Содержание
Сравнение утеплителей по теплопроводности и по плотности материалов
В продаже доступно много строительных материалов, использующихся для повышения свойств сооружения сохранять тепло – утеплителей. В конструкции дома он может применяться практически в каждой ее части: от фундамента и до чердака. Далее пойдет речь об основных свойствах материалов, способных обеспечить необходимый уровень теплопроводности объектов различного назначения, а также будет приведено их сравнение, в чем поможет таблица.
Основные характеристики утеплителей
Соотношение качества утеплителя, в зависимости от его толщины
При выборе утеплителей нужно обращать внимание на разные факторы: тип сооружения, наличие воздействия высоких температур, открытого огня, характерный уровень влажности. Только после определения условий использования, а также уровня теплопроводности применяемых материалов для сооружения определенной части конструкции, нужно смотреть на характеристики конкретного утеплителя:
- Теплопроводность. От этого показателя напрямую зависит качество проведенного утеплительного процесса, а также необходимое количество материала для обеспечения желаемого результата. Чем ниже теплопроводность, тем эффективнее использование утеплителя.
- Влагопоглощение. Показатель особо важен при утеплении внешних частей конструкции, на которые может периодически воздействовать влага. К примеру, при утеплении фундамента в грунтах с высокими водами или повышенным уровнем содержания воды в своей структуре.
- Толщина. Применение тонких утеплителей позволяет сохранить внутреннее пространство жилого сооружения, а также напрямую влияет на качество утепления.
- Горючесть. Это свойство материалов особенно важно при использовании для понижения теплопроводной способности наземных частей сооружения жилых домов, а также зданий специального назначения. Качественная продукция отличается способностью к самозатуханию, не выделяет при воспламенении ядовитых веществ.
- Термоустойчивость. Материал должен выдерживать критические температуры. К примеру, низкие температуры при наружном использовании.
- Экологичность. Нужно прибегать к использованию материалов безопасных для человека. Требования к этому фактору может изменяться в зависимости от будущего назначения сооружения.
- Звукоизоляция. Это дополнительное свойство утеплителей в некоторых ситуациях позволяет добиться хорошего уровня защиты помещения от шума, а также посторонних звуков.
Когда используется при сооружении определенной части конструкции материал с низкой теплопроводностью, то можно покупать самый дешевый утеплитель (если это позволят предварительные расчеты).
Важность конкретной характеристики напрямую зависит от условий использования и выделенного бюджета.
Сравнение популярных утеплителей
СРЕДНЯЯ ТОЛЩИНА ТЕПЛОИЗОЛЯЦИИ ДЛЯ РАЗЛИЧНЫХ СТЕНОВЫХ КОНСТРУКЦИЙ | ||||
Теплоизоляционный материал | Кирпичная кладка (полтора кирпича) | Газобетон 30 см | Деревянный брус 30 см | Каркас из OSB |
Экотермикс | 7 см | З см | 5 см | 10 см |
Минеральная вата | 13 см | 8 см | 10 см | 15 см |
Пенополистирол | 12 см | 7 см | 8 см | 13 см |
Пеностекло | 11 см | 6,5 см | 7 см | 13 см |
Давайте рассмотрим несколько материалов, применяемых для повышения энергоэффективности сооружений:
- Минеральная вата. Производится из естественных материалов. Устойчива к огню и отличается экологичностью, а также низкой теплопроводностью. Но невозможность противостоять воздействию воды сокращает возможности использования.
- Пенопласт. Легкий материал с отличными утеплительными свойствами. Доступный, легко устанавливается и влагоустойчив. Недостатки: хорошая воспламеняемость и выделение вредных веществ при горении. Рекомендуется его использовать в нежилых помещениях.
- Бальзовая вата. Материал практически идентичный минвате, только отличается улучшенными показателями устойчивости к влаге. При изготовлении его не уплотняют, что значительно продлевает срок службы.
- Пеноплэкс. Утеплитель хорошо противостоит влаге, высоким температурам, огню, гниению, разложению. Отличается отличными показателями теплопроводности, прост в монтаже и долговечен. Можно использовать в местах с максимальными требованиями способности материала противостоять различным воздействиям.
- Пенофол. Многослойный утеплитель естественного происхождения. Состоит из полиэтилена, предварительно вспененного перед производством. Может иметь различные показатели пористости и ширины. Часто поверхность покрыта фольгой, благодаря чему достигается отражающие эффект. Отличается легкостью, простотой монтажа, высокой энергоэффективностью, влагостойкостью, небольшим весом.
Коэффициент теплопроводности размерность
Выбирая материал для использования в непосредственной близости с человеком, необходимо особое внимание уделять его характеристикам экологичности и пожаробезопасности. Также в некоторых ситуациях рационально покупать более дорой утеплитель, который будет обладать дополнительными свойствами влагозащиты или звукоизоляции, что в окончательном счете позволяет сэкономить.
Сравнение с помощью таблицы
N | Наименование | Плотность | Теппопроводность | Цена , евро за куб.м. | Затраты энергии на | ||
кг/куб.м | мин | макс | Евросоюз | Россия | квт*ч/куб. м. | ||
1 | целлюлозная вата | 30-70 | 0,038 | 0,045 | 48-96 | 15-30 | 6 |
2 | древесноволокнистая плита | 150-230 | 0,039 | 0,052 | 150 | 800-1400 | |
3 | древесное волокно | 30-50 | 0,037 | 0,05 | 200-250 | 13-50 | |
4 | киты из льняного волокна | 30 | 0,037 | 0,04 | 150-200 | 210 | 30 |
5 | пеностекло | 100-150 | 0.05 | 0,07 | 135-168 | 1600 | |
6 | перлит | 100-150 | 0,05 | 0.062 | 200-400 | 25-30 | 230 |
7 | пробка | 100-250 | 0,039 | 0,05 | 300 | 80 | |
8 | конопля, пенька | 35-40 | 0,04 | 0.041 | 150 | 55 | |
9 | хлопковая вата | 25-30 | 0,04 | 0,041 | 200 | 50 | |
10 | овечья шерсть | 15-35 | 0,035 | 0,045 | 150 | 55 | |
11 | утиный пух | 25-35 | 0,035 | 0,045 | 150-200 | ||
12 | солома | 300-400 | 0,08 | 0,12 | 165 | ||
13 | минеральная (каменная) вата | 20-80 | 0.038 | 0,047 | 50-100 | 30-50 | 150-180 |
14 | стекповопокнистая вата | 15-65 | 0,035 | 0,05 | 50-100 | 28-45 | 180-250 |
15 | пенополистирол (безпрессовый) | 15-30 | 0.035 | 0.047 | 50 | 28-75 | 450 |
16 | пенополистирол экструзионный | 25-40 | 0,035 | 0,042 | 188 | 75-90 | 850 |
17 | пенополиуретан | 27-35 | 0,03 | 0,035 | 250 | 220-350 | 1100 |
Показатель теплопроводных свойств является основным критерием при выборе утеплительного материала. Остается только сравнить ценовые политики разных поставщиков и определить необходимое количество.
Утеплитель – один из основных способов получить сооружение с необходимой энергоэффективностью. Перед его окончательным выбором точно определите условия использования и, вооружившись приведенной таблицей, совершите правильный выбор.
Теплопроводность строительных материалов — таблица утеплителей, сравнение
Любое строительство независимо от его размера всегда начинается с разработки проекта. Его цель – спроектировать не только внешний вид будущего строения, еще и просчитать основные теплотехнические характеристики. Ведь основной задачей строительства считается сооружение прочных, долговечных зданий, способных поддерживать здоровый и комфортный микроклимат, без лишних затрат на отопление. Несомненную помощь при выборе сырья, используемого для возведения постройки, окажет таблица теплопроводности строительных материалов: коэффициенты.
Тепло в доме напярямую зависит от коэффициента теплопроводности строительных материалов
Что такое теплопроводность?
Теплопроводность – это процесс передачи энергии тепла от нагретых частей помещения к менее теплым. Такой обмен энергией будет происходить, пока температура не уравновесится. Применяя это правило к ограждающим системам дома, можно понять, что процесс теплопередачи определяется промежутком времени, за который происходит выравнивание температуры в комнатах с окружающей средой. Чем это время больше, тем теплопроводность материала, применяемого при строительстве, ниже.
Отсутствие теплоизоляции дома скажется на температуре воздуха внутри помещения
Для характеристики проводимости тепла материалами используют такое понятие, как коэффициент теплопроводности. Он показывает, какое количество тепла за одну единицу временного промежутка пройдет через одну единицу площади поверхности. Чем выше подобный показатель, тем сильнее теплообмен, значит, постройка будет остывать значительно быстрее. То есть при сооружении зданий, домов и прочих помещений необходимо использовать материалы, проводимость тепла которых минимальна.
Сравнительные характеристики теплопроводности и термического сопротивления стен, возведенных из кирпича и газобетонных блоков
Основные характеристики утеплителей
Соотношение качества утеплителя, в зависимости от его толщины
При выборе утеплителей нужно обращать внимание на разные факторы: тип сооружения, наличие воздействия высоких температур, открытого огня, характерный уровень влажности. Только после определения условий использования, а также уровня теплопроводности применяемых материалов для сооружения определенной части конструкции, нужно смотреть на характеристики конкретного утеплителя:
- Теплопроводность. От этого показателя напрямую зависит качество проведенного утеплительного процесса, а также необходимое количество материала для обеспечения желаемого результата. Чем ниже теплопроводность, тем эффективнее использование утеплителя.
- Влагопоглощение. Показатель особо важен при утеплении внешних частей конструкции, на которые может периодически воздействовать влага. К примеру, при утеплении фундамента в грунтах с высокими водами или повышенным уровнем содержания воды в своей структуре.
- Толщина. Применение тонких утеплителей позволяет сохранить внутреннее пространство жилого сооружения, а также напрямую влияет на качество утепления.
- Горючесть. Это свойство материалов особенно важно при использовании для понижения теплопроводной способности наземных частей сооружения жилых домов, а также зданий специального назначения. Качественная продукция отличается способностью к самозатуханию, не выделяет при воспламенении ядовитых веществ.
- Термоустойчивость. Материал должен выдерживать критические температуры. К примеру, низкие температуры при наружном использовании.
- Экологичность. Нужно прибегать к использованию материалов безопасных для человека. Требования к этому фактору может изменяться в зависимости от будущего назначения сооружения.
- Звукоизоляция. Это дополнительное свойство утеплителей в некоторых ситуациях позволяет добиться хорошего уровня защиты помещения от шума, а также посторонних звуков.
Когда используется при сооружении определенной части конструкции материал с низкой теплопроводностью, то можно покупать самый дешевый утеплитель (если это позволят предварительные расчеты).
Важность конкретной характеристики напрямую зависит от условий использования и выделенного бюджета.
Что влияет на величину теплопроводности?
Тепловая проводимость любого материала зависит от множества параметров:
- Пористая структура. Присутствие пор предполагает неоднородность сырья. При прохождении тепла через подобные структуры, где большая часть объема занята порами, охлаждение будет минимальным.
- Плотность. Высокая плотность способствует более тесному взаимодействию частиц друг с другом. В результате теплообмен и последующее полное уравновешивание температур происходит быстрее.
- Влажность. При высокой влажности окружающего воздуха или намокании стен постройки, сухой воздух вытесняется капельками жидкости из пор. Теплопроводность в подобном случае значительно увеличивается.
Теплопроводность, плотность и водопоглощение некоторых строительных материалов
Монтаж и эффективность в эксплуатации
Монтаж ППУ – быстро и легко.
Сравнение характеристик утеплителей должно осуществляться с учетом монтажа, ведь это тоже важно. Легче всего работать с жидкой теплоизоляцией, такой как ППУ и пеноизол, но для этого требуется специальное оборудование. Также не составляет труда укладка эковаты (целлюлозы) на горизонтальные поверхности, например, при или чердачного перекрытия. Для напыления эковаты на стены мокрым методом также нужны специальные приспособления.
Пенопласт укладывается как по обрешетке, так и сразу на рабочую поверхность. В принципе, это касается и плит из каменной ваты. Причем укладывать плитные утеплители можно и на вертикальные, и на горизонтальные поверхности (под стяжку в том числе). Мягкую стекловату в рулонах укладывают только по обрешетке.
В процессе эксплуатации теплоизоляционный слой может претерпевать некоторых нежелательных изменений:
- напитать влагу;
- дать усадку;
- стать домом для мышей;
- разрушиться от воздействия ИК лучей, воды, растворителей и прочее.
Кроме всего вышеуказанного, важное значение имеет пожаробезопасность теплоизоляции. Сравнение утеплителей, таблица группы горючести:
Применение показателя теплопроводности на практике
В строительстве все материалы условно подразделяются на теплоизоляционные и конструкционные. Конструкционное сырье отличается наибольшими показателями теплопроводности, но именно его применяют для постройки стен, перекрытий, прочих ограждений. Согласно таблице теплопроводности строительных материалов, при возведении стен из железобетона, для низкого теплообмена с окружающей средой толщина конструкции должна быть около 6 метров. В таком случае строение получится огромным, громоздким и потребует немалых затрат.
Наглядный пример — при какой толщине различных материалов их коэффициент теплопроводности будет одинаковым
Поэтому при возведении постройки следует отдельное внимание уделять дополнительным теплоизолирующим материалам. Слой теплоизоляции может не понадобиться только для построек из дерева или пенобетона, но даже при использовании подобного низкопроводного сырья толщина конструкции должна быть не менее 50 см.
Сравнение с помощью таблицы
N | Наименование | Плотность | Теппопроводность | Цена , евро за куб.м. | Затраты энергии на | ||
кг/куб.м | мин | макс | Евросоюз | Россия | квт*ч/куб. м. | ||
1 | целлюлозная вата | 30-70 | 0,038 | 0,045 | 48-96 | 15-30 | 6 |
2 | древесноволокнистая плита | 150-230 | 0,039 | 0,052 | 150 | 800-1400 | |
3 | древесное волокно | 30-50 | 0,037 | 0,05 | 200-250 | 13-50 | |
4 | киты из льняного волокна | 30 | 0,037 | 0,04 | 150-200 | 210 | 30 |
5 | пеностекло | 100-150 | 0.05 | 0,07 | 135-168 | 1600 | |
6 | перлит | 100-150 | 0,05 | 0.062 | 200-400 | 25-30 | 230 |
7 | пробка | 100-250 | 0,039 | 0,05 | 300 | 80 | |
8 | конопля, пенька | 35-40 | 0,04 | 0.041 | 150 | 55 | |
9 | хлопковая вата | 25-30 | 0,04 | 0,041 | 200 | 50 | |
10 | овечья шерсть | 15-35 | 0,035 | 0,045 | 150 | 55 | |
11 | утиный пух | 25-35 | 0,035 | 0,045 | 150-200 | ||
12 | солома | 300-400 | 0,08 | 0,12 | 165 | ||
13 | минеральная (каменная) вата | 20-80 | 0.038 | 0,047 | 50-100 | 30-50 | 150-180 |
14 | стекповопокнистая вата | 15-65 | 0,035 | 0,05 | 50-100 | 28-45 | 180-250 |
15 | пенополистирол (безпрессовый) | 15-30 | 0.035 | 0.047 | 50 | 28-75 | 450 |
16 | пенополистирол экструзионный | 25-40 | 0,035 | 0,042 | 188 | 75-90 | 850 |
17 | пенополиуретан | 27-35 | 0,03 | 0,035 | 250 | 220-350 | 1100 |
Показатель теплопроводных свойств является основным критерием при выборе утеплительного материала. Остается только сравнить ценовые политики разных поставщиков и определить необходимое количество.
Утеплитель – один из основных способов получить сооружение с необходимой энергоэффективностью. Перед его окончательным выбором точно определите условия использования и, вооружившись приведенной таблицей, совершите правильный выбор.
Теплопроводность готового здания. Варианты утепления конструкций
При разработке проекта постройки необходимо учесть все возможные варианты и пути потери тепла. Большое его количество может уходить через:
Теплопотери неутепленного частного дома
При неверном расчете теплопроводности на этапе проектирования, жильцам остается довольствоваться только 10% тепла, получаемого от энергоносителей. Именно поэтому дома, возведенные из стандартного сырья: кирпича, бетона, камня рекомендуют дополнительно утеплять. Идеальная постройка согласно таблице теплопроводности строительных материалов должна быть выполнена полностью из теплоизолирующих элементов. Однако малая прочность и минимальная устойчивость к нагрузкам ограничивает возможности их применения.
Сравнительный график коэффициентов теплопроводности некоторых строительных материалов и утеплителей
Самым распространенным вариантом сочетание несущей конструкции из высокопрочных материалов с дополнительным слоем теплоизоляции. Сюда можно отнести:
Необходимая тепло- и гидроизоляция для сохранения тепла в частном доме
Сравнение паропроницаемости утеплителей
Высокая паропроницаемость=отсутствие конденсата.
Паропроницаемость – это способность материала пропускать воздух, а вместе с ним и пар. То есть теплоизоляция может дышать. На этой характеристике утеплителей для дома последнее время производители акцентируют много внимания. На самом деле высокая паропроницаемость нужна только при . Во всех остальных случаях данный критерий не является категорически важным.
Характеристики утеплителей по паропроницаемости, таблица:
Сравнение утеплителей для стен показало, что самой высокой степенью паропроницаемости обладают натуральные материалы, в то время как у полимерных утеплителей коэффициент крайне низок. Это свидетельствует о том, что такие материалы как ППУ и пенопласт обладают способностью задерживать пар, то есть выполняют . Пеноизол – это тоже своего рода полимер, который изготавливается из смол. Его отличие от ППУ и пенопласта заключается в структуре ячеек, которые открытие. Иными словами, это материал с открытоячеистой структурой. Способность теплоизоляции пропускать пар тесно связан со следующей характеристикой – поглощение влаги.
Таблица теплопроводности строительных материалов: коэффициенты
В этой таблице собраны показатели теплопроводности самых распространенных строительных материалов. Пользуясь подобными справочниками, можно без проблем рассчитать необходимую толщину стен и применяемого утеплителя.
Таблица коэффициента теплопроводности строительных материалов:
Таблица теплопроводности строительных материалов: коэффициенты
Обзор гигроскопичности теплоизоляции
Высокая гигроскопичность – это недостаток, который нужно устранять.
Гигроскопичность – способность материала впитывать влагу, измеряется в процентах от собственного веса утеплителя. Гигроскопичность можно назвать слабой стороной теплоизоляции и чем выше это значение, тем серьезнее потребуются меры для ее нейтрализации. Дело в том, что вода, попадая в структуру материала, снижает эффективность утеплителя. Сравнение гигроскопичности самых распространенных теплоизоляционных материалов в гражданской строительстве:
Сравнение гигроскопичности утеплителей для дома показало высокое влагопоглощение пеноизола, при этом данная теплоизоляция обладает способностью распределять и выводить влагу. Благодаря этому, даже намокнув на 30%, коэффициент теплопроводности не уменьшается. Несмотря на то, что у минеральной ваты процент поглощения влаги низкий, она особенно нуждается в защите. Напитав воды, она удерживает ее, не давая выходить наружу. При этом способность предотвращать теплопотери катастрофически снижается.
Чтобы исключить попадание влаги в минвату используют пароизоляционные пленки и диффузионные мембраны. В основном полимеры устойчивы к длительному воздействию влаги, за исключением обычного пенополистирола, он быстро разрушается. В любом случае вода ни одному теплоизоляционному материалу на пользу не пошла, поэтому крайне важно исключить или минимизировать их контакт.
Разновидности и описание
На выбор потребителей предлагаются материалы с различными механическими свойствами.
От этого во многом зависит удобство монтажа и свойства. По данному показателю различают:
- Пеноблоки
. Изготавливаются из бетона со специальными добавками. В результате химической реакции структура получается пористой. - Плиты.
Строительный материал различной толщины и плотности изготавливается при помощи прессования или склеивания. - Вата.
Продается в рулонах и характеризуется волокнистой структурой. - Гранулы (крошка).
с пеновеществами различной фракции.
Важно знать:
подбор материала осуществляется с учетом свойств, стоимости и предназначения. Применение одинакового утеплителя для стен и чердачного перекрытия не позволит получить желаемый эффект, если не указано, что он предназначен для конкретной поверхности.
Сырьем для утеплителей могут выступать различные вещества. Они все делятся на две категории:
- органические на основе торфа, камыша, древесины;
- неорганические — изготавливаются из вспененного бетона, минералов, асбестосодержащих веществ и др.
Особенности применения
Прежде чем определиться с материалами для отделки частного дома или квартиры, необходимо правильно рассчитать толщину слоя конкретного утеплителя.
- Для горизонтальных поверхностей (пол, потолок) можно использовать практически любой материал. Применение дополнительного слоя с высокой механической прочностью обязательно.
- Цокольные перекрытия рекомендуется утеплять стройматериалами с низкой гигроскопичностью. Повышенная влажность должна быть учтена.
В противном случае утеплитель под воздействием влаги частично или полностью потеряет свойства. - Для вертикальных поверхностей (стены) необходимо использовать материалы плитно-листового типа. Насыпные или рулонные со временем будут проседать, поэтому необходимо тщательно продумать способ крепежа.
Если задумано индивидуальное строительство
При возведении дома важно учитывать технические характеристики всех составляющих (материала для стен, кладочного раствора, будущего утепления, гидроизоляционных и пароотводящих плёнок, финишной отделки).
