GaAsP — арсенофосфид галлий с правым легированием). Элементный состав диода подбирается таким образом, чтобы полученная в процессе полупроводниковая структура позволяла излучать свет в желаемом спектральном диапазоне.«P-n-переходы» светодиодов с GaAs в основном производятся с использованием диффузионного метода . Это обеспечивает высокую квантовую эффективность. Группа соединенных между собой диодов используется в различных типах дисплеев, например в семисегментных дисплеях.
LED Разделение по цвету светового излучения
Цвет | Длина волны λ [нм] |
Ультрафиолет (УФ) | <380 |
фиолетовый | 380–435 |
Синий | 435–500 |
Сине-зеленый | 500–520 |
зеленый | 520-565 |
Желтый | 565–590 |
Оранжевый | 590–625 |
Красный | 625–700 |
Инфракрасный (ИК) | > 700 |
Плавное изменение длины волны сопровождается аналогичным изменением цвета.В приведенной выше таблице мы расположили диапазоны значений длин волн по длине, чтобы улучшить представление о связи между длиной волны и цветом диода.
LED Вольт-амперные характеристики
Характеристики светодиода показывают, что цвет диода влияет на мощность, потребляемую этим светодиодом. Светодиоды, излучающие цветов в инфракрасном диапазоне, потребляют наименьшее количество энергии, а белый цвет — больше всего. Это связано с тем, что разные диоды имеют разное пороговое напряжение.Вы можете видеть, что на индикаторе характеристики показаны ниже.
Рис. 2. Группа вольт-амперных характеристик светодиодов, показывающих разницу пороговых напряжений у светодиодов разных цветов
Ассортимент качеств этого семейства светодиодов очень широк, и в настоящее время не существует достойного подхода, чтобы сузить их и технологически «свести» их к еще более явной и поддающейся количественной оценке форме.Тем не менее, они несколько ограничены (сужены) и охватывают обычные значения, разделив светодиоды на классы, выбрав цвет света, поскольку он является стандартом для вашей отрасли.
Светодиод Прямое напряжение — это минимальное напряжение, при котором светодиод начинает светиться из-за потока тока. Рекомендации относительно максимального прямого тока, характеризующего подтвержденный диод, можно найти в примечаниях к каталогу, тем не менее, это сложно, особенно если мы не знаем источник диода, поскольку вы не можете найти на светодиодах маркировку производителя.В среднем светодиоды будут иметь максимальный прямой ток 20-30 мА, однако многие обычные светодиоды (с линзами) хорошо работают при токе ниже 10 мА, многие обычно 2-3 мА. Прямое напряжение светодиода в диоде зависит от тона освещения и материала, из которого он изготовлен.
Светодиод Принцип работы
Принцип действия светодиода основан на явлении электролюминесценции (создание электромагнитного излучения под действием электрического поля).Электролюминесценция возникает в результате рекомбинации (аннигиляции) пары носителей (электронов и электронных дырок) в области «p-n перехода». В то время как электроны текут с более высокого уровня на более низкий, рассеивание мощности происходит в виде тепла (безызлучательная рекомбинация — в полупроводниках с n-наклонной запрещенной зоной) или света (излучательная рекомбинация — полупроводники с простой запрещенной зоной) . Во время этого потока энергия электронов преобразуется в квант электромагнитного излучения .
Гибкие светодиодные экраны
Динамичное развитие электроники, которое мы наблюдаем сегодня, было бы невозможно без одновременных исследований в междисциплинарной науке под названием нанотехнологии . Мы достигли такого уровня, что нас не удивляют гибкие светодиодные экраны , которые используются в телевизорах, мобильных телефонах, смарт-часах или даже в одежде.