Для понимания, какие стены наилучшим образом будут сохранять тепло, нужно проанализировать коэффициент теплопроводности не только материала для стен, но и строительного раствора, что видно из таблицы ниже:
Номер п/п | Материал для стен, строительный раствор | Коэффициент теплопроводности по СНиП |
1. | Кирпич | 0,35 – 0,87 |
2. | Саманные блоки | 0,1 – 0,44 |
3. | Бетон | 1,51 – 1,86 |
4. | Пенобетон и газобетон на основе цемента | 0,11 – 0,43 |
5. | Пенобетон и газобетон на основе извести | 0,13 – 0,55 |
6. | Ячеистый бетон | 0,08 – 0,26 |
7. | Керамические блоки | 0,14 – 0,18 |
8. | Строительный раствор цементно-песчаный | 0,58 – 0,93 |
9. | Строительный раствор с добавлением извести | 0,47 – 0,81 |
Важно
. Из приведённых в таблице данных видно, что у каждого строительного материала довольно большой разброс в показателях коэффициента теплопроводности.
Это связано с несколькими причинами:
- Плотность. Все утеплители выпускаются или укладываются (пеноизол, эковата) различной плотности. Чем ниже плотность (больше присутствует воздуха в теплоизоляционной структуре), тем ниже проводимость тепла. И, наоборот, у очень плотных утеплителей этот коэффициент выше.
- Вещество, из которого производят (основа). Например, кирпич бывает силикатным, керамическим, глиняным. От этого зависит и коэффициент теплопроводности.
- Количество пустот. Это касается кирпича (пустотелый и полнотелый) и теплоизоляции. Воздух – самый худший проводник тепла. Коэффициент его теплопроводимости – 0,026. Чем больше пустот, тем ниже этот показатель.
Строительный раствор хорошо проводит тепло, поэтому любые стены рекомендуется утеплять.
Сравнение основных показателей
Чтобы понять, насколько эффективным будет тот или иной утеплитель, необходимо сравнить основные показатели материалов. Это можно сделать, просмотрев таблицу 1.
Материал | Плотность кг/м3 | Теплопроводность | Гигроскопичность | Минимальный слой, см |
Пенополистирол | 30-40 | Очень низкая | Средняя | 10 |
Пластиформ | 50-60 | Низкая | Очень низкая | 2 |
60-70 | Низкая | Средняя | 5 | |
Пенопласт | 35-50 | Очень низкая | Средняя | 10 |
25-32 | низкая | низкая | 20 | |
35-125 | Низкая | Высокая | 10-15 | |
130 | Низкая | высокая | 15 | |
500 | Высокая | Низкая | 20 | |
Ячеистый бетон | 400-800 | Высокая | Высокая | 20-40 |
Пеностекло | 100-600 | Низкая | низкая | 10-15 |
Таблица 1 Сравнение теплоизоляционных свойств материалов
При этом многие отдают предпочтение пластиформу, минеральной вате или ячеистому бетону. Это связанно с индивидуальными предпочтениями, особенностями монтажа и некоторыми физическими свойствами.
Сравнение теплопроводности строительных материалов по толщине
Сравнение утеплителей. Таблица теплопроводности
Сегодня производители теплоизоляционных материалов предлагают застройщикам действительно огромный выбор материалов. При этом каждый уверяет нас, что именно его утеплитель идеально подходит для утепления дома. Из-за такого разнообразия стройматериалов, принять правильное решение в пользу определенного материала действительно довольно сложно. Мы решили в данной статье сравнить утеплители по теплопроводности и другим, не менее важным характеристикам.
Стоит сначала рассказать об основных характеристиках теплоизоляции, на которые необходимо обращать внимание при покупке. Сравнение утеплителей по характеристикам следует делать, держа в уме их назначение. Например, несмотря на то, что экструзия XPS прочнее минваты, но вблизи открытого огня или при высокой температуре эксплуатации, стоит купить огнестойкий утеплитель для своей же безопасности.
Сравнение утеплителей по характеристикам
Теплопроводность. Чем ниже данный показатель у материала, тем меньше потребуется укладывать слой утеплителя, а значит, расходы на закупку материалов сократятся (в том случае если стоимость материалов находится в одном ценовом диапазоне). Чем тоньше слой утеплителя, тем меньше будет «съедаться» пространство.
Влагопроницаемость. Низкая влаго- и паропроницаемость увеличивает срок использования теплоизоляции и снижает отрицательное воздействие влаги на теплопроводность утеплителя при последующей эксплуатации, но при этом увеличивается риск появления конденсата на конструкции при плохой вентиляции.
Пожаробезопасность. Если утеплитель используется в бане или в котельной, то материал не должен поддерживать горение, а наоборот должен выдерживать высокие температуры. Но если вы утепляете ленточный фундамент или отмостку дома, то на первый план выходят характеристики влагостойкости и прочности.
Экономичность и простота монтажа. Утеплитель должен быть доступным по стоимости, иначе утеплять дом будет просто нецелесообразно. Также важно, чтобы утеплить кирпичный фасад дома можно было бы своими силами, не прибегая к помощи специалистов или, используя дорогостоящее оборудование для монтажа.
Экологичность. Все материалы для строительства должны быть безопасными для человека и окружающей природы. Не забудем упомянуть и про хорошую звукоизоляцию, что очень важно для городов, где важно защитить свое жилье от шума с улицы.
Сравнение утеплителей по теплопроводности
Какие характеристики важны при выборе утеплителя? На что обратить внимание и спросить у продавца? Только ли теплопроводность имеет решающее значение при покупке утеплителя, или есть другие параметры, которые стоит учесть? И еще куча подобных вопросов приходит на ум застройщику, когда приходит время выбирать утеплитель. Обратим внимание в обзоре на наиболее популярные виды теплоизоляции.
Пенопласт – самый популярный сегодня утеплитель, благодаря легкости монтажа и низкой стоимости. Изготавливается он методом вспенивания полистирола, имеет низкую теплопроводность, легко режется и удобен при монтаже. Однако материал хрупкий и пожароопасен, при горении пенопласт выделяет вредные, токсичные вещества. Пенополистирол предпочтительно использовать в нежилых помещениях.
Экструзия не подвержена влаге и гниению, это очень прочный и удобный в монтаже утеплитель. Плиты Техноплекса имеют высокую прочность и сопротивление сжатию, не подвергаются разложению. Благодаря своим техническим характеристикам техноплекс используют для утепления отмостки и фундамента зданий. Экструдированный пенополистирол долговечен и прост в применении.
Базальтовая (минеральная) вата
Производится утеплитель из горных пород, путем их плавления и раздува для получения волокнистой структуры. Базальтовая вата Роклайт выдерживает высокие температуры, не горит и не слеживается со временем. Материал экологичен, имеет хорошую звукоизоляцию и теплоизоляцию. Производители рекомендуют использовать минеральную вату для утепления мансарды и других жилых помещений.
При слове стекловата у многих появляется ассоциация с советским материалом, однако современные материалы на основе стекловолокна не вызывают раздражения на коже. Общим недостатком минеральной ваты и стекловолокна является низкая влагостойкость, что требует устройства надежной влаго- и пароизоляции при монтаже утеплителя. Материал не рекомендуется использовать во влажных помещениях.
Этот рулонный утеплитель имеет пористую структуру, различную толщину часто производится с нанесением дополнительного слоя фольги для отражающего эффекта. Изолон и пенофол имеет толщину в 10 раз тоньше традиционных утеплителей, но сохраняет до 97% тепла. Материал не пропускает влагу, имеет низкую теплопроводность благодаря своей пористой структуре и не выделяет вредных веществ.
К напыляемой теплоизоляции относится ППУ (пенополиуретан) и Экотермикс. К главным недостаткам данных утеплителей относится необходимость наличия специального оборудования, для их нанесения. При этом напыляемая теплоизоляция создает на конструкции прочное, сплошное покрытие без мостиков холода, при этом конструкция будет защищена от влаги, так как ППУ влагонепроницаемый материал.
Сравнение утеплителей. Таблица теплопроводности
Полную картину о том, какой следует использовать утеплитель в том или ином случае, дает таблица теплопроводности теплоизоляции. Вам остается только соотнести данные из этой таблицы со стоимостью утеплителя у разных производителей и поставщиков, а также рассмотреть возможность его использования в конкретных условиях (утепление кровли дома, ленточного фундамента, котельной, печной трубы и т.д.).
Сравнение теплопроводности строительных материалов по толщине
В продаже доступно много строительных материалов, использующихся для повышения свойств сооружения сохранять тепло – утеплителей. В конструкции дома он может применяться практически в каждой ее части: от фундамента и до чердака. Далее пойдет речь об основных свойствах материалов, способных обеспечить необходимый уровень теплопроводности объектов различного назначения, а также будет приведено их сравнение, в чем поможет таблица.
Основные характеристики утеплителей
При выборе утеплителей нужно обращать внимание на разные факторы: тип сооружения, наличие воздействия высоких температур, открытого огня, характерный уровень влажности. Только после определения условий использования, а также уровня теплопроводности применяемых материалов для сооружения определенной части конструкции, нужно смотреть на характеристики конкретного утеплителя:
- Теплопроводность. От этого показателя напрямую зависит качество проведенного утеплительного процесса, а также необходимое количество материала для обеспечения желаемого результата. Чем ниже теплопроводность, тем эффективнее использование утеплителя.
- Влагопоглощение. Показатель особо важен при утеплении внешних частей конструкции, на которые может периодически воздействовать влага. К примеру, при утеплении фундамента в грунтах с высокими водами или повышенным уровнем содержания воды в своей структуре.
- Толщина. Применение тонких утеплителей позволяет сохранить внутреннее пространство жилого сооружения, а также напрямую влияет на качество утепления.
- Горючесть. Это свойство материалов особенно важно при использовании для понижения теплопроводной способности наземных частей сооружения жилых домов, а также зданий специального назначения. Качественная продукция отличается способностью к самозатуханию, не выделяет при воспламенении ядовитых веществ.
- Термоустойчивость. Материал должен выдерживать критические температуры. К примеру, низкие температуры при наружном использовании.
- Экологичность. Нужно прибегать к использованию материалов безопасных для человека. Требования к этому фактору может изменяться в зависимости от будущего назначения сооружения.
- Звукоизоляция. Это дополнительное свойство утеплителей в некоторых ситуациях позволяет добиться хорошего уровня защиты помещения от шума, а также посторонних звуков.
Когда используется при сооружении определенной части конструкции материал с низкой теплопроводностью, то можно покупать самый дешевый утеплитель (если это позволят предварительные расчеты).
Важность конкретной характеристики напрямую зависит от условий использования и выделенного бюджета.
Сравнение популярных утеплителей
Давайте рассмотрим несколько материалов, применяемых для повышения энергоэффективности сооружений:
- Минеральная вата. Производится из естественных материалов. Устойчива к огню и отличается экологичностью, а также низкой теплопроводностью. Но невозможность противостоять воздействию воды сокращает возможности использования.
- Пенопласт. Легкий материал с отличными утеплительными свойствами. Доступный, легко устанавливается и влагоустойчив. Недостатки: хорошая воспламеняемость и выделение вредных веществ при горении. Рекомендуется его использовать в нежилых помещениях.
- Бальзовая вата. Материал практически идентичный минвате, только отличается улучшенными показателями устойчивости к влаге. При изготовлении его не уплотняют, что значительно продлевает срок службы.
- Пеноплэкс. Утеплитель хорошо противостоит влаге, высоким температурам, огню, гниению, разложению. Отличается отличными показателями теплопроводности, прост в монтаже и долговечен. Можно использовать в местах с максимальными требованиями способности материала противостоять различным воздействиям.
- Пенофол. Многослойный утеплитель естественного происхождения. Состоит из полиэтилена, предварительно вспененного перед производством. Может иметь различные показатели пористости и ширины. Часто поверхность покрыта фольгой, благодаря чему достигается отражающие эффект. Отличается легкостью, простотой монтажа, высокой энергоэффективностью, влагостойкостью, небольшим весом.
Коэффициент теплопроводности размерность
Выбирая материал для использования в непосредственной близости с человеком, необходимо особое внимание уделять его характеристикам экологичности и пожаробезопасности. Также в некоторых ситуациях рационально покупать более дорой утеплитель, который будет обладать дополнительными свойствами влагозащиты или звукоизоляции, что в окончательном счете позволяет сэкономить.
Сравнение с помощью таблицы
Показатель теплопроводных свойств является основным критерием при выборе утеплительного материала. Остается только сравнить ценовые политики разных поставщиков и определить необходимое количество.
Утеплитель – один из основных способов получить сооружение с необходимой энергоэффективностью. Перед его окончательным выбором точно определите условия использования и, вооружившись приведенной таблицей, совершите правильный выбор.
Необходимость использования Систем теплоизоляции WDVS вызвана высокой экономической эффективностью.
Вслед за странами Европы, в Российской Федерации приняли новые нормы теплосопротивления ограждающих и несущих конструкций, направленные на снижение эксплуатационных расходов и энергосбережение. С выходом СНиП II-3-79*, СНиП 23-02-2003 «Тепловая защита зданий» прежние нормы теплосопротивления устарели. Новыми нормами предусмотрено резкое возрастание требуемого сопротивления теплопередаче ограждающих конструкций. Теперь прежде использовавшиеся подходы в строительстве не соответствуют новым нормативным документам, необходимо менять принципы проектирования и строительства, внедрять современные технологии.
Как показали расчёты, однослойные конструкции экономически не отвечают принятым новым нормам строительной теплотехники. К примеру, в случае использования высокой несущей способности железобетона или кирпичной кладки, для того, чтобы этим же материалом выдержать нормы теплосопротивления, толщину стен необходимо увеличить соответственно до 6 и 2,3 метров, что противоречит здравому смыслу. Если же использовать материалы с лучшими показателями по теплосопротивлению, то их несущая способность сильно ограничена, к примеру, как у газобетона и керамзитобетона, а пенополистирол и минвата, эффективные утеплители, вообще не являются конструкционными материалами. На данный момент нет абсолютного строительного материала, у которого бы была высокая несущая способность в сочетании с высоким коэффициентом теплосопротивления.
Чтобы отвечать всем нормам строительства и энергосбережения необходимо здание строить по принципу многослойных конструкций, где одна часть будет выполнять несущую функцию, вторая – тепловую защиту здания. В таком случае толщина стен остаётся разумной, соблюдается нормированное теплосопротивление стен. Системы WDVS по своим теплотехническим показателям являются самыми оптимальными из всех представленных на рынке фасадных систем.
Таблица необходимой толщины утеплителя для выполнения требований действующих норм по теплосопротивлению в некоторых городах РФ:
Таблица, где: 1 – географическая точка 2 – средняя температура отопительного периода 3 – продолжительность отопительного периода в сутках 4 – градусо-сутки отопительного периода Dd, °С * сут 5 – нормируемое значение сопротивления теплопередаче Rreq, м2*°С/Вт стен 6 – требуемая толщина утеплителя
Условия выполнения расчётов для таблицы:
1. Расчёт основывается на требованиях СНиП 23-02-2003
2. За пример расчёта взята группа зданий 1 – Жилые, лечебно-профилактические и детские учреждения, школы, интернаты, гостиницы и общежития.
3. За несущую стену в таблице принимается кирпичная кладка толщиной 510 мм из глиняного обыкновенного кирпича на цементно-песчаном растворе l = 0,76 Вт/(м * °С)
4. Коэффициент теплопроводности берётся для зон А.
5. Расчётная температура внутреннего воздуха помещения + 21 °С «жилая комната в холодный период года» (ГОСТ 30494-96)
6. Rreq рассчитано по формуле Rreq=aDd+b для данного географического места
7. Расчёт: Формула расчёта общего сопротивления теплопередаче многослойных ограждений:
R0= Rв + Rв.п + Rн.к + Rо.к + Rн Rв – сопротивление теплообмену у внутренней поверхности конструкции
Rн – сопротивление теплообмену у наружной поверхности конструкции
Rв.п – сопротивление теплопроводности воздушной прослойки (20 мм)
Rн.к – сопротивление теплопроводности несущей конструкции
Rо.к – сопротивление теплопроводности ограждающей конструкции
R = d/l d – толщина однородного материала в м,
l – коэффициент теплопроводности материала, Вт/(м * °С)
R0 = 0,115 + 0,02/7,3 + 0,51/0,76 + dу/l + 0,043 = 0,832 + dу/l
dу – толщина теплоизоляции
R0 = Rreq
Формула расчёта толщины утеплителя для данных условий:
dу = l * ( Rreq – 0,832 )
а) – за среднюю толщину воздушной прослойки между стеной и теплоизоляцией принято 20 мм
б) – коэффициент теплопроводности пенополистирола ПСБ-С-25Ф l = 0,039 Вт/(м * °С) (на основании протокола испытаний)
в) – коэффициент теплопроводности фасадной минваты l = 0,041 Вт/(м * °С) (на основании протокола испытаний)
* в таблице даны усреднённые показатели необходимой толщины этих двух типов утеплителя.
Примерный расчёт толщины стен из однородного материала для выполнения требований СНиП 23-02-2003 «Тепловая защита зданий».
* для сравнительного анализа используются данные климатической зоны г. Москвы и Московской области.
Условия выполнения расчётов для таблицы:
1. Нормируемое значение сопротивления теплопередаче Rreq = 3,14
2. Толщина однородного материала d= Rreq * l
Таким образом, из таблицы видно, что для того, чтобы построить здание из однородного материала, отвечающее современным требованиям теплосопротивления, к примеру, из традиционной кирпичной кладки, даже из дырчатого кирпича, толщина стен должна быть не менее 1,53 метра.
Чтобы наглядно показать, какой толщины необходим материал для выполнения требований по теплосопротивлению стен из однородного материала, выполнен расчёт, учитывающий конструктивные особенности применения материалов, получились следующие результаты:
В данной таблице указаны расчётные данные по теплопроводности материалов.
По данным таблицы для наглядности получается следующая диаграмма:
Автор: Геннaдий Eмeльянoв
Время чтения: 6 минут Нет времени?
Отправим материал вам на e-mail
Любые строительные работы начинаются с создания проекта. При этом планируется как расположение комнат в здании, так и рассчитываются главные теплотехнические показатели. От данных значений зависит, насколько будущая постройка будет теплой, долговечной и экономичной. Позволит определить теплопроводность строительных материалов – таблица, в которой отображены основные коэффициенты. Правильные расчеты являются гарантией удачного строительства и создания благоприятного микроклимата в помещении.
Чтобы дом был теплым без утеплителя потребуется определенная толщина стен, которая отличается в зависимости от вида материала
Теплопроводность: понятие и теория
Теплопроводность представляет собой процесс перемещения тепловой энергии от прогретых частей к холодным. Обменные процессы происходят до полного равновесия температурного значения.
Комфортный микроклимат в доме зависит от качественной теплоизоляции всех поверхностей
Процесс теплопередачи характеризуется промежутком времени, в течение которого выравниваются температурные значения. Чем больше времени проходит, тем ниже теплопроводность строительных материалов, свойства которых отображает таблица. Для определения данного показателя применяется такое понятие как коэффициент теплопроводности. Он определяет, какое количество тепловой энергии проходит через единицу площади определенной поверхности. Чем данный показатель больше, тем с большей скоростью будет остывать здание. Таблица теплопроводности нужна при проектировании защиты постройки от теплопотерь. При этом можно снизить эксплуатационный бюджет.
Потери тепла на разных участках постройки будут отличаться
Полезный совет! При постройке домов стоит использовать сырье с минимальной проводимостью тепла.
От чего зависит величина теплопроводности?
От множества факторов зависит значение теплопроводности строительных материалов. Таблица коэффициентов, представленная в нашем обзоре, это наглядно показывает.
Наглядный пример демонстрирует свойство теплопроводности
На данный показатель оказывают влияние следующие параметры:
- более высокая плотность способствует прочному взаимодействию частиц друг с другом. При этом уравновешивание температур производится более быстро. Чем плотнее материал, тем лучше пропускается тепло;
- пористость сырья свидетельствует о его неоднородности. При перемещении тепловой энергии через подобную структуру охлаждение будет небольшим. Внутри гранул находится только воздух, который обладает минимальным количеством коэффициента. Если поры маленькие, то при этом затрудняется передача тепла. Но повышается значение теплопроводность;
- при повышенной влажности и промокании стен здания показатель прохождения тепла будет выше.
Чем ниже показатель теплопроводности строительного сырья, тем уютнее и теплее в помещении
Использование значений теплопроводности на практике
Материалы, используемые в строительстве, могут быть конструкционными и теплоизолирующими.
Существует огромное количество материалов с теплоизолирующими свойствами
Самое большое значение теплопроводности у конструкционных материалов, которые используются при возведении перекрытий, стен и потолков. Если не использовать сырье с теплоизолирующими свойствами, то для сохранения тепла потребуется монтаж толстого слоя утеплителя для возведения стен.
Часто для утепления строений используются более простые материалы
Поэтому при возведении постройки стоит использовать дополнительные материалы. При этом значение имеет теплопроводность строительных материалов, таблица показывает все значения.
В некоторых случаях более эффективным считается утепление снаружи
Полезная информация! Для построек из древесины и пенобетона не обязательно использовать дополнительное утепление. Даже применяя низкопроводной материал, толщина сооружения не должна быть менее 50 см.
Особенности теплопроводности готового строения
Планируя проект будущего дома, нужно обязательно учесть возможные потери тепловой энергии. Большая часть тепла уходит через двери, окна, стены, крышу и полы.
В многоквартирных домах потери тепла будут отличаться по сравнению с частным строением
Если не выполнять расчеты по теплосбережению дома, то в помещении будет прохладно. Рекомендуется постройки из кирпича, бетона и камня дополнительно утеплять.
Утепление построек из бетона или камня повышает комфортные условия внутри здания
Полезный совет! Перед тем как утеплять жилище, необходимо продумать качественную гидроизоляцию. При этом даже повышенная влажность не повлияет на особенности теплоизоляции в помещении.
Разновидности утепления конструкций
Теплое здание получится при оптимальном сочетании конструкции из прочных материалов и качественного теплоизолирующего слоя. К подобным сооружениям можно отнести следующие:
- при возведении каркасной постройки, используемая древесина обеспечивает жесткость здания. Утеплитель прокладывается между стойками. В некоторых случаях применяется утепление снаружи здания;
Монтажные работы по утеплению каркасного сооружения требуют использования дополнительных конструктивных элементов
- здание из стандартных материалов: шлакоблоков или кирпича. При этом утепление часто проводится по наружной стороне.
Особенности монтажа теплоизолирующего материала с внутренней стороны
Как определить коэффициенты теплопроводности строительных материалов: таблица
Помогает определить коэффициент теплопроводности строительных материалов – таблица. В ней собраны все значения самых распространенных материалов. Используя подобные данные, можно рассчитать толщину стен и используемый утеплитель. Таблица значений теплопроводности:
Необходимые коэффициенты для самых различных материалов
Чтобы определить величину теплопроводности используются специальные ГОСТы. Значение данного показателя отличается в зависимости от вида бетона. Если материал имеет показатель 1,75, то пористый состав обладает значением 1,4. Если раствор выполнен с применением каменного щебня, то его значение 1,3.
Технические характеристики утеплителей для бетонных полов
О значении теплопроводности можно судить по сравнительным характеристикам
Полезные рекомендации
Потери через потолочные конструкции значительны для проживающих на последних этажах. К слабым участкам относится пространство между перекрытиями и стеной. Подобные участки считаются мостиками холода. Если над квартирой присутствует технический этаж, то при этом потери тепловой энергии меньше.
Выполняя утепление потолка на веранде или террасе, можно использовать более легкие стройматериалы
Утепление потолочного перекрытия на верхнем этаже производится снаружи. Также потолок можно утеплить внутри квартиры. Для этого применяется пенополистирол или теплоизоляционные плиты.
При утеплении потолка, стоит подобрать материал для пароизоляции и для гидроизоляции
Прежде чем утеплять любые поверхности, стоит узнать теплопроводность строительных материалов, таблица СНиПа поможет в этом. Утеплять напольное покрытие не так сложно как другие поверхности. В качестве утепляющих материалов применяются такие материалы как керамзит, стекловата ил пенополистирол.
Создание теплого пола требует особых знаний. Важно учитывать высоту и толщину материалов
Чтобы качественно утеплить квартиру на последних этажах, можно полноценно использовать возможности центрального отопления. При этом важно повысить отдачу тепло от радиаторов. Для этого стоит воспользоваться следующими советами:
- если какая-то часть батарей холодная, то требуется спустить воздух. При этом открывается специальный клапан;
- чтобы тепло проникало внутрь дома, на не обогревало стены, рекомендуется установить защитный экран с покрытием из фольги;
- для свободной циркуляции подогретого воздуха не стоит радиаторы загромождать мебелью или шторами;
- если снять декоративный экран, то теплоотдача увеличиться на 25 %.
Выбор качественных радиаторов позволяет лучше сберечь тепло в помещении
Тепловые потери через входные двери могут составлять до 10 %. При этом значительное количество тепла тратится на воздушные массы, которые поступают снаружи. Для устранения сквозняков надо переустановить изношенные уплотнители и щели, которые могут появиться между стеной и коробом. В данном случае дверное полотно можно обить, а щели заполнить с помощью монтажной пены.
Выбор утеплителя зависит от материала самой двери
Одним из основных источников теплопотерь являются окна. Если рамы старые, то появляются сквозняки. Через оконные проемы теряется около 35% тепловой энергии. Для качественного утепления применяются двухкамерные стеклопакеты. К другим способам относится утепление щелей монтажной пеной, оклейка мест стыков с рамой специальным уплотнителем и нанесение силиконового герметика. Правильное и комплексное утепление является гарантией комфортного и теплого дома, в котором не появиться плесень, сквозняки и холодный пол.
Экономьте время: отборные статьи каждую неделю по почте
Сравнительная таблица по теплопроводности строительных материалов. Сравнение теплопроводности строительных материалов по толщине. Коэффициент теплопроводности воздушной прослойки
Последние годы при строительстве дома или его ремонте большое внимание уделяется энергоэффективности. При уже существующих ценах на топливо это очень актуально. Причем похоже что дальше экономия будет приобретать все большую важность. Чтобы правильно подобрать состав и толщин материалов в пироге ограждающих конструкций (стены, пол, потолок, кровля) необходимо знать теплопроводность строительных материалов. Эта характеристика указывается на упаковках с материалами, а необходима она еще на стадии проектирования. Ведь надо решить из какого материала строить стены, чем их утеплять, какой толщины должен быть каждый слой.
Что такое теплопроводность и термическое сопротивление
При выборе строительных материалов для строительства необходимо обращать внимание на характеристики материалов. Одна из ключевых позиций — теплопроводность. Она отображается коэффициентом теплопроводности. Это количество тепла, которое может провести тот или иной материал за единицу времени. То есть, чем меньше этот коэффициент, тем хуже материал проводит тепло. И наоборот, чем выше цифра, тем тепло отводится лучше.
Материалы с низкой теплопроводностью используются для утепления, с высокой — для переноса или отвода тепла. Например, радиаторы делают из алюминия, меди или стали, так как они хорошо передают тепло, то есть имеют высокий коэффициент теплопроводности. Для утепления используются материалы с низким коэффициентом теплопроводности — они лучше сохраняют тепло. В случае если объект состоит из нескольких слоев материала, его теплопроводность определяется как сумма коэффициентов всех материалов. При расчетах, рассчитывается теплопроводность каждой из составляющих «пирога», найденные величины суммируются. В общем получаем теплоизоляцонную способность ограждающей конструкции (стен, пола, потолка).
Есть еще такое понятие как тепловое сопротивление. Оно отображает способность материала препятствовать прохождению по нему тепла. То есть, это обратная величина по отношению к теплопроводности. И, если вы видите материал с высоким тепловым сопротивлением, его можно использовать для теплоизоляции. Примером теплоизоляционных материалов может случить популярная минеральная или базальтовая вата, пенопласт и т.д. Материалы с низким тепловых сопротивлением нужны для отведения или переноса тепла. Например, алюминиевые или стальные радиаторы используют для отопления, так как они хорошо отдают тепло.
Таблица теплопроводности теплоизоляционных материалов
Чтобы в доме было проще сохранять тепло зимой и прохладу летом, теплопроводность стен, пола и кровли должна быть не менее определенной цифры, которая рассчитывается для каждого региона. Состав «пирога» стен, пола и потолка, толщина материалов берутся с таким учетом чтобы суммарная цифра была не меньше (а лучше — хоть немного больше) рекомендованной для вашего региона.
При выборе материалов надо учесть, что некоторые из них (не все) в условиях повышенной влажности проводят тепло гораздо лучше. Если при эксплуатации возможно возникновение такой ситуации на продолжительный срок, в расчетах используют теплопроводность для этого состояния. Коэффициенты теплопроводности основных материалов, которые используются для утепления, приведены в таблице.
Наименование материала | Коэффициент теплопроводности Вт/(м·°C) | ||
---|---|---|---|
В сухом состоянии | При нормальной влажности | При повышенной влажности | |
Войлок шерстяной | 0,036-0,041 | 0,038-0,044 | 0,044-0,050 |
Каменная минеральная вата 25-50 кг/м3 | 0,036 | 0,042 | 0,045 |
Каменная минеральная вата 40-60 кг/м3 | 0,035 | 0,041 | 0,044 |
Каменная минеральная вата 80-125 кг/м3 | 0,036 | 0,042 | 0,045 |
Каменная минеральная вата 140-175 кг/м3 | 0,037 | 0,043 | 0,0456 |
Каменная минеральная вата 180 кг/м3 | 0,038 | 0,045 | 0,048 |
Стекловата 15 кг/м3 | 0,046 | 0,049 | 0,055 |
Стекловата 17 кг/м3 | 0,044 | 0,047 | 0,053 |
Стекловата 20 кг/м3 | 0,04 | 0,043 | 0,048 |
Стекловата 30 кг/м3 | 0,04 | 0,042 | 0,046 |
Стекловата 35 кг/м3 | 0,039 | 0,041 | 0,046 |
Стекловата 45 кг/м3 | 0,039 | 0,041 | 0,045 |
Стекловата 60 кг/м3 | 0,038 | 0,040 | 0,045 |
Стекловата 75 кг/м3 | 0,04 | 0,042 | 0,047 |
Стекловата 85 кг/м3 | 0,044 | 0,046 | 0,050 |
Пенополистирол (пенопласт, ППС) | 0,036-0,041 | 0,038-0,044 | 0,044-0,050 |
Экструдированный пенополистирол (ЭППС, XPS) | 0,029 | 0,030 | 0,031 |
Пенобетон, газобетон на цементном растворе, 600 кг/м3 | 0,14 | 0,22 | 0,26 |
Пенобетон, газобетон на цементном растворе, 400 кг/м3 | 0,11 | 0,14 | 0,15 |
Пенобетон, газобетон на известковом растворе, 600 кг/м3 | 0,15 | 0,28 | 0,34 |
Пенобетон, газобетон на известковом растворе, 400 кг/м3 | 0,13 | 0,22 | 0,28 |
Пеностекло, крошка, 100 — 150 кг/м3 | 0,043-0,06 | ||
Пеностекло, крошка, 151 — 200 кг/м3 | 0,06-0,063 | ||
Пеностекло, крошка, 201 — 250 кг/м3 | 0,066-0,073 | ||
Пеностекло, крошка, 251 — 400 кг/м3 | 0,085-0,1 | ||
Пеноблок 100 — 120 кг/м3 | 0,043-0,045 | ||
Пеноблок 121- 170 кг/м3 | 0,05-0,062 | ||
Пеноблок 171 — 220 кг/м3 | 0,057-0,063 | ||
Пеноблок 221 — 270 кг/м3 | 0,073 | ||
Эковата | 0,037-0,042 | ||
Пенополиуретан (ППУ) 40 кг/м3 | 0,029 | 0,031 | 0,05 |
Пенополиуретан (ППУ) 60 кг/м3 | 0,035 | 0,036 | 0,041 |
Пенополиуретан (ППУ) 80 кг/м3 | 0,041 | 0,042 | 0,04 |
Пенополиэтилен сшитый | 0,031-0,038 | ||
Вакуум | 0 | ||
Воздух +27°C. 1 атм | 0,026 | ||
Ксенон | 0,0057 | ||
Аргон | 0,0177 | ||
Аэрогель (Aspen aerogels) | 0,014-0,021 | ||
Шлаковата | 0,05 | ||
Вермикулит | 0,064-0,074 | ||
Вспененный каучук | 0,033 | ||
Пробка листы 220 кг/м3 | 0,035 | ||
Пробка листы 260 кг/м3 | 0,05 | ||
Базальтовые маты, холсты | 0,03-0,04 | ||
Пакля | 0,05 | ||
Перлит, 200 кг/м3 | 0,05 | ||
Перлит вспученный, 100 кг/м3 | 0,06 | ||
Плиты льняные изоляционные, 250 кг/м3 | 0,054 | ||
Полистиролбетон, 150-500 кг/м3 | 0,052-0,145 | ||
Пробка гранулированная, 45 кг/м3 | 0,038 | ||
Пробка минеральная на битумной основе, 270-350 кг/м3 | 0,076-0,096 | ||
Пробковое покрытие для пола, 540 кг/м3 | 0,078 | ||
Пробка техническая, 50 кг/м3 | 0,037 |
Часть информации взята нормативов, которые прописывают характеристики определенных материалов (СНиП 23-02-2003, СП 50.13330.2012, СНиП II-3-79* (приложение 2)). Те материал, которые не прописаны в стандартах, найдены на сайтах производителей. Так как стандартов нет, у разных производителей они могут значительно отличаться, потому при покупке обращайте внимание на характеристики каждого покупаемого материала.
Таблица теплопроводности строительных материалов
Стены, перекрытия, пол, делать можно из разных материалов, но так повелось, что теплопроводность строительных материалов обычно сравнивают с кирпичной кладкой. Этот материал знаю все, с ним проще проводить ассоциации. Наиболее популярны диаграммы, на которых наглядно продемонстрирована разница между различными материалами. Одна такая картинка есть в предыдущем пункте, вторая — сравнение кирпичной стены и стены из бревен — приведена ниже. Именно потому для стен из кирпича и другого материала с высокой теплопроводностью выбирают теплоизоляционные материалы. Чтобы было проще подбирать, теплопроводность основных строительных материалов сведена в таблицу.
Название материала, плотность | Коэффициент теплопроводности | ||
---|---|---|---|
в сухом состоянии | при нормальной влажности | при повышенной влажности | |
ЦПР (цементно-песчаный раствор) | 0,58 | 0,76 | 0,93 |
Известково-песчаный раствор | 0,47 | 0,7 | 0,81 |
Гипсовая штукатурка | 0,25 | ||
Пенобетон, газобетон на цементе, 600 кг/м3 | 0,14 | 0,22 | 0,26 |
Пенобетон, газобетон на цементе, 800 кг/м3 | 0,21 | 0,33 | 0,37 |
Пенобетон, газобетон на цементе, 1000 кг/м3 | 0,29 | 0,38 | 0,43 |
Пенобетон, газобетон на извести, 600 кг/м3 | 0,15 | 0,28 | 0,34 |
Пенобетон, газобетон на извести, 800 кг/м3 | 0,23 | 0,39 | 0,45 |
Пенобетон, газобетон на извести, 1000 кг/м3 | 0,31 | 0,48 | 0,55 |
Оконное стекло | 0,76 | ||
Арболит | 0,07-0,17 | ||
Бетон с природным щебнем, 2400 кг/м3 | 1,51 | ||
Легкий бетон с природной пемзой, 500-1200 кг/м3 | 0,15-0,44 | ||
Бетон на гранулированных шлаках, 1200-1800 кг/м3 | 0,35-0,58 | ||
Бетон на котельном шлаке, 1400 кг/м3 | 0,56 | ||
Бетон на каменном щебне, 2200-2500 кг/м3 | 0,9-1,5 | ||
Бетон на топливном шлаке, 1000-1800 кг/м3 | 0,3-0,7 | ||
Керамическийй блок поризованный | 0,2 | ||
Вермикулитобетон, 300-800 кг/м3 | 0,08-0,21 | ||
Керамзитобетон, 500 кг/м3 | 0,14 | ||
Керамзитобетон, 600 кг/м3 | 0,16 | ||
Керамзитобетон, 800 кг/м3 | 0,21 | ||
Керамзитобетон, 1000 кг/м3 | 0,27 | ||
Керамзитобетон, 1200 кг/м3 | 0,36 | ||
Керамзитобетон, 1400 кг/м3 | 0,47 | ||
Керамзитобетон, 1600 кг/м3 | 0,58 | ||
Керамзитобетон, 1800 кг/м3 | 0,66 | ||
ладка из керамического полнотелого кирпича на ЦПР | 0,56 | 0,7 | 0,81 |
Кладка из пустотелого керамического кирпича на ЦПР, 1000 кг/м3) | 0,35 | 0,47 | 0,52 |
Кладка из пустотелого керамического кирпича на ЦПР, 1300 кг/м3) | 0,41 | 0,52 | 0,58 |
Кладка из пустотелого керамического кирпича на ЦПР, 1400 кг/м3) | 0,47 | 0,58 | 0,64 |
Кладка из полнотелого силикатного кирпича на ЦПР, 1000 кг/м3) | 0,7 | 0,76 | 0,87 |
Кладка из пустотелого силикатного кирпича на ЦПР, 11 пустот | 0,64 | 0,7 | 0,81 |
Кладка из пустотелого силикатного кирпича на ЦПР, 14 пустот | 0,52 | 0,64 | 0,76 |
Известняк 1400 кг/м3 | 0,49 | 0,56 | 0,58 |
Известняк 1+600 кг/м3 | 0,58 | 0,73 | 0,81 |
Известняк 1800 кг/м3 | 0,7 | 0,93 | 1,05 |
Известняк 2000 кг/м3 | 0,93 | 1,16 | 1,28 |
Песок строительный, 1600 кг/м3 | 0,35 | ||
Гранит | 3,49 | ||
Мрамор | 2,91 | ||
Керамзит, гравий, 250 кг/м3 | 0,1 | 0,11 | 0,12 |
Керамзит, гравий, 300 кг/м3 | 0,108 | 0,12 | 0,13 |
Керамзит, гравий, 350 кг/м3 | 0,115-0,12 | 0,125 | 0,14 |
Керамзит, гравий, 400 кг/м3 | 0,12 | 0,13 | 0,145 |
Керамзит, гравий, 450 кг/м3 | 0,13 | 0,14 | 0,155 |
Керамзит, гравий, 500 кг/м3 | 0,14 | 0,15 | 0,165 |
Керамзит, гравий, 600 кг/м3 | 0,14 | 0,17 | 0,19 |
Керамзит, гравий, 800 кг/м3 | 0,18 | ||
Гипсовые плиты, 1100 кг/м3 | 0,35 | 0,50 | 0,56 |
Гипсовые плиты, 1350 кг/м3 | 0,23 | 0,35 | 0,41 |
Глина, 1600-2900 кг/м3 | 0,7-0,9 | ||
Глина огнеупорная, 1800 кг/м3 | 1,4 | ||
Керамзит, 200-800 кг/м3 | 0,1-0,18 | ||
Керамзитобетон на кварцевом песке с поризацией, 800-1200 кг/м3 | 0,23-0,41 | ||
Керамзитобетон, 500-1800 кг/м3 | 0,16-0,66 | ||
Керамзитобетон на перлитовом песке, 800-1000 кг/м3 | 0,22-0,28 | ||
Кирпич клинкерный, 1800 — 2000 кг/м3 | 0,8-0,16 | ||
Кирпич облицовочный керамический, 1800 кг/м3 | 0,93 | ||
Бутовая кладка средней плотности, 2000 кг/м3 | 1,35 | ||
Листы гипсокартона, 800 кг/м3 | 0,15 | 0,19 | 0,21 |
Листы гипсокартона, 1050 кг/м3 | 0,15 | 0,34 | 0,36 |
Фанера клеенная | 0,12 | 0,15 | 0,18 |
ДВП, ДСП, 200 кг/м3 | 0,06 | 0,07 | 0,08 |
ДВП, ДСП, 400 кг/м3 | 0,08 | 0,11 | 0,13 |
ДВП, ДСП, 600 кг/м3 | 0,11 | 0,13 | 0,16 |
ДВП, ДСП, 800 кг/м3 | 0,13 | 0,19 | 0,23 |
ДВП, ДСП, 1000 кг/м3 | 0,15 | 0,23 | 0,29 |
Линолеум ПВХ на теплоизолирующей основе, 1600 кг/м3 | 0,33 | ||
Линолеум ПВХ на теплоизолирующей основе, 1800 кг/м3 | 0,38 | ||
Линолеум ПВХ на тканевой основе, 1400 кг/м3 | 0,2 | 0,29 | 0,29 |
Линолеум ПВХ на тканевой основе, 1600 кг/м3 | 0,29 | 0,35 | 0,35 |
Линолеум ПВХ на тканевой основе, 1800 кг/м3 | 0,35 | ||
Листы асбоцементные плоские, 1600-1800 кг/м3 | 0,23-0,35 | ||
Ковровое покрытие, 630 кг/м3 | 0,2 | ||
Поликарбонат (листы), 1200 кг/м3 | 0,16 | ||
Полистиролбетон, 200-500 кг/м3 | 0,075-0,085 | ||
Ракушечник, 1000-1800 кг/м3 | 0,27-0,63 | ||
Стеклопластик, 1800 кг/м3 | 0,23 | ||
Черепица бетонная, 2100 кг/м3 | 1,1 | ||
Черепица керамическая, 1900 кг/м3 | 0,85 | ||
Черепица ПВХ, 2000 кг/м3 | 0,85 | ||
Известковая штукатурка, 1600 кг/м3 | 0,7 | ||
Штукатурка цементно-песчаная, 1800 кг/м3 | 1,2 |
Древесина — один из строительных материалов с относительно невысокой теплопроводностью. В таблице даны ориентировочные данные по разным породам. При покупке обязательно смотрите плотность и коэффициент теплопроводности. Далеко не у всех они такие, как прописаны в нормативных документах.
Наименование | Коэффициент теплопроводности | ||
---|---|---|---|
В сухом состоянии | При нормальной влажности | При повышенной влажности | |
Сосна, ель поперек волокон | 0,09 | 0,14 | 0,18 |
Сосна, ель вдоль волокон | 0,18 | 0,29 | 0,35 |
Дуб вдоль волокон | 0,23 | 0,35 | 0,41 |
Дуб поперек волокон | 0,10 | 0,18 | 0,23 |
Пробковое дерево | 0,035 | ||
Береза | 0,15 | ||
Кедр | 0,095 | ||
Каучук натуральный | 0,18 | ||
Клен | 0,19 | ||
Липа (15% влажности) | 0,15 | ||
Лиственница | 0,13 | ||
Опилки | 0,07-0,093 | ||
Пакля | 0,05 | ||
Паркет дубовый | 0,42 | ||
Паркет штучный | 0,23 | ||
Паркет щитовой | 0,17 | ||
Пихта | 0,1-0,26 | ||
Тополь | 0,17 |
Металлы очень хорошо проводят тепло. Именно они часто являются мостиком холода в конструкции. И это тоже надо учитывать, исключать прямой контакт используя теплоизолирующие прослойки и прокладки, которые называются термическим разрывом. Теплопроводность металлов сведена в другую таблицу.