Рис. 3. Источник: digitaltrends.com
Устройство в целом (электронная схема и компоненты) заключено в тонкую как бумагу и даже прозрачную пленку .Быстрый рост технологии OLED также стал одной из причин дальнейшего развития и роста популярности гибкой электроники . Такие решения позволяют пользователям взаимодействовать с такими устройствами, скручивая их , изгибая или складывая в обеих плоскостях . В качестве преимуществ гибкого дисплея мы можем рассматривать, например, более дешевый производственный процесс, эксплуатация, что может привести к окончательному снижению цены в магазинах электроники в будущем.
Примеры разновидностей светодиодов
LED — Преимущества
Аннотация: В течение многих лет светоизлучающие диоды (LED) были популярным выбором для использования в дисплеях состояния и матричных панелях. Теперь вы можете выбирать среди недавно разработанных синих и белых типов (широко используемых в портативных устройствах), а также среди широко распространенных зеленого, красного и желтого типов. Например, белые светодиоды считаются идеальным фоновым освещением для цветных дисплеев. Но при проектировании источников питания для них следует учитывать особенности, присущие этим новым светодиодным устройствам.В этой статье описаны свойства старых и новых светодиодов, а также характеристики, необходимые для источников питания, которые их активируют.
Самый простой способ управлять светодиодом — это подать на него источник напряжения с последовательно включенным резистором. Светодиод излучает свет постоянной интенсивности, пока рабочее напряжение (V B ) остается постоянным (хотя интенсивность уменьшается с увеличением температуры окружающей среды). Вы можете изменять интенсивность света по мере необходимости, изменяя номинал резистора.
Для стандартного светодиода диаметром 5 мм: Рисунок 1 показывает прямое напряжение (В F ) в зависимости от прямого тока (I F ). Обратите внимание, что падение напряжения на светодиоде увеличивается с увеличением прямого тока. Предполагая, что один зеленый светодиод с прямым током 10 мА должен иметь постоянное рабочее напряжение 5 В, последовательный резистор R В равен (5 В-В F, 10 мА ) / 10 мА = 300 Ом. Прямое напряжение составляет 2 В, как показано на графике типичных рабочих условий, приведенном в техническом паспорте (, рис. 2, ).
Рис. 1. Стандартные красный, зеленый и желтый светодиоды имеют прямое напряжение в диапазоне от 1,4 В до 2,6 В, в зависимости от желаемой яркости и выбора прямого тока. Для прямого тока ниже 10 мА прямое напряжение изменяется всего на несколько сотен милливольт.
Рис. 2. Последовательный резистор и источник постоянного напряжения обеспечивают простой способ работы светодиода.
Товарные диоды, подобные этому, производятся на основе комбинации галлия, арсенида и фосфида.Простые в обращении и известные большинству инженеров-проектировщиков, они обладают рядом преимуществ:
Рисунок 3.В показанной конфигурации параллельно работают несколько красных, желтых или зеленых светодиодов с очень небольшой разницей в цвете или вариациями яркости.
Таким образом, стоимость электроэнергии для эксплуатации стандартных светодиодов довольно низкая. Повышающие преобразователи или сложные и дорогие источники тока не нужны, если рабочее напряжение светодиода выше, чем его максимальное прямое напряжение.
Эти светодиоды могут работать даже непосредственно с Li + или тройными NiMH элементами, если приложение допускает снижение интенсивности света по мере разряда аккумуляторных элементов.
Светодиоды, излучающие синий свет, долгое время отсутствовали. Только инженеры-конструкторы могли вернуться к уже существующим цветам — красному, зеленому и желтому. Ранние «синие» устройства на самом деле были не синими светодиодами, а небольшими лампочками накаливания, окруженными диффузором синего цвета.
Первые «настоящие синие» светодиоды были разработаны несколько лет назад с использованием чистого кремний-углеродного материала (SiC), но их световая эффективность была низкой. В устройствах следующего поколения использовался базовый материал из нитрида галлия, который достиг световой эффективности в несколько раз по сравнению с первыми версиями.Сегодняшний материал для эпитаксии синих светодиодов называется нитрид индия-галлия (InGaN). Излучающие длины волн в диапазоне от 450 до 470 нм, светодиоды InGaN производят в пять раз большую интенсивность света, чем светодиоды из нитрида галлия.