Название | Коэффициент теплопроводности | Название | Коэффициент теплопроводности | |
---|---|---|---|---|
Бронза | 22-105 | Алюминий | 202-236 | |
Медь | 282-390 | Латунь | 97-111 | |
Серебро | 429 | Железо | 92 | |
Олово | 67 | Сталь | 47 | |
Золото | 318 |
Как рассчитать толщину стен
Для того чтобы зимой в доме было тепло, а летом прохладно, необходимо чтобы ограждающие конструкции (стены, пол, потолок/кровля) должны иметь определенное тепловое сопротивление. Для каждого региона эта величина своя. Зависит она от средних температур и влажности в конкретной области.
Термическое сопротивление ограждающих
конструкций для регионов России
Для того чтобы счета за отопление не были слишком большими, подбирать строительные материалы и их толщину надо так, чтобы их суммарное тепловое сопротивление было не меньше указанного в таблице.
Расчет толщины стены, толщины утеплителя, отделочных слоев
Для современного строительства характерна ситуация, когда стена имеет несколько слоев. Кроме несущей конструкции есть утепление, отделочные материалы. Каждый из слоев имеет свою толщину. Как определить толщину утеплителя? Расчет несложен. Исходят из формулы:
R — термическое сопротивление;
p — толщина слоя в метрах;
k — коэффициент теплопроводности.
Предварительно надо определиться с материалами, которые вы будете использовать при строительстве. Причем, надо знать точно, какого вида будет материал стен, утепление, отделка и т.д. Ведь каждый из них вносит свою лепту в теплоизоляцию, и теплопроводность строительных материалов учитывается в расчете.
Сначала считается термическое сопротивление конструкционного материала (из которого будет строится стена, перекрытие и т.д.), затем «по остаточному» принципу подбирается толщина выбранного утеплителя. Можно еще принять в расчет теплоизоляционных характеристики отделочных материалов, но обычно они идут «плюсом» к основным. Так закладывается определенный запас «на всякий случай». Этот запас позволяет экономить на отоплении, что впоследствии положительно сказывается на бюджете.
Пример расчета толщины утеплителя
Разберем на примере. Собираемся строить стену из кирпича — в полтора кирпича, утеплять будем минеральной ватой. По таблице тепловое сопротивление стен для региона должно быть не меньше 3,5. Расчет для этой ситуации приведен ниже.
Если бюджет ограничен, минеральной ваты можно взять 10 см, а недостающее покроется отделочными материалами. Они ведь будут изнутри и снаружи. Но, если хотите, чтобы счета за отопление были минимальными, лучше отделку пускать «плюсом» к расчетной величине. Это ваш запас на время самых низких температур, так как нормы теплового сопротивления для ограждающих конструкций считаются по средней температуре за несколько лет, а зимы бывают аномально холодными. Потому теплопроводность строительных материалов, используемых для отделки просто не принимают во внимание.
Процесс передачи энергии от более нагретой части тела к менее нагретой называется теплопроводностью. Числовое значение такого процесса отражает коэффициент теплопроводности материала. Это понятие является очень важным при строительстве и ремонте зданий. Правильно подобранные материалы позволяют создать в помещении благоприятный микроклимат и сэкономить на отоплении существенную сумму.
Понятие теплопроводности
Теплопроводность — процесс обмена тепловой энергией, который происходит за счет столкновения мельчайших частиц тела. Причем этот процесс не прекратится, пока не наступит момент равновесия температур. На это уходит определенный промежуток времени. Чем больше времени затрачивается на тепловой обмен, тем ниже показатель теплопроводности.
Данный показатель выражают как коэффициент теплопроводности материалов. Таблица содержит уже измеренные значения для большинства материалов. Расчет производится по количеству тепловой энергии, прошедшей сквозь заданную площадь поверхности материала. Чем больше вычисленное значение, тем быстрее объект отдаст все свое тепло.
Факторы, влияющие на теплопроводность
Коэффициент теплопроводности материала зависит от нескольких факторов:
- При повышении данного показателя взаимодействие частиц материала становится прочнее. Соответственно, они будут передавать температуру быстрее. А это значит, что с повышением плотности материала улучшается передача тепла.
- Пористость вещества. Пористые материалы являются неоднородными по своей структуре. Внутри них находится большое количество воздуха. А это значит, что молекулам и другим частицами будет сложно перемещать тепловую энергию. Соответственно, коэффициент теплопроводности повышается.
- Влажность также оказывает влияние на теплопроводность. Мокрые поверхности материала пропускают большее количество тепла. В некоторых таблицах даже указывается расчетный коэффициент теплопроводности материала в трех состояниях: сухом, среднем (обычном) и влажном.
Выбирая материал для утепления помещений, важно учитывать также условия, в которых он будет эксплуатироваться.
Понятие теплопроводности на практике
Теплопроводность учитывается на этапе проектирования здания. При этом берется во внимание способность материалов удерживать тепло. Благодаря их правильному подбору жильцам внутри помещения всегда будет комфортно. Во время эксплуатации будут существенно экономиться денежные средства на отопление.
Утепление на стадии проектирования является оптимальным, но не единственным решением. Не составляет трудности утеплить уже готовое здание путем проведения внутренних или наружных работ. Толщина слоя изоляции будет зависеть от выбранных материалов. Отдельные из них (к примеру, дерево, пенобетон) могут в некоторых случаях использоваться без дополнительного слоя термоизоляции. Главное, чтобы их толщина превышала 50 сантиметров.
Особенное внимание следует уделить утеплению кровли, оконных и дверных проемов, пола. Сквозь эти элементы уходит больше всего тепла. Зрительно это можно увидеть на фотографии в начале статьи.
Конструкционные материалы и их показатели
Для строительства зданий используют материалы с низким коэффициентом теплопроводности. Наиболее популярными являются:
- Железобетон, значение теплопроводности которого составляет 1,68Вт/м*К. Плотность материала достигает 2400-2500 кг/м 3 .
- Древесина, издревле использующаяся как строительный материал. Ее плотность и теплопроводность в зависимости от породы составляют 150-2100 кг/м 3 и 0,2-0,23Вт/м*К соответственно.
Еще один популярный строительный материал — кирпич. В зависимости от состава он обладает следующими показателями:
- саманный (изготовленный из глины): 0,1-0,4 Вт/м*К;
- керамический (изготовленный методом обжига): 0,35-0,81 Вт/м*К;
- силикатный (из песка с добавлением извести): 0,82-0,88 Вт/м*К.
Материалы из бетона с добавлением пористых заполнителей
Коэффициент теплопроводности материала позволяет использовать последний для постройки гаражей, сараев, летних домиков, бань и других сооружений. В данную группу можно отнести:
- Керамзитобетон, показатели которого зависят от его вида. Полнотелые блоки не имеют пустот и отверстий. С пустотами внутри изготавливают которые менее прочные, нежели первый вариант. Во втором случае теплопроводность будет ниже. Если рассматривать общие цифры, то составляет 500-1800кг/м3. Его показатель находится в интервале 0,14-0,65Вт/м*К.
- Газобетон, внутри которого образуются поры размером 1-3 миллиметра. Такая структура определяет плотность материала (300-800кг/м 3). За счет этого коэффициент достигает 0,1-0,3 Вт/м*К.
Показатели теплоизоляционных материалов
Коэффициент теплопроводности теплоизоляционных материалов, наиболее популярных в наше время:
- пенополистирол, плотность которого такая же, как и у предыдущего материала. Но при этом коэффициент передачи тепла находится на уровне 0,029-0,036Вт/м*К;
- стекловата. Характеризуется коэффициентом, равным 0,038-0,045Вт/м*К;
- с показателем 0,035-0,042Вт/м*К.
Таблица показателей
Для удобства работы коэффициент теплопроводности материала принято заносить в таблицу. В ней кроме самого коэффициента могут быть отражены такие показатели как степень влажности, плотность и другие. Материалы с высоким коэффициент теплопроводности сочетаются в таблице с показателями низкой теплопроводности. Образец данной таблицы приведен ниже:
Использование коэффициента теплопроводности материала позволит возвести желаемую постройку. Главное: выбрать продукт, отвечающий всем необходимым требованиями. Тогда здание получится комфортным для проживания; в нем будет сохраняться благоприятный микроклимат.
Правильно подобранный снизит по причине чего больше не нужно будет «отапливать улицу». Благодаря этому финансовые затраты на отопление существенно снизятся. Такая экономия позволит в скором времени вернуть все деньги, которые будут затрачены на приобретение теплоизолятора.
Строительство частного дома – очень непростой процесс от начала и до конца. Одним из основных вопросов данного процесса является выбор строительного сырья. Этот выбор должен быть очень грамотным и обдуманным, ведь от него зависит большая часть жизни в новом доме. Особняком в этом выборе стоит такое понятие, как теплопроводность материалов. От неё будет зависеть, насколько в доме будет тепло и комфортно.
Теплопроводность
– это способность физических тел (и веществ, из которых они изготовлены) передавать тепловую энергию. Объясняя более простым языком, это перенос энергии от тёплого места к холодному. У некоторых веществ такой перенос будет происходить быстро (например, у большинства металлов), а у некоторых, наоборот – очень медленно (резина).
Если говорить ещё более понятно, то в некоторых случаях, материалы, имея толщину в несколько метров, будут проводить тепло гораздо лучше, чем другие материалы, с толщиной в несколько десятков сантиметров. Например, несколько сантиметров гипсокартона смогут заменить внушительную стену из кирпича.
Основываясь на этих знаниях, можно предположить, что наиболее правильным будет выбор материалов с низкими значениями этой величины
, чтобы дом быстро не остывал. Для наглядности, обозначим процентное соотношение потерь тепла в разных участках дома:
От чего зависит теплопроводность?
Значения данной величины могут зависеть от нескольких факторов
. Например, коэффициент теплопроводности, о котором мы поговорим отдельно, влажность строительного сырья, плотность и так далее.
- Материалы, имеющие высокие показатели плотности, имеют, в свою очередь, и высокую способность к теплоотдаче, за счёт плотного скопления молекул внутри вещества. Пористые материалы, наоборот, будут нагреваться и остывать медленнее.
- На теплопередачу оказывает влияние и влажность материалов. Если материалы промокнут, то их теплоотдача возрастёт.
- Также, сильно влияет на этот показатель структура материала. Например, дерево с поперечными и продольными волокнами будет иметь разные значения теплопроводности.
- Показатель изменяется и при изменениях таких параметров, как давление и температура. С ростом температуры он увеличивается, а с ростом давления, наоборот – уменьшается.
Коэффициент теплопроводности
Для количественной оценки такого параметра, используются специальные коэффициенты теплопроводности
, строго задекларированные в СНИП. Например, коэффициент теплопроводности бетона равен 0,15-1,75 ВТ/(м*С) в зависимости от типа бетона. Где С – градусы Цельсия. На данный момент расчёт коэффициентов есть практически для всех существующих типов строительного сырья, применяющихся при строительстве. Коэффициенты теплопроводности строительных материалов очень важны в любых архитектурно-строительных работах.
Для удобного подбора материалов и их сравнения, используются специальные таблицы коэффициентов теплопроводности, разработанные по нормам СНИП(строительные нормы и правила). Теплопроводность строительных материалов
, таблица на которых будет приведена ниже, очень важна при строительстве любых объектов.
- Древесные материалы. Для некоторых материалов параметры будут приведены как вдоль волокон(Индекс 1, так и поперёк – индекс 2)
- Различные типы бетона.
- Различные виды строительного и декоративного кирпича.
Расчёт толщины утеплителя
Из вышеприведённых таблиц мы видим, насколько могут отличаться коэффициенты проводимости тепла у разных материалов. Для расчёта теплосопротивления будущей стены, существует нехитрая формула
, которая связывает толщину утеплителя и коэффициент его теплопроводности.
R = p / k , где R -показатель теплосопротивления, p -толщина слоя, k – коэффициент.
Из этой формулы несложно выделить и формулу расчёта толщины слоя утеплителя для требуемого теплосопротивления. P = R * k . Значение теплосопротивление разное для каждого региона. Для этих значений тоже существует специальная таблица, где их и можно посмотреть при расчёте толщины утеплителя.
Теперь приведём примеры некоторых наиболее популярных утеплителей
и их технических характеристик.
Строительство каждого объекта лучше начинать с планировки проекта и тщательного расчета теплотехнических параметров. Точные данные позволит получить таблица теплопроводности строительных материалов. Правильное возведение зданий способствует оптимальным климатическим параметрам в помещении. А таблица поможет правильно подобрать сырье, которое будут использоваться для строительства.
Теплопроводность материалов влияет на толщину стен
Теплопроводность является показателем передачи тепловой энергии от нагреваемых предметов в помещении к предметам с более низкой температурой. Процесс теплообмена производится, пока температурные показатели не уравняются. Для обозначения тепловой энергии используется специальный коэффициент теплопроводности строительных материалов. Таблица поможет увидеть все требуемые значения. Параметр обозначает, сколько тепловой энергии пропускается через единицу площади в единицу времени. Чем больше данное обозначение, тем качественнее будет теплообмен. При возведении зданий необходимо применять материал с минимальным значением тепловой проводимости.
Коэффициент теплопроводности это такая величина, которая равна количеству теплоты, проходящей через метр толщины материала за час.
Использование подобной характеристики обязательно для создания лучшей теплоизоляции. Теплопроводность следует учесть при подборе дополнительных утепляющих конструкций.
Что оказывает влияние на показатель теплопроводности?
Теплопроводность определяется такими факторами:
- пористость определяет неоднородность структуры. При пропуске тепла через такие материалы процесс охлаждения незначительный;
- повышенное значение плотности влияет на тесные соприкосновения частиц, что способствует более быстрому теплообмену;
- повышенная влажность увеличивает данный показатель.
Использование значений коэффициента теплопроводности на практике
Материалы представлены конструкционными и теплоизоляционными разновидностями. Первый вид обладает большими показателями теплопроводности. Они применяются для строительства перекрытий, ограждений и стен.
При помощи таблицы определяются возможности их теплообмена. Чтобы данный показатель был достаточно низким для нормального микроклимата в помещении стены из некоторых материалов должны быть особенно толстыми. Чтобы этого избежать, рекомендуется использовать дополнительные теплоизолирующие компоненты.
Показатели теплопроводности для готовых построек. Виды утеплений
При создании проекта нужно учитывать все способы утечки тепла. Оно может выходить через стены и крышу, а также через полы и двери. Если вы неправильно проведете расчеты проектирования, то придется довольствоваться только тепловой энергией, полученной от отопительных приборов. Здания, построенные из стандартного сырья: камня, кирпича либо бетона нужно дополнительно утеплять.
Дополнительная теплоизоляция проводится в каркасных зданиях. При этом деревянный каркас придает жесткости конструкции, а утепляющий материал прокладывается в пространство между стойками. В зданиях из кирпича и шлакоблоков утепление производится снаружи конструкции.
Выбирая утеплители необходимо обращать внимание на такие факторы, как уровень влажности, влияние повышенных температур и типа сооружения. Учитывайте определенные параметры утепляющих конструкций:
- показатель теплопроводности оказывает влияние на качество теплоизолирующего процесса;
- влагопоглощение имеет большое значение при утеплении наружных элементов;
- толщина влияет на надежность утепления. Тонкий утеплитель помогает сохранить полезную площадь помещения;
- важна горючесть. Качественное сырье имеет способность к самозатуханию;
- термоустойчивость отображает способность выдерживать температурные перепады;
- экологичность и безопасность;
- звукоизоляция защищает от шума.
В качестве утеплителей применяются следующие виды:
- минеральная вата устойчива к огню и экологична. К важным характеристикам относится низкая теплопроводность;
- пенопласт – это легкий материал с хорошими утеплительными свойствами. Он легко устанавливается и обладает влагоустойчивостью. Рекомендуется для применения в нежилых строениях;
- базальтовая вата в отличие от минеральной отличается лучшими показателями стойкости к влаге;
- пеноплэкс устойчив к влажности, повышенным температурам и огню. Имеет прекрасные показатели теплопроводности, прост в монтаже и долговечен;
- пенополиуретан известен такими качествами, как негорючесть, хорошие водоотталкивающие свойства и высокая пожаростойкость;
- экструдированный пенополистирол при производстве проходит дополнительную обработку. Обладает равномерной структурой;
- пенофол представляет из себя многослойный утепляющий пласт. В составе присутствует вспененный полиэтилен. Поверхность пластины покрывается фольгой для обеспечения отражения.
Для теплоизоляции могут применяться сыпучие типы сырья. Это бумажные гранулы или перлит. Они имеют стойкость к влаге и к огню. А из органических разновидностей можно рассмотреть волокно из древесины, лен или пробковое покрытие. При выборе, особое внимание уделяйте таким показателям как экологичность и пожаробезопасность.
Обратите внимание!
При конструировании теплоизоляции, важно продумать монтаж гидроизолирующей прослойки. Это позволит избежать высокой влажности и повысит сопротивляемость теплообмену.
Таблица теплопроводности строительных материалов: особенности показателей
Таблица теплопроводности строительных материалов содержит показатели различных видов сырья, которое применяется в строительстве. Используя данную информацию, вы можете легко посчитать толщину стен и количество утеплителя.
Как использовать таблицу теплопроводности материалов и утеплителей?
В таблице сопротивления теплопередаче материалов представлены наиболее популярные материалы. Выбирая определенный вариант теплоизоляции важно учитывать не только физические свойства, но и такие характеристики как долговечность, цена и легкость установки.
Знаете ли вы, что проще всего выполнять монтаж пенооизола и пенополиуретана. Они распределяются по поверхности в виде пены. Подобные материалы легко заполняют полости конструкций. При сравнении твердых и пенных вариантов, нужно выделить, что пена не образует стыков.
Значения коэффициентов теплопередачи материалов в таблице
При произведении вычислений следует знать коэффициент сопротивления теплопередаче. Данное значение является отношением температур с обеих сторон к количеству теплового потока. Для того чтобы найти теплосопротивление определенных стен и используется таблица теплопроводности.
Все расчеты вы можете провести сами. Для этого толщина прослойки теплоизолятора делится на коэффициент теплопроводности. Данное значение часто указывается на упаковке, если это изоляция. Материалы для дома измеряются самостоятельно. Это касается толщины, а коэффициенты можно отыскать в специальных таблицах.
Коэффициент сопротивления помогает выбрать определенный тип теплоизоляции и толщину слоя материала. Сведения о паропроницаемости и плотности можно посмотреть в таблице.
При правильном использовании табличных данных вы сможете выбрать качественный материал для создания благоприятного микроклимата в помещении.
Теплопроводность строительных материалов (видео)
Возможно Вам также будет интересно:
Как сделать отопление в частном доме из полипропиленовых труб своими руками
Гидрострелка: назначение, принцип работы, расчеты
Схема отопления с принудительной циркуляцией двухэтажного дома – решение проблемы с теплом
Строительство любого дома, будь то коттедж или скромный дачный домик, должно начинаться с разработки проекта. На этом этапе закладывается не только архитектурный облик будущего строения, но и его конструктивные и теплотехнические характеристики.
Основной задачей на этапе проекта будет не только разработка прочных и долговечных конструктивных решений, способных поддерживать наиболее комфортный микроклимат с минимальными затратами. Помочь определиться с выбором может сравнительная таблица теплопроводности материалов.
Понятие теплопроводности
В общих чертах процесс теплопроводности характеризуется передачей тепловой энергии от более нагретых частиц твердого тела к менее нагретым. Процесс будет идти до тех пор, пока не наступит тепловое равновесие. Другими словами, пока не сравняются температуры.
Применительно к ограждающим конструкциям дома (стены, пол, потолок, крыша) процесс теплопередачи будет определяться временем, в течение которого температура внутри помещения сравняется с температурой окружающей среды.
Чем более продолжителен по времени будет этот процесс, тем помещение будет более комфортным по ощущениям и экономичным по эксплуатационным расходам.
Численно процесс переноса тепла характеризуется коэффициентом теплопроводности.
Физический смысл коэффициента показывает, какое количество тепла за единицу времени проходит через единицу поверхности. Т.е. чем выше значение этого показателя, тем лучше проводится тепло, значит, тем быстрее будет происходить процесс теплообмена.
Соответственно, на этапе проектных работ необходимо спроектировать конструкции, теплопроводность которых должна иметь по возможности наименьшее значение.
Вернуться к оглавлению
Факторы, влияющие на величину теплопроводности
Теплопроводность материалов, используемых в строительстве, зависит от их параметров:
- Пористость – наличие пор в структуре материала нарушает его однородность. При прохождении теплового потока часть энергии передается через объем, занятый порами и заполненный воздухом. Принято за отсчетную точку принимать теплопроводность сухого воздуха (0,02 Вт/(м*°С)). Соответственно, чем больший объем будет занят воздушными порами, тем меньше будет теплопроводность материала.
- Структура пор – малый размер пор и их замкнутый характер способствуют снижению скорости теплового потока. В случае использования материалов с крупными сообщающимися порами в дополнение к теплопроводности в процессе переноса тепла будут участвовать процессы передачи тепла конвекцией.
- Плотность – при больших значениях частицы более тесно взаимодействуют друг с другом и в большей степени способствуют передаче тепловой энергии. В общем случае значения теплопроводности материала в зависимости от его плотности определяются либо на основе справочных данных, либо эмпирически.
- Влажность – значение теплопроводности для воды составляет (0,6 Вт/(м*°С)). При намокании стеновых конструкций или утеплителя происходит вытеснение сухого воздуха из пор и замещение его каплями жидкости или насыщенным влажным воздухом. Теплопроводность в этом случае значительно увеличится.
- Влияние температуры на теплопроводность материала отражается через формулу:
λ=λо*(1+b*t), (1)
где, λо – коэффициент теплопроводности при температуре 0 °С, Вт/м*°С;
b – справочная величина температурного коэффициента;
t – температура.