Настоящие светодиоды, излучающие белый свет, недоступны. Такое устройство сложно построить, потому что светодиоды обычно излучают одну длину волны. Белый не появляется в спектре цветов; вместо этого для восприятия белого требуется сочетание длин волн.
Уловка используется для изготовления белых светодиодов.Основной материал InGaN, излучающий синий цвет, покрыт материалом-преобразователем, который излучает желтый свет при воздействии синего света. В результате получается смесь синего и желтого света, которая воспринимается глазом как белый ( Рисунок 4 ).
Рис. 4. Длина волны излучения белого светодиода (сплошная кривая) включает пики в синей и желтой областях, но человеческий глаз интерпретирует их как белый свет. Относительная светочувствительность человеческого глаза (пунктирная кривая) показана для сравнения.
Цвет белого светодиода определяется цветовыми координатами. Значения для этих координат X и Y рассчитываются в соответствии с инструкциями, содержащимися в публикации 15.2 Международной комиссии по охране окружающей среды (CIE). В таблицах данных для белых светодиодов часто указывается изменение этих цветовых координат с увеличением прямого тока ( Рисунок 5 ).
Рис. 5. Изменение прямого тока приводит к сдвигу координат цветности белого светодиода (LE Q983 от OSRAM Opto Semiconductors) и, следовательно, качества его белого света.
К сожалению, со светодиодами InGaN не так просто обращаться, как со стандартными зелеными, красными и желтыми светодиодами. Доминирующая длина волны (цвет) светодиода InGaN изменяется в зависимости от прямого тока (, рис. 6, ). Белые светодиоды, например, демонстрируют изменение цвета из-за различных концентраций материала преобразователя в дополнение к изменению длины волны с прямым напряжением для материала InGaN, излучающего синий цвет. Это изменение цвета можно увидеть на рисунке 5, где смещение координат X и Y означает изменение цвета.(Как упоминалось ранее, белые светодиоды не имеют определенной длины волны.)
Рис. 6. Увеличение прямого тока изменяет оттенок синего светодиода, изменяя его излучаемую длину волны.
Прямое напряжение сильно изменяется при прямом токе до 10 мА. Диапазон изменения составляет около 800 мВ (некоторые типы диодов меняются еще больше). Таким образом, изменение рабочего напряжения, вызванное разрядом батареи, меняет цвет, потому что изменение рабочего напряжения изменяет прямой ток.При прямом токе 10 мА прямое напряжение составляет около 3,4 В (это количество зависит от производителя и колеблется от 3,1 до 4,0 В). Вольт-амперная характеристика также сильно меняется от светодиода к светодиоду (см. Ниже). Управлять светодиодом напрямую от батареи сложно, потому что состояние разряда большинства батарей ниже минимально необходимого прямого напряжения светодиода.
Многие портативные устройства и устройства с батарейным питанием используют белые светодиоды для фоновой подсветки.В частности, для цветных дисплеев КПК требуется белая подсветка для получения цветопередачи, близкой к исходной. Будущие мобильные телефоны 3G будут поддерживать изображение и видео, для которых требуется белая подсветка. Цифровые фотоаппараты, MP3-плееры и другое видео- и аудиооборудование также включают дисплеи, для которых требуется белая подсветка.
В большинстве случаев одного белого светодиода недостаточно, поэтому необходимо использовать несколько одновременно. Необходимо предпринять специальные меры, чтобы убедиться, что их интенсивность и цвет совпадают, даже если заряд аккумулятора и другие условия различаются.