Вернуться к оглавлению
Практическое применение значения теплопроводности строительных материалов
Из понятия теплопроводности напрямую вытекает понятие толщины слоя материала для получения необходимого значения сопротивления теплового потока. Тепловое сопротивление – нормируемая величина.
Упрощенная формула, определяющая толщину слоя, будет иметь вид:
где, H – толщина слоя, м;
R – сопротивление теплопередаче, (м2*°С)/Вт;
λ – коэффициент теплопроводности, Вт/(м*°С).
Данная формула применительно к стене или перекрытию имеет следующие допущения:
- ограждающая конструкция имеет однородное монолитное строение;
- используемые стройматериалы имеют естественную влажность.
При проектировании необходимые нормируемые и справочные данные берутся из нормативной документации:
- СНиП23-01-99 – Строительная климатология;
- СНиП 23-02-2003 – Тепловая защита зданий;
- СП 23-101-2004 – Проектирование тепловой защиты зданий.
Вернуться к оглавлению
Теплопроводность материалов: параметры
Принято условное разделение материалов, применяемых в строительстве, на конструкционные и теплоизоляционные.
Конструкционные материалы применяются для возведения ограждающих конструкций (стен, перегородок, перекрытий). Они отличаются большими значениями теплопроводности.
Значения коэффициентов теплопроводности сведены в таблицу 1:
Таблица 1
Подставляя в формулу (2) данные, взятые из нормативной документации, и данные из Таблицы 1, можно получить требуемую толщину стен для конкретного климатического района.
При выполнении стен только из конструкционных материалов без использования теплоизоляции их необходимая толщина (в случае использования железобетона) может достигать нескольких метров. Конструкция в этом случае получится непомерно большой и громоздкой.
Допускают возведение стен без использования дополнительного утепления, пожалуй, только пенобетон и дерево. И даже в этом случае толщина стены достигает полуметра.
Теплоизоляционные материалы имеют достаточно малые величины значения коэффициента теплопроводности.
Основной их диапазон лежит в пределах от 0,03 до 0,07 Вт/(м*°С). Наиболее распространенные материалы – это экструдированный пенополистирол, минеральная вата, пенопласт, стекловата, утепляющие материалы на основе пенополиуретана. Их использование позволяет значительно снизить толщину ограждающих конструкций.
Теплопроводность строительных материалов — таблица утеплителей, сравнение
Процесс строительства любого жилого или промышленного объекта начинается с разработки проекта. В нем необходимо предусмотреть взаимное расположение всех элементов конструкции, а также учесть качество применяемых материалов. Все они обладают разными физическими характеристиками. В каждом случае производители предусматривают коэффициенты теплопроводности строительных материалов.
Благодаря знанию данного параметра быстрее проводится разработка и постройка зданий, обеспечивающих экономию ресурсов. Внутри помещений образуется приятный микроклимат не только зимой, но и летом. Часто в таком случае помогает таблица теплопроводности материалов. В нее входят наиболее популярные строительные компоненты.
Определение базового понятия
Теплопроводность строительных материалов характеризуется возможностью перераспределения энергии от более теплых частиц к более прохладным участкам. Перераспределение будет происходить до тех пор, пока не сформируется тепловой баланс. Фактически на всех участках конструкции будет единая температура.
Явление имеет актуальность для всех ограждающих элементов домостроения, которыми являются:
-
наружные стены; -
внутренние перегородки; -
пол; -
крыша; -
потолок и другие перекрытия.
Теплопроводность утеплителей определяется временем, в течение которого за счет теплопередачи температурные условия внутри здания станут соответствовать условиям снаружи. Оптимальным является наиболее продолжительный процесс, растянутый на длительный временной интервал. В таком случае за счет применяемых материалов и фактур удастся оптимизировать расходы на эксплуатацию.
Сравнение показателей теплосбережения разных стройматериалов
Определяя, например, теплопроводность пенополистирола или каких-либо экструдированных его разновидностей, необходимо знать, что данный параметр позволяет определять какое количество тепловой энергии за установленную единицу времени проходит сквозь единицу поверхности. Применяется исчисление Вт/(м*градус). Соответственно, чем численное значение больше, тем эффективнее проводится тепло через указанное вещество, а все процессы, связанные с теплообменом станут проходить быстрее.
Создавая проект дома, бани, гаража или иной бытовой постройки, нужно самостоятельно учитывать данный фактор. При этом подбирать утеплители необходимо с минимальными значениями проводимости тепла.
Некоторые примеры практического применения
Практическая ценность такого знания заключается в том, чтобы сравнивать разные материалы всевозможной толщины с другими, определяя оптимальные параметры. Так теплопроводность пенопласта 50 мм в сравнении с кирпичной двухрядной кладкой будет примерно равной. Это значит, для того чтобы создать стену из кирпича сопоставимую с 10 см пенопласта, необходимо выкладывать ее в 4 кирпича, что является весьма затратным и нерациональным по использованию ресурсов.
Коэффициент теплопроводности кирпичей
Для сухой сосны коэффициент передачи тепла равен 0,17 Вт(м*град), а для пенобетона значение – 0,18, что является весьма близким. В таком случае оба вещества способны хранить тепло с идентичной способностью. Необходимо учитывать не только фактуру сырья, из которого изготовлена Важно! термическая отделка, но и его форму.
Примером служит разница пустотелого и полнотелого кирпича. В первом случае коэффициент составит 0,55, а во втором – 0,80 Вт(м*град). Наличие воздушной прослойки внутри блоков позволило почти в полтора раза повысить эффективность термоизоляции.
На практике опытные строители с успехом комбинируют различные материалы, используя их позитивные качества. Когда дом выложен из прочного кирпича, то для его утепления можно задействовать пенопласт. Его применяют снаружи и внутри здания, создавая многослойную конструкцию. Строители любят монтировать пенополистирол, так как он имеет один из минимальных коэффициентов, составляющий 0,03 Вт(м*град).
Взамен дорогим и долго строящимся домам из кирпичной кладки, приходят более прогрессивные технологии. Даже еще недавно популярные монолитные либо панельно-каркасные постройки уходят в прошлое. Их место занимают здания из ячеистого бетона. Он обладает показателями, сопоставимыми с характеристиками древесины. Стены не подвергаются сквозному промерзанию даже во время лютых морозов.
Шкала толщины стройматериалов при идентичных коэффициентах
Актуальный принцип применяется во время возведения каркасных легких домов, также его задействуют при возведении коттеджей, крупных складов, загородных супер- и мегамаркетов, всевозможных промышленных построек. При соблюдении технологии возведенное подобным образом здание из современных строительных материалов с минимальным коэффициентом проводимости можно эксплуатировать в различных климатических условиях.
Для щитовых конструкций формируют заготовки из листов OSB, между которыми крепится минвата или экструдированный пенополистирол. Такие стены вполне справляются с функцией по созданию комфортного микроклимата внутри помещения.
ВИДЕО: Как сделать теплотехнический расчет дома
Что может повлиять на изменение характеристик
На коэффициент теплопроводности могут оказывать влияние разные технологические факторы:
Пористость
Образуемые технологические пустоты внутри базового вещества не допускают однородности фактуры. В процессе прохода тепловой струи часть энергии передается в газовые пустоты. Так как установлено, что сухой воздух имеет коэффициент 0,02 Вт(м*град), то чем больше в фактуре пустот, тем будет больше понижаться коэффициент передачи тепловой энергии.
Пористый камень
Размеры пор
Наибольшей эффективностью обладают малые замкнутые поры. За счет них существенно снижается скорость теплового потока. Для случаев с крупными порами необходимо добавлять явление перемещение тепла при помощи конвекции.
Плотность материала
Высокое значение данного показателя характеризуется достаточно близким расположением частиц внутри вещества. Таким образом между его составляющими тепло перемещается достаточно быстро. Для определения зависимости между плотностью и теплопроводностью используются специальные справочники.
Уровень влажности
Необходимо учитывать, что вода в чистом виде обладает теплопроводностью со значением 0,6 Вт/(м*град). Когда утеплитель промокает, то это значит, что на место воздушных ячеек проникает влага. Так как воздух имеет коэффициент 0,02, а вода 0,6, то структура теряет изоляционные свойства пропорционально степени увлажнения. Часто эта зависимость не линейная, а экспоненциальная.
Температура окружающей среды
Также оказывает влияние на итоговое значение. Для расчета берется формула λ=λо*(1+b*t), в которой под λо подразумевается коэффициент теплопроводности при нулевой температуре, b – определенная справочная величина термокоэффициента, а t – действующее значение в градусах Цельсия.
Имеет значение и то, где установлен утеплитель, чтобы увеличить или уменьшить показатели паропроницаемости и проводимости тепла
Чтобы обеспечить правильные параметры по теплоизоляции для здания, необходимо соблюдать действующие нормативные акты, к которым относятся следующие:
-
СП 23-101-2004 – используются в процессе создания проектов тепловой защиты; -
СНиП23-01-99 – устанавливают параметры строительной климатологии; -
СНиП 23-02-2003 – необходимы при актуальных расчетах термической защиты зданий.
Таблица теплопроводности строительных материалов
ВИДЕО: Из чего стоит дом построить
Некоторые свойства стеновых материалов в таблице:
* Мобильные установки в строительных условиях Сравнительные характеристики теплопроводности стен из различных материалов Плотность керамического кирпича 1650 кг/м3
Примечание: чем ниже коэффициент теплопроводности, тем выше теплоизоляция стены, тем больше экономия средств (зимой для обогрева, летом для охлаждения). Инструкция по кладке наружних и внутренних стен из газобетонных блоков Статья с сайта aerocrete.com |
сравнение по толщине, сколько у бетона
Автор Darya На чтение 5 мин Просмотров 163 Опубликовано Обновлено
Любой человек согласится, что дома должно быть всегда уютно: летом не жарко, зимой – тепло. За сохранение тепла и прохлады «отвечает» показатель теплопроходимости. Чем лучше перегородка проводит, то есть отдает тепло, тем быстрее он будет остывать и нагреваться. Стены и крыша дома должны иметь низкую проводность, а некоторые элементы, например, радиаторные батареи, могут быть хорошими проводниками. Узнать теплопроводность бетона и других смесей и блоков можно по таблицам или рассчитать по формуле.
Что это такое
Теплопроводность строительных материалов играет важную роль при их выборе. Термин означает количество тепла, которое разные перегородки одинаковой толщины могут провести за единицу времени. Чем ниже показатель, тем хуже тепло проходит – плоскость плохо нагревается и медленно остывает.
Коэффициент проницаемости показывает, сколько тепла может пройти через 1 метр метровой стены при разнице температур в 1 градус. Единицей измерения является Вт/(м*С), где м – это метры, а С – градус Цельсия.
В зависимости от значения стройматериалы используют для разных целей: с низкой проводимостью применяют для утепления, чтобы дома не было холодно, с высокой – для отвода тепла и быстрого охлаждения, например, для батарей.
Обратите внимание! Плоскости с низким значением будут медленнее остывать. Это позволит сэкономить на отоплении.
Тепловое или термическое сопротивление – это величина, обратная теплопроходимости. Она отражает, насколько сильно перегородка мешает прохождению тепла. То есть чем выше сопротивление, тем ниже проводность – этот стройматериал можно использовать для утепления. Формула для расчета сопротивления
R = H/λ, где
- R – нормативное температурное сопротивление.
- H – толщина в метрах.
- λ – значение проводимости.
Величина измеряется в (м*С)/Вт, где м – метр, С- градус Цельсия.
Особенности выбора на основе этих показателей
Чтобы построить хороший, прочный дом важно не забывать про теплопроницаемость стен и потолков. Увидеть важность этого свойства можно в простом примере: стена из бетона толщиной в 30 сантиметров и перегородка из кирпича в 50 см одинаково справляются с теплопотерей. Плита из железобетона должна быть примерно в 3 раза толще плиты из керамзитобетона.
При выборе стоит помнить не только о показателе конкретного материала, но и об используемом утеплителе. Например, показатель пенополистирола – 0,031-0,05 Вт/(м*С), изолона – 0,031-0,037 Вт/(м*С). Для сравнения: теплопроводность железобетона плотностью 2,5 тонны на куб. метр – 1,7, а дерева – 0,2-0,23.
Стоит отметить, зачем вообще нужно определять этот показатель при строительстве. Специалистами рассчитана норма для разных климатических поясов России и для разных мест: для стен, крыш, перекрытий. Если выбранные стройматериалы не дотягивают до нормы СНиП, их необходимо утеплить.
Обратите внимание! Если при строительстве использовались несколько стройматериалов в одном месте (например, для крыши или пола), для определения итогового коэффициента все значения складываются.
Влияющие факторы
Если сравнить свойства одного и того же стройматериала в разных условиях, легко увидеть, что теплоизоляционный коэффициент будет разным. Различается величина также у разных марок, причем разница может быть довольно значимой.
На проводимость влияют следующие факторы:
- Плотность. При высокой плотности частицы расположены близко друг от друга, следовательно, передача тепла будет происходить довольно быстро. Легкие стройматериалы (например, керамзит) хуже отдают тепло, чем тяжелые.
- Пористость. Чем она выше, тем меньше тепла пропускается. Воздух отличается маленькой проводимостью, значит, чем больше отверстий в поверхности, тем слабее будет теплопередача.
- Структура самих пор. Большие, сообщающиеся между собой поры повышают проницаемость бетонной перегородки. Чтобы сохранить тепло внутри, лучше выбирать мелкие, замкнутые отверстия.
- Влажность. При намокании бетона или кирпича воздух вытесняется, заменяется жидкостью или становится влажным воздухом. Коэффициент увеличивается почти в 20 раз.
- Температура. Чем она выше, тем выше коэффициент.
Обратите внимание! Зимой, когда влага превращается в лед, теплопотери увеличиваются еще сильнее. Кроме того, промерзание ведет к разрушению.
Коэффициент материалов из бетона
Бетонный раствор – это неоднородная цементно-песчаная смесь, которая имеет сложную структуру. Его коэффициент зависит от конкретного состава.
Узнать теплопроводность бетона можно по таблицам или по характеристике конкретной марки. Средние значения следующие:
- Теплопроводность железобетонной плиты плотностью 2,5 – 1,7.
- Пенобетона – 0,08-0,29.
- Керамзитобетона – 0,14-0,66.
- Красный глиняный кирпич – 0,56.
- Силикатный кирпич – 0,7.
- Блоков из газосиликата – 0,072-0,165.
- Теплопроводность штукатурки – 0,1-1.
Точные данные теплопроводности бетонной стены зависят от конкретных марок и их характеристик.
Сравнение строительных материалов по толщине
Таблица теплопроводности строительных материалов позволит быстро просчитать, хватает ли коэффициента перекрытия, а также найти необходимую толщину. Также можно воспользоваться онлайн калькулятором на сайтах строительных материалов.
Обратите внимание! В таблицах зачастую присутствует не одно значение теплопроницаемости, а несколько. Основное дается для сухого стройматериала при испытании в лабораторных условиях по ГОСТу, другие – для различных условий эксплуатации, например, при сухом и влажном воздухе, при разных температурах.
Для самостоятельного расчета толщины стены можно воспользоваться формулой:
H = R * λ.
Показание R можно узнать в таблице «Строительная климатология», в которой для каждого региона даны свои значения. Показания λ даны в технических характеристиках материала.
Пример расчета:
Для Москвы R составляет 3,28. Если перегородки будут выполнены из железобетона (плотность 2,5 т/ куб. м, λ= 1,690), их толщина должна составить больше 5,5 метра.
Если взять керамзитобетон плотностью 1,8 т/куб. м. (λ = 0,66), величина «снизится» до 2,16 метров. Для пенобетона плотностью 1 т/куб. м. (λ = 0,29), размер составит меньше метра – 95 см.
Легко увидеть, что, чем выше показатель проводимости тепла, тем больше должна быть толщина. Чтобы уменьшить эту величину, их дополнительно оббивают более тонкими утеплителями.
При выборе материала для пола, стены, крыши или перегородки стоит обратить внимание на теплопроводность стройматериалов. Эта величина отвечает за проведение тепла через материал, то есть за то, как быстро будет нагреваться и остывать дом. Чем она ниже, тем хуже проходит тепло и тем медленнее здание будет промерзать.
(PDF) СРАВНИТЕЛЬНЫЙ АНАЛИЗ КОЭФФИЦИЕНТОВ ТЕПЛОПРОВОДНОСТИ ЭКОЛОГИЧЕСКИХ СТРОИТЕЛЬНЫХ МАТЕРИАЛОВ
ACTA TEHNICA CORVINIENSIS Fascicule 3 [июль — сентябрь]
— Технический бюллетень 2015 г. VIII
|
с большим количеством соломы имеет лучшие теплоизоляционные свойства
.
На основании проведенных экспериментов и полученных результатов для
коэффициент теплопроводности экологически чистых строительных материалов
материалов из глины (серого мергеля), песка и различного количества соломы
можно сделать следующие выводы:
1. Коэффициент теплопроводности образца из глины и песка
составляет k = 0,562 Вт / (мК) при использовании стенда «Dr Bok» и k =
0,498 Вт / (мК) при использовании термоанализатора CTherm TCi. использовался.Разница в результатах
вызвана использованием совершенно разных методов измерения
, но они сопоставимы и соизмеримы.
2. В зависимости от количества добавленной соломы в смесь глины и песка
значения коэффициента теплопроводности, полученные на стенде «Др Бок»
, составляют: при наименьшем количестве соломы (68 г) —
k = 0,436 Вт / (м · К) и при максимальном количестве соломы (136 г) —
k = 0,228 Вт / (м.К). Те же образцы, испытанные на термическом анализаторе проводимости
CTherm, дали следующие результаты: k = 0,379
Вт / (м · К) и k = 0,219 Вт / (м · К). Можно сделать вывод, что
с увеличением количества соломы коэффициент теплопроводности
уменьшается. Это означает, что испытанные материалы улучшают изоляционные свойства
.
3. Сравнительный анализ результатов, полученных на обоих аппаратах
, показывает, что имеется хорошая повторяемость значений термической проводимости
, и это является причиной для подтверждения хороших теплоизоляционных свойств
испытуемых материалы.
Сделанные выше выводы и экспериментальное исследование коэффициента теплопроводности
являются основой для подтверждения возможностей
для хорошего применения испытанного экологически безопасного строительного материала
в местах, где нет передовых теплоизоляционных материалов
. применимый.
При подготовке данной статьи использовалось оборудование
, закупленное в рамках проекта BG161PO003-1.2.02-0039 «Создание нового офиса
для передачи технологий по энергоэффективным материалам и
технологий на территории ВФУ« Черноризец Грабар », финансируемое
при поддержке ОП« Развитие сравнительности экономики Болгарии »
2007-2013, софинансируется Европейским Союзом через Европейский фонд регионального развития
и государственный бюджет Республики
Болгария.
[1.]
Ким Дж., Б. Ригдон, Качество, использование и примеры устойчивого строительства
Материалы, Национальный центр по предотвращению загрязнения для высшего образования,
декабрь 1998 г.
[2.]
Милани Б., Строительные материалы в зеленой экономике: На уровне сообществ
Стратегии дематериализации, Институт экологических исследований
Университета Торонто, 2005
[3.]
www.stroiteli.elmedia.net
[4.]
http: // www .greenadia.info/2011/03/blog-post_13.html
[5.]
http://theconstructor.org/building/buildings/eco-friendly-building-
материалов / 720/
[6. ]
www.elmedia.net
[7.]
http://www.engineeringtoolbox.com/thermal-conductivity-
d_429.html
[8.]
Михальченко Р., Курская Т., Экспериментальное определение теплопроводности
для материалов в вакууме при различных нагрузках
и при низких температурах, Журнал инженерной физики,
июнь 1969
[9.]
Григорьев В.А., В.М. Зорин (ред.) Теоретические основы тепла.
Тепловой эксперимент, Справочник, Энергоатомиздат, 1988
[10.]
Охотин А. и др., Теплопроводность твердых тел, Справочник, Москва,
Энергоатомиздат, 1984
[11.]
Нгоэ-Экам П.С., П. Меукам, Г. Менгуи, П. Жирар,
Теплофизические характеристики тропических древесина, используемая как строительная
материалы: относительно плотности основания.Констр. Строить. Mater.,
2006
[12.]
Зак Дж., Стастник С., Оценка теплопроводности строительных материалов
— «Метод горячей проволоки», Международный симпозиум
(NDT-CE 2003), Брно, Чешская Республика, 2003
[13.]
Абу-Хамде, Нью-Хэмпшир; Ридер, Р. «Сравнение двух методов, использованных
для оценки теплопроводности некоторых почв» International
Journal of Heat and Mass Transfer, 2001
[14.]
Чуанг Э., Хусаини В. и др., Эксперименты по теплопроводности
(Определение длины алюминиевого стержня), Отчет,
Декабрь 2008 г.
[15.]
Ким, Кук-Хам Ян , Сунг Чул, Экспериментальное исследование теплопроводности бетона, цемента и бетона
Research Journal,
2003
[16.]
Ча Дж., Дж. Сео, С. Ким, Теплопроводность строительных материалов
Измерение и корреляция с помощью измерителя теплового потока, Laser Flash
Анализ
и TCi, J.Термического анализа и калориметрии, т. 109, № 1,
2012, стр. 295-300
[17.]
www.ctherm.com
[18.]
http://www.strawbalecentral.com/techniques3.html
Copyright ©
Университет ПОЛИТЕХНИКА Тимишоара, инженерный факультет Хунедоара,
5, Revolutiei, 331128, Хунедоара, РУМЫНИЯ
http://acta.fih.upt.ro
Сравнение теплопроводности строительных материалов
Строительство каждого объекта лучше начинать с планирования проекта и тщательного расчета тепловых параметров.Точные данные позволят получить таблицу теплопроводности строительных материалов. Правильное строительство зданий способствует достижению оптимальных климатических параметров в помещениях. А таблица поможет правильно выбрать сырье, которое будет использоваться для строительства.