На рис. 7 показаны вольт-амперные кривые для группы случайно выбранных белых светодиодов. Подача напряжения 3,3 В на эти светодиоды (верхняя пунктирная линия) создает прямые токи в диапазоне от 2 мА до 5 мА, что, в свою очередь, дает различные оттенки белого цвета. В частности, координата Y сильно изменяется в этой области (рис. 5), что приводит к неверному воспроизведению цвета на освещенном дисплее. Светодиоды также имеют разную интенсивность света, что создает неоднородное освещение.Еще одна проблема — необходимое минимальное напряжение питания. Для работы светодиодов необходимо напряжение значительно выше 3 В. Ниже этого уровня некоторые светодиоды могут оставаться полностью темными.
Рис. 7. Эти кривые иллюстрируют значительные различия вольт-амперных характеристик белых светодиодов, даже если они были выбраны случайным образом из одной и той же производственной партии. Таким образом, параллельная работа нескольких таких светодиодов при постоянном напряжении 3,3 В (верхняя пунктирная линия) дает разные оттенки белого и разную яркость.
Литий-ионный аккумулятор при полной зарядке обеспечивает выходное напряжение 4,2 В, которое падает до номинального 3,5 В после короткого периода работы. Это напряжение далее снижается до 3,0 В по мере разряда батареи. Если белые светодиоды работают непосредственно от батареи, как показано на рисунке 3, возникают следующие проблемы:
Сначала, когда батарея полностью заряжена, все светодиоды светятся, но с разными оттенками интенсивности и цвета света. Когда напряжение батареи падает до номинального уровня, яркость света уменьшается, а различия в белом цвете становятся сильнее.Поэтому разработчик должен учитывать значение напряжения батареи и прямого напряжения диода, для которого рассчитывается последовательный резистор. (При полностью разряженной батарее некоторые светодиоды будут полностью темными.)
Целью источника питания светодиодов является обеспечение достаточно высокого выходного напряжения и протекание одного и того же тока через все светодиоды, подключенные параллельно. Обратите внимание (рисунок 5), что если все белые светодиоды параллельной конфигурации имеют одинаковые токи, все они будут иметь одинаковые координаты цветности.Для этой цели компания Maxim предлагает зарядный насос с регулировкой тока (MAX1912).
В параллельной конфигурации из трех светодиодов, показанной на рис. 8 , накачка заряда представляет собой крупномасштабный тип, который увеличивает входное напряжение в 1,5 раза. Более ранние зарядные насосы просто удваивали входное напряжение, но этот новый метод обеспечивает лучшую эффективность. Входное напряжение повышается до уровня, при котором светодиоды могут работать. Резисторные сети, подключенные к SET (вывод 10), обеспечивают одинаковые токи во всех светодиодах.Внутренняя схема поддерживает напряжение SET на уровне 200 мВ, поэтому ток через любой светодиод можно рассчитать как I LED = 200 мВ / 10 Ом = 20 мА. Если для некоторых диодов требуются более низкие уровни тока, вы можете использовать более трех параллельно, потому что MAX1912 выдает до 60 мА. См. Технические данные MAX1912 для получения информации о других приложениях и схемах.
Рис. 8. Эта ИС сочетает в себе подкачку заряда и управление током. Зарядный насос обеспечивает достаточное рабочее напряжение для белых светодиодов, а управление током обеспечивает однородный белый свет, пропуская одинаковые токи через каждый светодиод.
Белыми светодиодами можно легко управлять, если система обеспечивает напряжение выше прямого напряжения диодов. Цифровые фотоаппараты, например, обычно включают источник питания +5 В. В этом случае вам не нужна функция усиления, потому что напряжение питания имеет запас, достаточный для работы светодиодов. Для схемы на Рисунке 8 следует выбрать согласованный источник тока. Например, MAX1916 может управлять до трех светодиодов параллельно ( Рисунок 9 ).
Рисунок 9. Один внешний резистор (R SET ) программирует значение идентичных токов, подаваемых на каждый светодиод. Применение сигнала с широтно-импульсной модуляцией к разрешающему выводу (EN) этой ИС обеспечивает простую регулировку яркости (функция затемнения).
Операция проста: резистор R SET программирует ток, который пропускается через подключенные светодиоды. Такой подход занимает очень мало места на доске. Помимо микросхемы (небольшой 6-выводной корпус SOT23) и нескольких байпасных конденсаторов, требуется только один внешний резистор.Микросхема обеспечивает отличное согласование тока между светодиодами на 0,3%. Эта конфигурация обеспечивает идентичные местоположения цветности и, следовательно, идентичные типы белого света от каждого светодиода.
Некоторые портативные устройства регулируют интенсивность своего светового потока в соответствии с условиями окружающего освещения, а другие снижают интенсивность света с помощью программного обеспечения после короткого интервала ожидания. Обе эти операции требуют, чтобы светодиоды были затемнены, и такая функция затемнения должна одинаково влиять на каждый прямой ток, чтобы избежать возможных сдвигов в координации цветности.Этого единообразия можно добиться с помощью небольшого цифро-аналогового преобразователя, который управляет током через резистор R SET .
Преобразователь с 6-битным разрешением, такой как MAX5362, с интерфейсом, совместимым с I 2 C *, или MAX5365, с интерфейсом, совместимым с SPI ™, делает возможной функцию затемнения с 32 ступенями интенсивности света ( Рисунок 10 ). Тип белого света светодиодов меняется с изменением яркости, потому что прямой ток влияет на координаты цветности.Это не должно быть проблемой, потому что одинаковые прямые токи заставляют каждый диод в группе излучать идентичный свет.
Рис. 10. Этот цифро-аналоговый преобразователь управляет затемнением светодиодов, изменяя их прямые токи в унисон.
Функция затемнения, для которой координаты цветности не перемещаются, называется широтно-импульсной модуляцией. Это может быть реализовано с большинством устройств питания, которые обеспечивают функцию включения или выключения. MAX1916, например, ограничивает ток утечки через светодиоды до уровня всего 1 мкА, как только компонент отключается путем понижения уровня EN.Результат — нулевое излучение света. Повышение уровня EN до высокого уровня направляет запрограммированный прямой ток через светодиоды. Если вы применяете сигнал с широтно-импульсной модуляцией к EN, яркость пропорциональна скважности этого сигнала.
Координаты цветности не меняются, потому что каждый светодиод продолжает видеть один и тот же прямой ток. Однако человеческий глаз воспринимает изменение рабочего цикла как изменение яркости. Частоты выше 25 Гц не распознаются человеческим глазом, поэтому частота переключения 200–300 Гц является хорошим выбором для ШИМ-диммирования.Более высокие частоты могут вызвать проблемы, потому что координаты цветности могут смещаться в течение короткого интервала, необходимого для включения и выключения светодиодов. Сигнал PWM может подаваться с вывода ввода / вывода микропроцессора или одного из его периферийных устройств. Количество доступных шагов яркости зависит от ширины регистра счетчика, используемого для этой цели.
Помимо упомянутого выше зарядного насоса (MAX1912), вы также можете реализовать повышающий преобразователь с контролем тока.Импульсный преобразователь напряжения MAX1848, например, генерирует выходное напряжение до 13 В, что достаточно для последовательного включения до трех светодиодов (, рис. 11, ). Этот подход, вероятно, самый чистый, потому что все светодиоды, соединенные последовательно, имеют одинаковый ток. Ток светодиода определяется R SENSE и напряжением, подаваемым на вход CTRL.
Рис. 11. Этот импульсный повышающий преобразователь обеспечивает последовательную работу нескольких светодиодов. Все имеют одинаковый прямой ток, который регулируется через вход CTRL (например) цифро-аналоговым преобразователем.
MAX1848 может реализовать функцию затемнения в соответствии с любым из методов, описанных выше. Прямой ток через светодиоды пропорционален напряжению, приложенному к выводу CTRL. Поскольку MAX1848 переходит в режим выключения, когда напряжение, подаваемое на CTRL, становится ниже 100 мВ, вы также можете реализовать функцию затемнения с ШИМ.