Назначение теплопроводности
Теплопроводность — это мера передачи тепла от нагретых объектов в помещении к объектам с более низкой температурой.Процесс теплообмена продолжается до тех пор, пока температура не выровняется. Для обозначения тепловой энергии используют специальный коэффициент теплопроводности строительных материалов. Таблица поможет вам увидеть все необходимые значения. Параметр указывает, сколько тепловой энергии проходит через единицу площади в единицу времени. Чем крупнее маркировка, тем лучше теплоотдача. При строительстве зданий необходимо применять материал с минимальным значением теплопроводности.
Коэффициент теплопроводности — это такое значение, которое равно количеству тепла, проходящего через толщиномер материала в час.Использование таких характеристик необходимо для создания наилучшего утеплителя. При выборе дополнительных изоляционных конструкций следует учитывать теплопроводность.
Что влияет на скорость теплопроводности?
Теплопроводность определяется такими факторами:
• Пористость определяет неоднородность структуры. При прохождении тепла через такие материалы процесс охлаждения медленный;
• Повышенная плотность влияет на плотный контакт между частицами, что способствует более быстрой передаче тепла;
• Высокая влажность увеличивает этот показатель.
Практическое использование значений коэффициента теплопроводности.
Материалы представлены конструктивными и изоляционными разновидностями. Первый тип имеет более высокие значения проводимости. Их используют для возведения перегородок, ограждений и стен.
Используя таблицу, определите возможности их теплообмена. Чтобы этот показатель был достаточно низким, нормальные внутренние стены из определенных материалов должны быть особенно толстыми.Чтобы этого не произошло, рекомендуется использовать дополнительные изоляционные компоненты.
Значения проводимости готовых зданий. Виды утеплителя.
При создании проекта нужно учитывать все способы потери тепла. Он может проникать через стены и крышу, а также через полы и двери. Если вы неправильно сделаете расчеты по конструкции, придется довольствоваться только тепловой энергией, вырабатываемой отопительными приборами. Здания, построенные из стандартного сырья: камня, кирпича или бетона, необходимо утеплить.
В каркасных домах проводится дополнительное утепление. Деревянный каркас добавляет жесткости, а в пространство между стойками укладывается изоляционный материал. В домах из кирпича и шлакоблоков изоляция находится снаружи конструкции.
При выборе утеплителя нужно обращать внимание на такие факторы, как уровень влажности, влияние повышенных температур и тип помещения. Рассмотрим некоторые варианты изоляционных конструкций:
• Скорость теплопроводности влияет на качество процесса теплоизоляции;
• Поглощение влаги имеет большое значение для изоляции внешних элементов;
• Толщина влияет на надежность изоляции.Тонкий утеплитель помогает сохранить полезную площадь помещения;
• Важно воспламеняемость. Качественное сырье имеет способность к тушению;
• Термостабильность показывает способность противостоять перепадам температуры;
• Экологичность и безопасность;
• Звукоизоляция для защиты от шума.
В качестве утеплителя используются следующие типы:
• Минеральная вата огнестойкая и экологически чистая. Важные особенности: низкая теплопроводность;
• Пенополистирол — легкий материал с хорошими изоляционными свойствами.Легко монтируется и обладает влагостойкостью. Рекомендован для использования в нежилых зданиях;
• Базальтовая вата в отличие от минеральной отличается хорошей устойчивостью к влаге;
• ПЕНОПЛЕКС устойчив к влаге, высоким температурам и огню. Обладает отличной проводимостью, прост в установке и долговечен;
• Пенополиуретан известен такими качествами, как огнестойкость, хорошая водоотталкивающая способность и высокая стойкость;
• Экструдированный пенополистирол на производстве проходит дополнительную обработку.Имеет однородную структуру;
• Уложен теплоизоляционный материал в виде многослойного изоляционного слоя. В состав входит пенополиэтилен. Поверхность пластины покрыта фольгой для обеспечения отражения.
Для утепления может применяться насыпное сырье. Это бумажные пеллеты или перлит. Они устойчивы к воздействию влаги и огня. А органическими разновидностями можно считать волокна из дерева, льна или пробки. При выборе обратите особое внимание на такие показатели, как экологичность и пожарная безопасность.
ВНИМАНИЕ! При проектировании утеплителя важно учитывать монтаж гидроизоляционного слоя. Это позволит избежать повышенной влажности и повысит сопротивление теплопередаче.
Таблица теплопроводности строительных материалов: характеристики показателей.
Таблица теплопроводности строительных материалов включает различные виды сырья, которое используется в строительстве. Используя эту информацию, вы легко сможете рассчитать толщину стен и количество утеплителя.
Как пользоваться таблицей теплопроводности материалов и изоляции?
В таблице термостойкости материалов указаны наиболее популярные материалы. Выбирая тот или иной вариант теплоизоляции, важно учитывать не только физические свойства, но и такие характеристики, как долговечность, цена и простота монтажа.
А вы знали, что проще всего сделать монтаж пеноизола и пенополиуритана.Распределяются по поверхности в виде пены. Такие материалы легко заполняют пустотные конструкции. Сравнивая твердый и поролоновый варианты, нужно отметить, что поролон не образует стыков.
Значения коэффициентов теплоотдачи материалов в таблице.
При проведении расчета необходимо знать коэффициент сопротивления теплопередаче. Это значение представляет собой отношение температур с обеих сторон к количеству теплового потока. Чтобы найти теплопродукцию определенных стен и воспользуйтесь таблицей теплопроводности.
Все расчеты вы можете провести самостоятельно. Для этого толщину изоляционного слоя делят на коэффициент теплопроводности. Это значение часто указывается на упаковке, если она изолирована. Материалы для дома измеряются самостоятельно. Это касается толщины, а коэффициенты можно найти в специальных таблицах.
Коэффициент сопротивления помогает выбрать конкретный тип изоляции и толщину слоя материала.Информацию о проницаемости и плотности можно посмотреть в таблице.
При грамотном использовании табличных данных вы сможете выбрать качественный материал для создания благоприятного микроклимата в помещении. опубликовано
P. S. И помните, только изменяя их потребление — вместе мы меняем мир! ©
Источник: skrynka-pandory.blogspot.com/2017/02/blog-post_411.html?m=1
Тепловая масса | YourHome
Что такое тепловая масса?
Проще говоря, термическая масса — это способность материала поглощать, накапливать и отдавать тепло.Такие материалы, как бетон, кирпич и плитка, поглощают и сохраняют тепло. Поэтому говорят, что они имеют высокую тепловую массу. Такие материалы, как древесина и ткань, не поглощают и не накапливают тепло и, как говорят, имеют низкую тепловую массу.
При рассмотрении тепловой массы вам также необходимо учитывать тепловую задержку. Тепловая задержка — это скорость, с которой тепло поглощается и выделяется материалом. Материалы с длительным временем теплового запаздывания (например, кирпич и бетон) будут медленно поглощать и отдавать тепло; материалы с коротким временем термической задержки (например, сталь) будут быстро поглощать и отдавать тепло.
Примечание
«Термическая масса» часто используется в строительной информации как быстрый способ описания блока материала, который имеет высокую тепловую массу и длительное время термической задержки. Такие материалы могут улучшить тепловые характеристики вашего дома.
Тепловая масса, такая как эта полированная бетонная плита, может поглощать солнечную энергию днем и выделять ее ночью
Фото: Amber Creative
Тепловая масса
Тепловая масса или способность накапливать тепло также известна как объемная теплоемкость (VHC).VHC рассчитывается путем умножения удельной теплоемкости на плотность материала:
- Удельная теплоемкость — это количество энергии, необходимое для повышения температуры 1 кг материала на 1 ° C.
- Плотность — это вес на единицу объема материала (т.е. сколько кубических метров весит материал).
Чем выше VHC, тем выше тепловая масса.
Вода имеет самый высокий показатель VHC среди всех распространенных материалов. В следующей таблице показано, что для повышения температуры 1 кубического метра воды на 1 ° C требуется 4186 килоджоулей (кДж) энергии, тогда как для повышения температуры такого же объема бетона на такую же величину требуется всего 2060 кДж.Другими словами, у воды примерно вдвое больше теплоемкости, чем у бетона. VHC породы обычно находится в диапазоне от кирпича до бетона, в зависимости от плотности. Наиболее распространенные строительные материалы с высоким VHC также имеют тенденцию быть достаточно проводящими, что делает их плохими изоляторами.
Тепловая масса различных материалов
Материал | Плотность (кг / м3) | Удельная теплоемкость (кДж / кг.К) | Объемная теплоемкость (кДж / м3.К) |
---|---|---|---|
Вода | 1000 | 4,186 | 4186 |
Бетон | 2240 | 0,920 | 2060 |
Камень (песчаник) | 2000 | 0.900 | 1800 |
Блоки заземления | 2080 | 0,837 | 1740 |
Утрамбованная земля | 2000 | 0,837 | 1673 |
Лист волокнистого цемента (сжатый) | 1700 | 0.900 | 1530 |
Кирпич | 1700 | 0,920 | 1360 |
Земляная стена (саман) | 1550 | 0,837 | 1300 |
Автоклавный газобетон (AAC) | 500 | 1.100 | 550 |
Источник: Baggs and Mortensen 2006
Тепловая задержка
Скорость поглощения и отвода тепла неизолированным материалом называется термической задержкой. Создана под влиянием:
- теплоемкость материала
- проводимость материала
- разность температур (известная как разность температур или ΔT) между каждой поверхностью материала
- толщина материала
- площадь поверхности материала
- текстуры, цвета и покрытия поверхности (например, темные, матовые или текстурированные поверхности поглощают и повторно излучают больше энергии, чем светлые, гладкие, отражающие поверхности)
- Воздействие на материал движения воздуха и скорости воздуха.
Чтобы быть эффективными в большинстве климатических условий, тепловая масса должна иметь возможность поглощать и повторно излучать тепло, близкое к своей полной теплоаккумулирующей способности, за один цикл день-ночь (суточный).
В умеренном климате идеален 12-часовой цикл задержки. В более холодном климате с длительными облачными периодами могут быть полезны задержки до 7 дней, при условии, что остекление, подвергающееся воздействию солнечного света, позволяет «зарядить» тепловую массу в солнечную погоду.
Воплощенная энергия
Некоторые материалы с высокой термальной массой, такие как бетон, утрамбованная земля, стабилизированная цементом, и кирпич, имеют высокую внутреннюю энергию при использовании в необходимых количествах.Это подчеркивает важность использования такой конструкции только там, где она обеспечивает явное тепловое преимущество. При правильном использовании экономия тепловой и охлаждающей энергии за счет тепловой массы может перевесить стоимость воплощенной в ней энергии в течение всего срока службы здания. Следует рассмотреть возможность использования материалов с высокой термальной массой и более низким содержанием энергии, таких как вода, глинобитный кирпич или переработанный кирпич.
Почему важна тепловая масса?
При правильном использовании материалы с высокой тепловой массой могут значительно повысить комфорт и снизить энергопотребление в вашем доме.Тепловая масса действует как тепловая батарея для снижения внутренней температуры за счет усреднения дневных и ночных (суточных) экстремальных значений.
Зимой термальная масса может поглощать тепло днем от прямых солнечных лучей. Он возвращает это тепло в дом всю ночь.
Тепловая масса зимой
Летом можно использовать термальную массу, чтобы поддерживать прохладу в доме. Если солнце заблокировано от попадания на массу (например, с помощью затенения), масса вместо этого будет поглощать тепло изнутри дома.Затем вы можете позволить прохладному бризу и конвекционным потокам пройти через тепловую массу в течение ночи, чтобы извлечь накопленную энергию.
И наоборот, неправильное использование тепловой массы может снизить комфорт и увеличить потребление энергии. Неправильная тепловая масса может поглотить все тепло, которое вы производите зимней ночью, или излучать тепло всю ночь, пока вы пытаетесь заснуть во время летней жары.
Тепловая масса летом
Чтобы быть эффективным, тепловая масса должна быть интегрирована с надежными методами пассивного проектирования.
На количество тепла, поглощаемого тепловой массой, сильно влияют площадь остекления, тип остекления и затенение. Чем больше потребность в тепле, тем больше требуется стекла с высоким коэффициентом пропускания солнечного света. И наоборот, в более жарком климате верно обратное.
Уровень изоляции и воздухонепроницаемость также влияют на то, как долго удерживаемое тепло удерживается в доме.
Уровни массы должны варьироваться в зависимости от:
- ваша климатическая зона
- доступ к солнечным батареям (тип окон и остекления, ориентация и затенение)
- уровней изоляции
- герметичность
- прохладный ветерок и ночной доступ воздуха
- диффузное поступление тепла летом
- род занятий
- использование системы отопления и охлаждения.
Тепловая масса обычно учитывается при покупке или строительстве дома, но некоторые изменения могут быть модифицированы (например, обнажение бетонных плит, добавление внутренних кладочных стен или заполненных водой контейнеров).
Наконечник
При планировании пристройки привлеките аккредитованного специалиста по энергетике для моделирования всего вашего дома, чтобы определить сильные и слабые стороны в отношении окон (ориентация, материал рамы, остекление, размер и затенение) и соответствующие уровни тепловой массы.Это моделирование может выявить проблемные области, которые необходимо решить с помощью хорошего дизайна.
Общие принципы определения термической массы
Некоторые общие принципы могут быть соблюдены в отношении того, где размещать, а не размещать, тепловую массу.
Где разместить тепловую массу
Чтобы определить наилучшее место для размещения тепловой массы, определите, требуется ли вашему дому пассивное отопление, пассивное охлаждение или и то, и другое.
- Для пассивного обогрева размещайте тепловую массу в местах, которые получают прямой солнечный свет или лучистое тепло от обогревателей.
- Для пассивного охлаждения защитите тепловую массу от летнего солнца с помощью затенения и изоляции. Убедитесь, что прохладный ночной бриз и воздушные потоки могут проходить через тепловую массу для извлечения накопленной энергии.
- Для пассивного отопления и охлаждения разместите тепловую массу внутри здания на первом этаже для идеальной эффективности летом и зимой. Разместите тепловую массу в комнатах, выходящих на север, с хорошим доступом к солнечной энергии, прохладным ночным бризом летом и дополнительными источниками тепла или холода.Включите соответствующее притенение, чтобы защитить массу от летнего солнца.
- Расположите дополнительную тепловую массу ближе к центру здания, особенно если там установлен кондиционер. Можно использовать кирпичные стены, плиты, водные объекты и большие горшки с землей или водой или даже резервуары для воды.
Где не размещать тепловую массу
Избегайте образования тепловой массы в помещениях и зданиях с плохой изоляцией от экстремальных внешних температур, а также в помещениях с минимальным воздействием зимнего солнца или прохладного летнего бриза.
Тепловая масса может снизить комфорт при использовании в помещениях, где требуется обогрев или охлаждение, но используется с перерывами, потому что это замедляет время отклика.
Тщательный дизайн требуется при размещении тепловых масс на верхних уровнях многоэтажного жилья во всех случаях, кроме холодного климата, особенно если это спальные зоны. Естественная конвекция создает более высокие температуры в комнатах наверху, и тепловая масса верхнего уровня поглощает эту энергию. В жаркие ночи термальная масса верхнего уровня может медленно остывать, вызывая дискомфорт во время сна.
Конструкции, адаптированные к климатическим условиям
Чтобы тепловая масса была эффективной, она должна соответствовать климату. Можно спроектировать здание с высокой тепловой массой практически для любого климата, но более экстремальные климатические условия требуют тщательного проектирования.
Термическая масса наиболее подходит для климата с большим диапазоном суточных температур — разницей между дневной и ночной наружной температурой. Средний дневной диапазон — полезный индикатор соответствующих уровней тепловой массы в доме:
- Конструкция с малой массой (например, легкая конструкция с деревянным каркасом) обычно лучше всего работает там, где суточные колебания стабильно составляют 6 ° C или ниже (прибрежный, жаркий влажный и умеренный климат).В тропическом климате с дневным диапазоном от 7 ° C до 8 ° C (например, в Кэрнсе) конструкция с большой массой может вызвать перегрев, если она не будет тщательно спроектирована, хорошо затенена и изолирована.
- Умеренная масса (например, плиты на земле, легкие изолированные стены, такие как кирпичный шпон) лучше всего подходит для дневного диапазона 6–10 ° C.
- Конструкция с большой массой (то есть плита на земле и стены с большой массой) желательна для суточного диапазона выше 10 ° C.
В прохладном или холодном климате, где часто используется дополнительное отопление, дома могут выиграть от строительства большой массы независимо от дневного диапазона, даже если доступ к солнечной энергии неоптимален.Дом с большой массой, высокой изоляцией и герметичной конструкцией будет поддерживать комфортную температуру в течение ночи, если его обогревать в течение дня.
Программа для оценки энергопотребления
House может смоделировать ваш конкретный дизайн дома и климатическую зону для проверки эффективных стратегий. Владельцам и строителям рекомендуется использовать аккредитованного оценщика Национальной схемы оценки энергопотребления дома (NatHERS) для определения энергетического рейтинга дома.
Суточные колебания температуры для различных методов строительства с разным уровнем тепловой массы
Горячий влажный климат (Климатические зоны 1 и 2)
Использование крупногабаритных конструкций обычно не рекомендуется в жарком влажном климате, поскольку они имеют ограниченный дневной диапазон и относительно высокие ночные температуры.Пассивное охлаждение в таком климате обычно более эффективно в зданиях с небольшой массой.
Тепловой комфорт во время сна — первостепенное значение при проектировании в тропическом климате. Легкая конструкция быстро реагирует на прохладный ветерок. Большая масса, если она не спроектирована и не управляется должным образом, может полностью свести на нет эти преимущества, медленно выделяя ночью тепло, которое поглощалось днем.
Если у вас есть доступ к солнечной энергии, вы можете повысить производительность своей тепловой массы, используя кондиционер для охлаждения массы в течение дня без затрат и выбросов.Эта стратегия наиболее эффективна в герметичном здании.
Сухой жаркий климат (Климатические зоны 3 и 4)
Зимнее отопление и летнее охлаждение очень важны в этом климате. Конструкция с большой массой в сочетании с надежными принципами пассивного нагрева и охлаждения является наиболее эффективным и экономичным средством поддержания теплового комфорта.
Температурные диапазоны день-ночь (суточные) обычно весьма значительны и могут быть экстремальными. В этих условиях идеально подходит крупногабаритная конструкция с высокими уровнями теплоизоляции и герметичности.
Если предусмотрено дополнительное отопление или охлаждение, разместите рядом тепловую массу. Масса будет сглаживать колебания температуры и сокращать время выполнения дополнительных требований, одновременно повышая тепловой комфорт. При низкой влажности в этом климате потолочные вентиляторы обычно обеспечивают достаточный комфорт охлаждения в хорошо спроектированном доме.
Дома, покрытые землей, обеспечивают защиту от солнечного излучения и обеспечивают дополнительную тепловую массу за счет заземления для стабилизации внутренней температуры воздуха.Для достижения уровня зимнего комфорта необходим адекватный доступ к солнечным батареям в окнах. В качестве альтернативы можно использовать солнечную систему отопления, работающую на фотоэлектрических батареях, для поддержания тепла в вашем доме без дополнительных затрат на электроэнергию или выбросов.
Теплый и умеренно-умеренный климат (Климатические зоны 5 и 6)
Поддерживать тепловой комфорт в таком климате относительно легко. Хорошо спроектированные дома должны требовать минимального дополнительного отопления или охлаждения, а звезды 7,5-8 NatHERS могут быть достигнуты без больших затрат за счет хорошего дизайна.
Преобладающим требованием к охлаждению в этих климатических условиях часто является легкая конструкция с малой массой. Конструкция с большой массой также уместна, но требует надежной пассивной конструкции, чтобы избежать перегрева летом.
В многоуровневой конструкции, в идеале, конструкция с большой массой должна использоваться на более низких уровнях для стабилизации температуры. Низкая масса на верхних уровнях гарантирует, что по мере подъема горячего воздуха тепло не будет накапливаться на верхнем уровне.
Это особенно важно, если спальные места расположены на верхних этажах.Помещения первого и второго этажей должны быть закрыты, чтобы предотвратить температурное расслоение зимой.
Тепловая масса используется для пола и внутренней стены в этом доме в Аделаиде
Фото: © Finn Howard Photography
Прохладный умеренный и альпийский климат (климатические зоны 7 и 8)
Зимнее отопление является основной потребностью в этом климате, хотя обычно требуется некоторое охлаждение летом. Потолочные вентиляторы обычно обеспечивают достаточный комфорт в этом климате с низкой влажностью.
Легкая конструкция в сочетании с надежной пассивной солнечной конструкцией и высокими уровнями изоляции и воздухонепроницаемости является идеальным решением. Зимой требуется хороший доступ к солнечной энергии для нагрева тепловой массы. Соответствующие отношения стекла к массе имеют решающее значение; их лучше всего определить с помощью теплового моделирования.
Края перекрытий в таких климатических условиях всегда должны быть изолированы. В таких климатических условиях также рекомендуется изолировать нижнюю сторону плиты на земле, поскольку снижение потребности в отоплении, как правило, больше, чем уменьшение потребности в летнем охлаждении.
Здания, которые получают мало или совсем не получают пассивного солнечного излучения, все же могут выиграть от строительства большой массы, если они хорошо изолированы и герметичны. Однако они медленно реагируют на тепловую нагрузку, и их лучше всего поддерживать при постоянной температуре с помощью эффективных систем.
Виды тепловой массы
Бетонные плиты
Бетонные плиты могут быть построены на земле или подвешены над землей. Подвесные плиты всегда следует утеплять.
В некоторых климатических условиях полезно соединять тепловую массу в перекрытиях с землей.Самый распространенный пример — строительство плиты на земле. Менее распространенные примеры — кирпичные или земляные полы или дома, покрытые землей.
Это называется заземлением. Земля действует как изолятор для уменьшения потерь тепла от плиты и связывает дом с более глубокими температурами грунта, которые являются более стабильными.
Летом, когда поверхность пола имеет постоянную тепловую связь с землей (например, плитка или полированный бетон), она может «отводить» значительные тепловые нагрузки. Он также обеспечивает более прохладную поверхность, на которую тела пассажиров могут излучать тепло (или проводить к ним босыми ногами).Это увеличивает как психологический, так и физиологический комфорт.
Зимой заземленная плита может поддерживать более высокую температуру, чем плита относительно окружающего воздуха (например, подвесная плита). Добавление пассивного солнечного или механического нагрева более эффективно из-за меньшего повышения температуры, необходимого для достижения комфортных температур, чем если бы плита подвергалась воздействию наружного воздуха.
Конструкция перекрытия
Используйте такие поверхности, как карьер, керамическая плитка или полированная бетонная плита.Чтобы максимально увеличить нагрев и охлаждение ваших полов из термальной массы, минимизируйте количество ковров и ковриков и не закрывайте участки плиты, подверженные зимнему солнцу, ковром, пробкой, деревом или другими изоляционными материалами: используйте коврики, если хотите, но в местах вне помещений. солнце.
Изоляция плит
В климатических условиях, где температура грунта зимой ниже комфортного уровня, целесообразно утеплить плиту, чтобы уменьшить потери тепла на землю в зимние месяцы. В жарком климате изоляция под плитой может предотвратить попадание постоянного источника тепла в дом.
В зависимости от климата, эффект охлаждения летом от заземления (снижение потребности в энергии) может превышать или не превышать дополнительную энергию, требуемую зимой для компенсации неизолированной плиты на земле. Важно добиться правильного баланса, обсудив эти вопросы со своим дизайнером и консультантом по энергетике.
Изоляция края плиты — хорошая идея, так как она защищает края плиты от нагрева или охлаждения из-за изменений температуры почвы на мелководье, прилегающей к ней.Неизолированные вертикальные края перекрытий проводят энергию через ограждающую конструкцию здания. Конденсация может возникать в климатических условиях с низкими зимними ночными температурами на улице.
Национальный строительный кодекс (NCC) требует, чтобы вертикальные края плиты на земле были изолированы в климатической зоне 8 (холодный климат) или при установке внутри плиты обогрева или охлаждения внутри плиты.
Учитывайте защиту от термитов при проектировании изоляции кромок перекрытий. Позаботьтесь о том, чтобы выбранный тип системы управления термитами был совместим с изоляцией края плиты.
Обратите внимание, что изоляция краев плиты (показанная справа от эскиза) улучшает эффект сцепления, поддерживая контроль температуры плиты прямо по краям. Изолируйте края плиты в холодном климате или там, где внутри плиты установлено отопление или охлаждение
Стены
Каменные стены обеспечивают хорошую теплоемкость, если они расположены внутри или защищены изоляцией. Избегайте отделки каменных стен гипсокартоном, потому что это изолирует тепловую массу от внутренней части и снижает ее способность поглощать и отдавать тепло.
Конструкция, облицованная обратным кирпичом, является примером хорошей практики термической массы для наружных стен, поскольку масса находится внутри и снаружи изолирована. В традиционной облицовке кирпичом масса кирпича не способствует накоплению тепла, поскольку она изолирована изнутри, а не снаружи. Кирпичная кладка с двумя полостями также может обеспечить хорошую тепловую массу, если полость должным образом изолирована.
Тепловые стены
Вода
Емкости, наполненные водой, можно использовать как заменитель массы.Вода имеет вдвое большую теплоемкость, чем бетон, и поглощение тепла значительно выше из-за конвекции внутри контейнера. Вода может обеспечить аналогичную емкость для хранения кладки при значительно меньшей массе и объёме, что делает воду экономически эффективным массовым вариантом для верхних этажей.
Однако следует соблюдать осторожность при использовании воды внутри здания. Закрытые контейнеры с добавлением небольшого количества химического вещества для контроля роста водорослей считаются лучшей практикой для использования воды в качестве термальной массы.
Внутренние или закрытые водные объекты, такие как бассейны, также могут обеспечивать тепловую массу, но требуют хорошей вентиляции. Они также должны быть изолированы, потому что испарение может поглощать тепло зимой и создавать проблемы с конденсацией круглый год.
Заполненные водой трубки обеспечивают тепловую массу в легком доме
Фото: Петри Куркаа
Материалы с фазовым переходом
Растет интерес к использованию материалов с фазовым переходом (ПКМ) в качестве легкого заменителя тепловой массы в строительстве.
Все материалы требуют ввода энергии для изменения состояния (то есть из твердого состояния в жидкость или из жидкости в газ). Эта энергия не изменяет их температуру, а только их состояние. Все материалы меняют свое состояние при разных температурах (например, вода меняет состояние на лед при 0 ° C).
С PCM, которые настроены на комфортную для человека температуру, когда в комнате достигается определенная температура, любое дополнительное тепло или холод поглощается PCM по мере того, как он меняет состояние. Эта энергия удерживается PCM до тех пор, пока в комнате не станет холоднее, чем PCM, который затем высвобождает свою энергию.
Материалы, плавящиеся при температуре от 22 ° C до 25 ° C, очень полезны для хранения зимней пассивной солнечной энергии. Любое повышение температуры выше точки плавления в дневное время поглощается PCM при изменении состояния. Эта энергия сохраняется до тех пор, пока ПКМ не начнет снова затвердевать, когда температура опускается ниже точки плавления в ночное время. Когда PCM затвердевает, он высвобождает накопленное тепло. PCM одинаково хорошо работают в зданиях с пассивным охлаждением, если достаточное ночное охлаждение может снизить температуру ниже точки плавления PCM.
Обычно используемые ПКМ включают парафиновый воск, пальмовое и кокосовое масло и различные доброкачественные соли. Некоторые из них доступны в Австралии. PCM имеют высокие начальные затраты по сравнению с обычными тепловыми массами, но могут снизить затраты за счет экономии места и конструкции. Они являются хорошим способом установки массы в существующих зданиях и особенно полезны в легких зданиях. PCM намного легче кирпичной кладки и могут быть подходящими для верхних этажей, а также могут быть полезны на сильно ограниченных участках, где в противном случае было бы трудно установить тепловую массу.
Модули
PCM могут быть интегрированы с другими строительными материалами, такими как гипсокартон, для достижения лучших тепловых характеристик. Например, заявленная теплоемкость гипсокартона PCM толщиной 13 мм эквивалентна 50 мм бетона. Различные продукты доступны за рубежом; доступность рынка в Австралии была нерегулярной, но со временем может улучшиться, если спрос возрастет.
Энергии | Бесплатный полнотекстовый | О влиянии изменения теплопроводности в зданиях в строительном секторе Италии
В 2010 году на здания приходилось 32% общего глобального конечного энергопотребления, 19% выбросов парниковых газов (ПГ), связанных с энергетикой, 51% мирового потребления электроэнергии , 33% выбросов углерода и от восьмой до трети выбросов фторсодержащих газов [1].В жилых домах на отопление помещений приходится самая высокая доля от общего потребления первичной энергии, равная 32%. В коммерческих зданиях отопление помещений также преобладает в потреблении, составляя 33% от общего потребления первичной энергии [1]. В Европейском Союзе (ЕС) в последние годы были предприняты важные усилия в области энергетической политики, и в результате были приняты различные директивы. Среди них наиболее важными являются Директива об энергоэффективности зданий [2,3] и Директива об энергоэффективности [4].Кроме того, есть много свидетельств того, что улучшение практики энергоэффективности в существующем жилом фонде будет иметь решающее значение для обеспечения энергетической устойчивости на уровне ЕС [5]. Эта стратегия даже определяется как «новый старт» для новой экономики ЕС [6], поскольку финансирование энергоэффективности может быть разблокировано государственным и частным партнерством, а не полагаться только на средства ЕС [7]. Принимая во внимание проблему снижения потребности в отоплении помещений, потери тепла могут быть уменьшены за счет улучшения характеристик оболочки с повышенным уровнем изоляции.Эта мера — наиболее эффективный способ резко снизить потребность в отоплении, учитывая, конечно, зависимость от климатических условий [8]. Однако в существующем жилом фонде эта мера намного дороже, чем замена котлов в системах отопления [9,10]. Тем не менее, существует очевидная синергия между улучшением характеристик оболочки здания и определением размеров и эксплуатацией технических систем [11], даже в случае передовых систем преобразования энергии [12]. Следуя этим свидетельствам, многие исследовательские усилия были сосредоточены на определении методологий [13] для определения экономически оптимальных уровней энергетических характеристик [13] в новых и модернизированных зданиях [14,15], и влияние изоляции может быть уменьшено. чрезвычайно актуален при моделировании [16].Очевидно, что для оценки осуществимости проекта необходима достаточно надежная оценка производительности [17]. В этом смысле неопределенность энергетических характеристик представляет собой проблему в методологиях технико-экономической оценки, и необходимо учитывать соответствующие источники неопределенности, чтобы максимально ограничить «разрыв в производительности» [18] или побочные эффекты, такие как «повторная привязка» »[19],« предварительно привязанные »[20] и риск перегрева [21]. Эти эффекты могут потенциально подорвать доверие к методам повышения энергоэффективности, и по этим причинам необходимы соответствующие методологические инструменты для учета неопределенности в применении в зданиях — например, на уровне заключения контрактов на энергоэффективность [22].
В этой статье рассматривается один конкретный аспект, который может повлиять на характеристики строительных изоляционных материалов (и, следовательно, общие характеристики здания) — температурная зависимость теплопроводности — и то, как приближения, используемые в инструментах расчета, могут повлиять на оценки производительности. До сих пор этот аспект обычно игнорируется и не рассматривается в ряде научных публикаций об энергетическом поведении зданий. В частности, потенциальная неопределенность, вносимая приближениями постоянной и линейной температурной зависимости, решается путем объединения экспериментального анализа и термогигрометрического моделирования для отдельных тематических исследований в трех климатических условиях Италии.
Сравнительный анализ термических аспектов и механической стойкости строительных материалов и элементов с землей
Работа проводится в рамках многолетнего исследовательского проекта PIP № 11220150 100570CO под названием «Социальные технологии в городской среде обитания с бедным населением». Эта работа финансируется Национальным советом по научным и техническим исследованиям (CONICET) и Департаментом архитектуры, дизайна и городского планирования Университета Буэнос-Айреса в сочетании с Проектом исследований и разработок оптимизированных технологий Wattle и Daub для жилищного строительства в холодных условиях. Засушливые и полузасушливые аргентинские поселки, также финансируемые CONICET.
Для того, чтобы объединить внешнюю среду с архитектурными работами, все большее число специалистов в области строительства реализуют жилищные и городские проекты, в которых учитывается экологичность. Устойчивость заключается в адаптации среды обитания человека к ограничивающему фактору: способности окружающей среды удовлетворять потребности человека, чтобы ее природные ресурсы не деградировали безвозвратно (Alavedra, Domínguez, Gonzalo & Serra, 1997, p. 42).
Что касается промышленной деятельности, строительство и связанные с ним отрасли являются крупнейшим потребителем природных ресурсов, таких как древесина, полезные ископаемые, вода и энергия.Точно так же после постройки здания продолжают оставаться прямой причиной загрязнения из-за выбросов, которые они производят, тем самым влияя на окружающую среду региона, потребляя энергию и воду для регулярных операций (Alavedra et al., 1997, стр. 42).
Стадии производства строительных материалов и их побочных продуктов обычно приводят к сильному воздействию на окружающую среду. Это воздействие начинается с добычи природных ресурсов, которые будут использоваться в производственном процессе, и продолжается с помощью энергии, потребляемой на каждой стадии процесса.В результате выбросы попадают в атмосферу в виде загрязнителей, которые могут быть коррозионными и высокотоксичными. Этот процесс повторяется как при эксплуатации, так и при использовании здания, пока материалы не будут окончательно уменьшены до основных частей, которые будут переработаны или повторно использованы в новом строительстве.
Критерии устойчивого строительства определяют производство зданий с пониженным содержанием промышленных материалов, тем самым избегая, когда это возможно, использования материалов, которые заканчивают свой жизненный цикл как опасные отходы или чьи основные компоненты трудно разрушить.Основное воздействие строительных материалов на окружающую среду включает: потребление энергии, твердые отходы, вклад в парниковый эффект, повреждение озонового слоя и другие факторы загрязнения окружающей среды (Cáseres, 1996, стр. 7-8; Wassouf, 2014).
Предполагается, что почва является самым старым строительным материалом, который использовалось человечеством, и в настоящее время она представляет собой решение проблемы спроса на недорогое жилье (Vega, Andrés, Guerra, Morán, Aguado & Llamas, 2011, стр. 3021). Даже сегодня 30% населения мира живет в земных убежищах (Freire & Tinoco, 2015, стр.18). Эта альтернатива имеет множество оправданий, в том числе: высокая доступность этого сырья в природе, его меньшее загрязнение и низкие выбросы CO2 на этапах производства и транспортировки (Piattoni, Quagliarini & Lenci, 2011, стр. 2067), а также нулевое генерирование отходы, как на стадии строительства, так и на стадии сноса; Аналогичным образом, одним из наиболее ценных его свойств является его тепловая реакция, которая необходима для комфорта и сокращения использования дополнительных систем отопления или охлаждения на протяжении всего жизненного цикла здания.
Наиболее распространенные строительные системы с землей — это саман, плетень и мазня, утрамбованная земля и CEB. В этих естественных строительных системах большая часть энергии, используемой для производства, поступает от солнца, потому что они сушатся на открытом воздухе, под солнцем, без необходимости прибегать к сушке в печи, как в обожженном кирпиче. Это снижает потребление невозобновляемой энергии и соответствующие выбросы.
Важной характеристикой надлежащего функционирования и удобства домашней обстановки является удобный дизайн для ее обитателей.В этом смысле материалы, используемые в оболочке здания, имеют фундаментальное значение, поскольку они объединяют элементы, отделяющие внутреннюю среду от внешней. Выбор этих элементов зависит от различных факторов, таких как технология, которую можно использовать, ее структурный отклик, жизненный цикл и эстетика.
Учитывая, что земляные материалы имеют неоднородное поведение, их нельзя типизировать для достижения однородного отклика, как, например, с бетоном.В случае с почвой его поведение будет зависеть от состава каждого образца почвы и каждого участка (Минке, 2005, стр. 16). Таким образом, строительные элементы из разных грунтов имеют разные термические, механические и физические характеристики.
Настоящая работа представляет собой сборник данных, полученных в результате исследовательских проектов, и руководящих принципов, касающихся переменных теплового поведения, а также механической и структурной устойчивости земляных строительных материалов. Некоторые из этих значений являются результатом экспериментальных испытаний, проведенных в аккредитованных учреждениях по всему миру.Они относятся к свойствам различных строительных технологий с грунтом, таких как глинобитный, утрамбованный грунт, плетень и мазня, а также CEB и другие. Некоторые из материалов, используемых в традиционном строительстве, были взяты за основу, например, обожженный кирпич, пустотелый керамический кирпич и бетон. На основе этого анализа возникают некоторые соображения, которые помогают определить наиболее важные характеристики земляных строительных материалов и взаимосвязь между ними.
Методология
Был использован метод сравнительного анализа как термических свойств, так и механической прочности.С этой целью была составлена библиография, содержащая существующие публикации нескольких авторов, а также данные нормативных документов и экспериментальные данные, полученные авторами настоящей работы. Сначала для оценки были определены термические и механические свойства. Затем были созданы сравнительные таблицы для визуализации тепловых свойств и плотности, полученных разными авторами для каждой природной строительной системы (например, саман, утрамбованная земля, CEB, плетень и мазня), а также для систем, используемых в традиционном строительстве (например.грамм. полнотелый, пустотелый керамический кирпич и монолитный бетон).
Чтобы соответствовать минимальному уровню теплового комфорта в соответствии с биологической зоной окружающей среды, проанализированная толщина стенок из глиняной конструкции отражает максимальные значения теплопередачи, допустимые для стен в Аргентине в соответствии со стандартом IRAM.
Наконец, та же сравнительная процедура была проведена для механических сопротивлений как земляных, так и традиционных строительных систем. Сравниваемые значения были получены каждым автором или каждым нормативным стандартом и относятся к сопротивлению материала порезанию, изгибу и простому сжатию.
Заключение отражает анализ сравнительного термического и механического сопротивления, полученный из обзора литературы, а также собственные размышления авторов об условиях для потенциального развития земляного строительства в Аргентине.
Результаты
Термические и механические характеристики материалов
Ниже приведены определения, связывающие каждое измеренное свойство с силами или потоками энергии, которые производят значения, записанные в каждой соответствующей таблице.
Тепловые свойства
Термические свойства относятся к большей или меньшей способности передавать или накапливать тепло, тем самым определяя тепловую инерцию конструкции. Применительно к самому материалу эти емкости могут быть определены как: плотность, удельная теплоемкость и теплопроводность. Применительно к элементам конструкции, таким как горизонтальные ограждения (потолки), прозрачные вертикальные ограждения (фиксированные рамы, окна и ставни) и непрозрачные вертикальные ограждения (стены и двери), эти возможности определяются как теплопроводность, теплоемкость, тепловая инерция и задерживать.Значение этих термических свойств приводится в следующих разделах.
Термические свойства применительно к материалам
Плотность (кг / м 3 ): масса на единицу объема тела. Большая или меньшая плотность строительного материала влияет на его изоляционные свойства, что будет проанализировано позже. Следует отметить, что плотность также влияет на механические свойства.
Теплопроводность X [Вт / мК]: количество тепла, которое передается в одном направлении, за единицу времени и площади поверхности, когда градиент температуры в этом направлении однороден.
Термические свойства по отношению к элементам конструкции
Коэффициент теплопередачи K [Вт / м 2 K]: количество тепла, передаваемого шкафом в устойчивом состоянии, на квадратный метр поверхности (перпендикулярно тепловому потоку), в единицу времени и на единицу градиента температуры между внутренними помещениями. и внешняя среда.
Тепловая инерция: это способность массы материалов поглощать и накапливать тепло в дневное время, которое затем выделяется для кондиционирования внутренней среды (обычно в ночное время).Это помогает достичь лучшего теплового комфорта за счет уменьшения колебаний температуры в помещении по сравнению с температурой наружного воздуха. Процесс передачи энергии не является мгновенным. Существует задержка во времени передачи тепла за счет теплопроводности от одной стороны стены к другой, известная как тепловая инерция. На рисунке 1 представлены концепции теплового запаздывания, времени, прошедшего, пока тепло, поглощаемое стеной, достигает противоположной стороны, и демпфирования, разницы в энергии между открытой лицевой стороной стены и внутренней частью (Gutierrez & Gallegos, 2015, стр.61).
Рисунок 1
Кривые теплового запаздывания для стены
Источник: источники freixanet (2009, с. 122).
Механические свойства
Механические свойства относятся к наиболее важным параметрам строительных материалов или технологий. Эти свойства: простая прочность на сжатие, прочность на разрыв и сопротивление сдвигу. Под простой прочностью на сжатие понимается способность материалов противостоять раздавливающим нагрузкам перед разрушением. В случае прочности на разрыв — это способность материалов выдерживать нагрузки, которые имеют тенденцию тянуть их до разрушения.Прочность на сдвиг относится к способности выдерживать сдвигающие нагрузки. Эти сопротивления имеют одно и то же выражение; в каждом случае изменяется сила, приложенная к элементу (Cieck, 2005, стр. 136).
После того, как были определены понятия термических и механических свойств, был проведен сравнительный анализ каждого из них в отношении материалов, используемых как в земляном, так и в традиционном строительстве, в соответствии с результатами, опубликованными разными авторами.
Плотность и тепловые свойства некоторых материалов и элементов конструкций, используемых в промышленном и земляном строительстве
В таблице 1 показаны плотность, теплопроводность и коэффициент теплопередачи различных почвенных смесей и некоторых земляных строительных элементов, таких как саман, смесь соломы и грязи, твердый ил, CEB, плетень и мазня.В таблице 2 приведены соответствующие значения плотности, теплопроводности, толщины и теплопередачи для стен из обожженного кирпича, пустотелого керамического кирпича и монолитного бетона.
Таблица 1
Тепловые свойства некоторых земляных материалов и строительных элементов различной толщины по мнению разных авторов.
Источник: разработка автора (2019).
Таблица 2
Тепловые свойства некоторых традиционных материалов и строительных элементов различной толщины, по мнению разных авторов.
Источник: разработка автора (2018).
Стены, построенные из грунта, имеют значения плотности, которые варьируются от 750 кг / м 3, для смеси солома с грязью и 2000 кг / м 3 для твердого раствора. Для сравнения, плотность промышленных материалов может варьироваться от 1300 кг / м 3 для обычного полнотелого кирпича до 2400 кг / м 3 для монолитного бетона.
Получены от нескольких авторов, также представлены значения коэффициента теплопередачи и теплопроводности, соответствующие значениям плотности этих материалов.Есть некоторые отличия теплопроводности земляных конструкций от обычных. В первом случае он основан на значениях 0,30 Вт / мК для смеси солома-грязь, 0,95 Вт / мК для самана и 1,60 Вт / мК для твердого бурового раствора с переменной толщиной от 0,074 м для плетня и мазка до 0,35 м. для самана.