Белые светодиоды могут работать параллельно, если вы позаботитесь об обеспечении однородного белого света, уравняв их прямые токи.Для работы светодиодов выберите либо управляемый источник тока, либо комбинацию повышающего преобразователя с контролем тока. Используя зарядовые насосы или импульсные повышающие преобразователи, вы можете реализовать такие комбинации с несколькими стандартными продуктами.
5
Колориметрические характеристики маломощного светодиода SMD
сильно зависят от температуры. Следовательно, правильный выбор рабочих условий
и управление температурой имеют решающее значение для
оптимизации и увеличения срока службы светодиодов
[27].
4. Заключение
В этой статье сообщается о влиянии температуры окружающей среды и инжектируемого тока
на интенсивность маломощных светодиодов SMD и изменение цвета
. Установлено, что длина волны, интенсивность
, сдвиг цветовых координат и спектральная ширина на
больше зависят от температуры окружающей среды, чем от тока инжекции.
Наблюдается, что при увеличении тока инжекции с 30 до
100 мА при температуре окружающей среды 25 ℃ пиковая длина волны
смещается с 621.От 900 до 623,015 нм, а максимальная интенсивность
увеличивается с 0,0011 до 0,0031 Вт / нм. Кроме того, при повышении температуры окружающей среды
с 25 до 85 ℃ при 50 мА пиковая длина волны
смещается с 621,900 до 630,518 нм, а максимальная интенсивность
уменьшается с 0,0017 до 0,0010 Вт / нм.
Анализ данных, представленных в этой работе, даст
дальнейшее важное понимание оптимизации конструкции устройства
.
Благодарности
Автор хотел бы поблагодарить Институт последипломного образования
(IPS), Universiti Sains Malaysia (USM) за финансовую поддержку
через стипендию USM.
Ссылки
1. Т. Ченг, Х. Луо, С. Хуанг и С. Лю, «Тепловой анализ
и оптимизация упаковки с несколькими светодиодами на основе
на основе общего аналитического решения», Международный журнал
Тепловые науки, т. 49, pp. 196-201, 2010.
2. Дж. Ху, Л. Ян и М. В. Шин, «Электрическая, оптическая и
термическая деградация мощных светоизлучающих диодов GaN / InGaN-
», Журнал физики D: Прикладная физика,
т.41, стр. 035107, 2008.
3. С. П. Чинг и М. Девараджан, «Исследование тепловых и
оптических свойств мощного инфракрасного излучателя с использованием метода двойного интерфейса
», International Journal of Heat и
Mass Transfer, vol. 58, pp. 578-584, 2013.
4. GS Spagnolo, D. Papalillo и A. Martocchia, «Применение светодиодов
в железнодорожных сигналах: длина волны и интенсивность в зависимости от изменения температуры
», Транспортный журнал
технологии, т.2, стр. 78, 2012.
5. И. Эшдаун и М. Салсбери, «Пиковые сдвиги длины волны и теория цвета оппонента
», в Optical Engineering +
Applications, 2007, стр. 66690C-66690C-10.
6. GS Spagnolo, D. Papalillo, A. Martocchia и G.
Makary, «Применение светодиодов для светофоров», в
Environment and Electrical Engineering (EEEIC), 2012
11-я Международная конференция по, 2012, с. 864-868.
7. А. Поппе, Г.Молнар и Т. Темесволджи, «Температурное
-зависимое тепловое сопротивление в сборках силовых светодиодов и способ
справиться с этим», Semiconductor Thermal
Measurement and Management Symposium, 2010. SEMI-
THERM 2010. 26th Annual IEEE, 2010, стр. 283-288.
8. Х. Чен и С. Хуэй, «Динамическое прогнозирование коррелированной цветовой температуры
и индекса цветопередачи люминофор-
белых светодиодов с покрытием», Промышленная электроника,
IEEE Transactions on, vol.