Во втором случае значения варьируются от 0,29 Вт / мК для пустотелого кирпича до 2,32 Вт / мК для полнотелого кирпича толщиной 0,18 м .
На рис. 2 в логарифмическом масштабе показаны значения теплопроводности материалов, обычно используемых в традиционном строительстве.Пенополистирол показывает самую низкую теплопроводность, а медь — самую высокую теплопроводность. На рисунке 2 также показан диапазон электропроводности для систем земляных зданий, который варьируется от 0,46 Вт / мК до 1,00 Вт / мК, что свидетельствует о небольшом изменении теплопроводности для земляных конструкций по сравнению с материалами, обычно используемыми в традиционном строительстве.
Рисунок 2
Сравнение теплопроводности строительных материалов в в / мк (логарифмическая шкала)
Источник: разработка автора, по материалам edison (2018).
Анализ взаимосвязи между плотностью материала и теплопроводностью (рис. 3) показывает, что материалы с низкой плотностью имеют низкие значения теплопроводности.Это потому, что они имеют меньшее уплотнение и больше пустот, что приводит к более легкому и более изолирующему материалу по сравнению с более плотным и компактным материалом. Эту динамику можно увидеть в случае легкого и ячеистого бетона, где чем выше плотность, тем выше проводимость. В случае глинобитного и уплотненного грунта плотность относительно постоянна, поэтому электропроводность незначительна; однако, в случае легкой почвы, плетня и мазки, плотность низкая из-за наличия большего количества воздуха и ручной строительной техники, используемой для подъема стен (Таблица 1).
Рисунок 3
Зависимость плотности от проводимости
Источник: evans (2004), стр. 15.
Другой аспект, проанализированный несколькими авторами, — это тепловая задержка различных строительных систем. В таблице 3 показано сравнительное тепловое отставание глинобитной стены от стены из уплотненного грунта, расположенной в биоэкологической зоне IIIb, с минимальной толщиной — согласно стандарту IRAM 11.605 (IRAM 11605, 1996, стр. 16) — 25 см и 35 см. , соответственно. Они обеспечивают тепловую задержку 8.4 часа и 11,4 часа, оба с одинаковым коэффициентом теплопередачи. Ни в том, ни в другом случае нет риска образования поверхностной или межклеточной конденсации.
Таблица 3
Температурное отставание глинобитной стены от уплотненной земляной стены
Источник: evans (2004, с. 15).
Точно так же тепловой отклик сырца сравнивается с традиционными материалами, такими как бетон, кирпич и камень (рис. 4). Видно, что во всех материалах существует линейная взаимосвязь между толщиной стены и тепловой задержкой, где саман является промежуточным звеном между бетоном и кирпичом.Если необходимо провести более тщательное исследование, оно должно проводиться при толщине обычной кирпичной стены 0,20 м, которая выдерживает тепловую задержку в 6 часов. Для бетонных стен такой же толщины задержка составляет 5 часов, но в случае сырца стены обычно строятся толщиной 0,30 м, что приводит к задержке в 9 часов; то есть, если максимальный пик наружной температуры приходится на полдень, вся поглощенная энергия будет доставлена во внутреннюю среду к 9 часам вечера, когда это наиболее необходимо для достижения комфорта.Без учета потерь с внешней поверхности элемента в наружный воздух поглощение солнечного излучения внешней поверхностью считается равномерным, что указывает на постоянное значение для всех случаев.
РИСУНОК 4
Кривые теплового запаздывания для различных строительных материалов
Источник: evans (2007, с. 10).
Анализ максимально допустимых значений теплопередачи стен в Аргентине
Чтобы оптимизировать вертикальные ограждения дома, IRAM 11.603 (2012) и IRAM 11.605 (1996) стандарты были использованы для определения максимально допустимого значения K max A D M коэффициента теплопередачи K в стенах для каждой биоэкологической зоны в Аргентине (Рисунок 5).
После этого с учетом коэффициента теплопередачи, указанного в таблицах 1 и 2, ограждение проверяется по различным биоклиматическим зонам в соответствии с прогнозируемой внешней температурой (зимой) в столицах каждой провинции. IRAM 11.605 указывает на 3 уровня гигротермического комфорта: Уровень A: рекомендуется; Уровень B: средний; и уровень C: минимум.Частично они определяются отсутствием поверхностной конденсации, когда температура воздуха в помещении поддерживается на определенных значениях в соответствии со стандартом IRAM 11.625. Настоящее исследование проводилось в соответствии с рекомендациями для Уровня C: температура 18 2 C и разница до 4 ° C между внутренней температурой модели и температурой внутренней поверхности корпуса.
В таблице 4 показаны значения ADM K M AX для городов в каждой провинции Аргентины в зависимости от внешней температуры модели (TED) в соответствии со значениями стандарта IRAM 11.603.
Таблица 4
Максимально допустимые значения коэффициента теплопередачи kmax adm для каждой провинции Аргентины
Источник: IRAM 11.603, (2012).
В таблице 5 показаны максимальные значения K в соответствии с зоной биоокружающей среды, определенной в IRAM 11.603, и уровнем теплового комфорта. Здания в биоэкологической зоне V и VI не требуют охлаждения.
Таблица 5
Максимальные значения коэффициента теплопередачи в зависимости от зоны биоэкологии и уровня гигротермического комфорта.
Источник: IRAM 11605 (1996, стр. 7).
На основании уровня комфорта C и максимально допустимых значений коэффициента теплопередачи K для зимнего сезона в таблице 6 показано, какие материалы термически подходят для использования в строительстве ограждений в различных биоклиматических зонах Аргентины, как установлено IRAM 11.603.
Таблица 6
Сертификация биоэкологической зоны на коэффициент теплопередачи различных материалов
Таблица 6, (продолжение)
Сертификация биоэкологической зоны на коэффициент теплопередачи различных материалов
Источник: разработка автора на основе IRAM 11.601 (2002, стр. 14).
Для этого анализа были рассмотрены наиболее распространенные примеры традиционного строительства: кирпичная стена толщиной 0,20 м с использованием кирпичей шириной 0,18 м и 0,01 м штукатурки с обеих сторон, и бетонные блоки без штукатурки. В обоих случаях значения поверхностного сопротивления составили 0,13 м 2 К / Вт для внутренней части и 0.04 м 2 K / W для экстерьера.
Вышеописанная оштукатуренная кирпичная стена имеет значение K 2,58 Вт / м 2 K, что не соответствует требованиям для какой-либо зоны биологической окружающей среды. Если его мощность увеличить до 0,30 м, значение K снизится до 2,03 Вт / м 2 K, что подходит только для летних условий в биоэкологических зонах Illa, IVa и IVb, которые отмечены как очень теплые и теплые области (см. Рис. 4). В случае стены из бетонных блоков, заполненных стекловолокном, она имеет толщину 0.19 м, что сертифицировано для всех биоэкологических зон. Это оптимальный вариант для зимы.
Оценка толщины наружной стены по применяемой технологии земляного строительства
На основании анализа, проведенного разными авторами и стандартами, было выбрано пять методов строительства земли: саман, CEB, утрамбованная земля, плетень, мазня и соломенная обшивка. Была произведена оценка минимальной ширины несущей или отдельно стоящей внешней стены, которая соответствовала бы сертифицированным значениям K для уровня комфорта C (см. Таблицу 7) для дома, расположенного в Большом Буэнос-Айресе, биоэкологическая зона lllb ( умеренно-теплая зона с небольшими тепловыми амплитудами в течение всего года).В случае самана и CEB толщина наружных стен варьируется от 0,35 м до 0,43 м. Для утрамбованной земли необходимо работать с толщиной стен 0,40 м. Что касается плетеной, мазной и соломенной обшивки, обе из которых являются более изоляционными за счет тростника в плетенке и мазке, а также воздуха между соломой в соломенной обшивке, обе позволяют уменьшить толщину. Для плетня и мазни наружные стены должны быть толщиной 0,28 м. В случае соломенной доски необходимая толщина стены составляет 0,25 м. Кроме того, в крайнем случае города Рио-Гальегос было показано, что толщина стены из плетня и мазка должна быть равна 0.27 м, чтобы оставаться в пределах уровня C от стандарта, однако уровень комфорта B может быть достигнут при общей толщине всего 0,13 м за счет включения 2 см пенополистирола (Cuitiño, Esteves & Rotondaro, 2014). Наблюдая за этими значениями, можно сделать вывод, что для Большого Буэнос-Айреса ограждения, использующие один из этих пяти методов, будут приемлемой термической альтернативой ограждению из керамического кирпича толщиной 0,35 м.
Таблица 7
Оценка минимально необходимой толщины внешней стены, которая должна быть сертифицирована для гигротермического комфорта уровня c в биоклиматической зоне lllb (центральная часть провинции Буэнос-Айрес).
Источник: разработка автора (2018).
Механическая прочность материалов и элементов стен корпуса
Существует периодическая дискриминация земляных сооружений из-за недостатка знаний о механических характеристиках материалов, компонентов и строительных систем. Многие авторы проводили испытания глинобитных конструкций, конструкций из цементного бруса и утрамбованного грунта для определения устойчивости к простым напряжениям сжатия, резания и изгиба. Такое поведение имеет первостепенное значение при проектировании и строительстве.По достижении стадии, когда необходимо оценить сопротивление конструктивных элементов, становятся актуальными техника строительной системы, материалы и пропорции.
Перуанский стандарт Adobe E.080 (Министерство транспорта, коммуникаций, жилищного строительства и строительства, 2000 г.) определяет саман как «твердый блок сырой земли, который может содержать солому или другой материал для повышения его устойчивости к внешним воздействиям и уменьшения трещин, вызванных усадкой. после высыхания «. В случае CEB процесс более контролируемый, поскольку для создания давления уплотнения используется пресс, в отличие от кирпичной кладки, которая не производится с уплотнением раствора.Это сжатие подразумевает увеличение плотности блока, что придает ему превосходные механические качества.
Утрамбованная земля отличается от предыдущих компонентов, потому что она производится с использованием подвижной опалубки, в которой стабилизированная земля сжимается послойно с помощью трамбовки, и таким образом стена строится по частям. В таблицах 8, 9, 10 и 11 представлены значения прочности на сжатие, изгиб и растяжение, полученные разными авторами на основе стандартизованных испытаний в разных странах и их собственных данных.
Таблица 8
Значения механического сопротивления для самана.
Источник: разработка автора (2018).
Таблица 9
Значения механического сопротивления для CEB
Источник: разработка автора (2018).
Таблица 10
Значения механического сопротивления при сжатии утрамбованной земли
Источник: разработка автора (2018).
Таблица 11
Значения сопротивления сдвигу и простому сжатию для земляных и промышленных строительных материалов и компонентов (regalement cirsoc 501)
Источник: авторская разработка (2018).
В случае самана прочность на сжатие варьируется от 3 кгс / см 2 до 21 кгс / см 2 ; его прочность на разрыв и сдвиг очень низкая: 3,16 кгс / см 2 . CEB показывает улучшенный отклик со значениями в диапазоне от 17 кг / см 2 до 121,8 кг / см 2 . Колебания отражают содержание цемента в смеси: по мере увеличения процентной доли цемента сопротивление сжатию и изгибу увеличивается. Наконец, утрамбованная земля имеет переменное сопротивление в зависимости от смеси песка и глины и толщины стены.
Таким образом, полученные значения варьируются от 46 кгс / см 2 до 196 кгс / см 2 . Для других материалов и компонентов, таких как обожженный кирпич, в таблице 12 показаны значения сжатия от 17,5 кгс / см 2 до 78 кгс / см 2 . Для пустотелого бетонного блока эти значения находятся в диапазоне от 45,5 кгс / см 2 до 130 кгс / см 2 . По этим данным видно, что саман имеет очень низкие значения механического сопротивления, поэтому необходимо укрепить конструкцию, чтобы улучшить ее структурные характеристики.CEB и утрамбованная земля имеют лучший отклик, чем саман, с точки зрения стандартизованных значений механической прочности, и их можно сопоставить между откликами обычного обожженного кирпича и бетонных блоков. Однако, несмотря на его наилучший отклик, следует иметь в виду, что в случае промышленных систем его толщина составляет около 0,18 м, а в случае систем земляного строительства — около 0,30 м и 0,90 м.
Таблица 12
Диапазон значений плотности, проводимости и коэффициента теплопередачи для земляных и промышленных строительных компонентов и материалов
Источник: разработка автора (2018).
Обсуждение
Это исследование представляет собой сравнительный анализ термического и механического поведения различных строительных материалов и элементов, изготовленных из стабилизированных природных грунтов, по отношению к свойствам некоторых традиционных промышленных материалов. Он показывает сложность гомогенизации значений для глинобитных материалов, легких грунтов и утрамбованных грунтов. Такое поведение является результатом переменной плотности и диапазона материалов и растворов, обычно используемых при их производстве.
Также было показано, что теплопроводность экспоненциально изменяется в зависимости от плотности, которая изменяется в зависимости от наличия растительного волокна и степени уплотнения. То есть, чем больше уплотнение, тем ниже пористость или процент воздушных карманов; таким образом, уменьшается и утеплитель, и увеличивается теплопроводность: чем выше плотность элемента конструкции, тем больше значение проводимости. Такое поведение, вероятно, является источником различий, иногда заметных, между значениями теплопроводности или значениями теплопроводности в результатах, полученных в результате стандартизованных испытаний, проведенных разными авторами.Используя данные из таблиц 1 и 2, таблица 13 суммирует тепловое поведение, предоставляя диапазон значений плотности, проводимости и теплопередачи, независимо от авторов, проводивших оригинальные исследования.
Можно видеть, что значения плотности для материалов, используемых в технологиях земляного строительства, которые содержат растворы с низкой плотностью волокна или уплотненные стабилизированные грунты, имеют значения между 1200 кг / м 3 и 2200 кг / м 3 . Невозможно работать с более низкой плотностью, потому что это подразумевает наличие большего количества воздуха, включенного в миномет.
В случае наиболее распространенных промышленных материалов в традиционном аргентинском строительстве видно, что они обладают более высокой плотностью: от 1305 кг / м 3 до 2400 кг / м 3 .
В отношении стандарта IRAM 11.605 можно сделать вывод, что 1,85 Вт / м 2 K необходимы для достижения уровня экологического комфорта C в зоне lllb, провинция Буэнос-Айрес. Таким образом, для достижения такого уровня изоляции с помощью традиционной технологии стены из обычного полнотелого кирпича требуют толщины 0.35 м, а в случае пустотелых керамических блоков и несущих керамических блоков необходима стена толщиной 0,20 м. Для сравнения, необходимая толщина наружных стен из самана и БСЭ составляет от 0,35 до 0,43 м; для утрамбованной земли нужна стена 0,40 м; в случае плетения и мазни нужна толщина 0,28 м; а для соломенной обшивки нужна толщина 0,25 м.
Другим анализируемым поведением было механическое сопротивление, в первую очередь простому сжатию, поскольку оно является одним из наиболее важных механических свойств земляных материалов и строительных компонентов.В случае простой прочности на сжатие диапазон или изменение составляет от 3 кгс / см 2 до 21 кгс / см 2 для самана, за исключением единственного значения 30,4 кгс / см 2 в Таблице 9, которое показывает очень низкое сопротивление растяжению и сдвигу. Простая прочность на сжатие улучшается в случае CEB со значениями от 17 кг / см 2 до 121,8 кг / см 2 , что сравнимо с показателями обычного обожженного кирпича, которые могут варьироваться от 17,5 кг / см 2 до 70 кг / см 2 , а для пустотелых бетонных блоков — от 45.5 кгс / см 2 и 130 кгс / см 2 .
Выводы
В качестве заключительного размышления и с учетом результатов этого исследования, даже с учетом отличительных особенностей и ограниченной поведенческой стандартизации для различных материалов, строительных растворов и строительных элементов, прогнозируемое развитие земляного строительства и архитектуры в Аргентине очень актуально в этой области. жилья. Этот прогноз основан на том факте, что в последние десятилетия наблюдается рост использования этой технологии для строительства домов и общественных зданий по всей Аргентине, от регионов с самой высокой сейсмической уязвимостью до регионов с самой низкой.В ближайшем будущем эти изменения могут способствовать улучшению предложений по строительству мест обитания с четкой ориентацией на устойчивую архитектуру, а также сокращению жилищного дефицита.
Не исключено, что на это увеличение строительства с использованием земляных технологий повлияли присущие им характеристики и свойства их механического и теплового поведения, такие как изоляционная способность, простота конструкции, использование природных местных материалов и низкие относительные экономические затраты. .
Аналогичным образом, структурный аспект некоторых методов земляного строительства может быть полезен, если они сочетаются с качественным проектированием и исполнением в отношении ширины стены, усиления и пропорциональности. Это актуально для сейсмических зон, так как эта технология дает возможность изготавливать земляные конструкции с легкими, гибкими и прочными конструкциями.
Растущее признание и интерес к земляному строительству является стимулом для продолжения исследования преимуществ ее тепловых свойств и характеристик, а также механической стойкости, которые характеризуют различные методы строительства, в которых используются модифицированные естественные грунты, и здания с повышенным экологическим комфортом и структурной стабильностью.
Ссылка
Alavedra, R, Domínguez, J., Gonzalo, E., & Serra, J. (1997). La construcción sostenible: el estado de la cuestión. Informes de la Construcción, 451 (49), 41-47. http://dx.doi.Org/10.3989/ic.1997.V49.¡451.936.
Арансибия, Р. (2013). Medida de la conductividad térmica con el método de la aguja térmica, basado en la fuente lineal de calor transitorio, para su aplicación en los cerramientos de adobes y bloques de tierra comprimida (докторская диссертация Тесиса). Мадрид: Мадридский политехнический университет. Recuperado de :: http: // oa.upm.es/21903/.
Ариас, Э., Латина, С. М., Альдерете, К., Меллаче, Р. Ф, Соса, М., и Феррейра, И. (2007). Comportamiento Térmico de Muros de Tierra en Tucumán, (стр. 1-8). Буэнос-Айрес, Аргентина: ANPCYT, Agencia Nacional de Promoción Científica y Tecnológica. Recuperado de :: https://fci.uib.es/digitalAssets/177/177906_4.pdf.
Arias, L., Alderete, C., Mellace, R., Latina, S., Sosa, M., & Ferreyra, I. (2006). Diseño y Análisis Estructural de Componentes Constructivos de Tierra Cruda.Memorias V o Seminario Iberoamericano de Construcción con Tierra (V o SIACOT). Мендоса: CRICYT CONICET. Recuperado de :: https://dialnet.unirioja.es/servlet/articulo?codigo=4529876.
Бедоя-Монтойя, К. (2018). Construcción de vivienda sostenible con bloques de Suelo Cemento: del Остаточный материал. Revista de Arquitectura (Богота), 20 (1), 62-70. http://dx.doi.Org/1 0.1 471 8 / RevArq.2018.20.1.1193.
Бестратен, С., Хормиас, Э., и Альтемир, А.(2011). Construcción con tierra en el siglo XXI. Informes de la Construcción, 63 (523), 5-20. DOI: http://dx.doi.org/10.3989/ic.10.046.
Бласко, И., Альбаррасин, О., Годальго, Э., Дубос, А., Перейра, А., Флорес, М., и Мерино, Н. (2002). Construcción de salón comunitario en suelo-Cemento, ler Seminario — Exposición -Consorcio Terra cono-sur. La tierra cruda en la construcción del hábitat, (стр. 10).
Касерес Теран, Дж. (1996, октябрь). Desenvolupament Sostenible. Revista Tráete (66), 7-8.
Куитиньо Г., Эстевес А. и Ротондаро Р. (2014). Análisis del comportamiento térmico de muros de quincha. Castellanos Ochoa, M. N. (Comp.) Arquitectura de Tierra: Patrimonio y sustentabilidad en regiones sísmicas. 14 ° SIACOT — Иберо-американо-иберо-американское архитектурное бюро и строительство на Тьерре (стр. 184–192). Тукуман.
Куитиньо, О., Эстевес, А., Мальдонадо, О., и Ротондаро, Р. (2015). Análisis де ла трансмиссия térmica y resistencia al impacto de los muros de quincha.Informes de la Construcción, 67 (537), e063. 1-11 DOI: http://dx.doi.org/10.3989/ic.12.082.
Куитиньо, О., Мальдонадо, О., и Эстевес, А. (2014). Анализ механического поведения сборных стен из плетеной плитки и шпаклевки. Международный журнал архитектуры, инженерии и Con 10,5 Avances en Energías Renovables y Medio Ambiente, 13, 203-210. Recuperado de :: https://www.mendoza-conicet.gob.ar/asades/modulos/averma/trabajos/2009/2009-t005-a026.pdf.
Etchebarne, R., Piñero, O, & Silva, J.(2006). Proyecto Terra Uruguay. Создание прототипов жизни и использование технологий на уровне: Adobe, Fajina и BTC. Construcción con Tierra, 2, 5-20. Recuperado de: https://core.ac.Uk/download/pdf/151807285.pdf#page=5
Эванс, Дж., Шиллер, С., & Гарсон, Л. (2012). Desempeño térmico de viviendas construidas con quincha. Construcción con tierra, 5, 93-102. Recuperado de :: https://core.ac.Uk/download/pdf/151807279.pdf#page=125.
Эванс, Дж. (2004).Construcción en tierra: Aporte a la ownabilidad. 1er Seminario deConstrucción con Tierra, 12-17.
Эванс, Дж. (2007). Actualización de la construcción con tierra. Construcción con tierra 3, 7-15.
Фернандес, Э., и Эстевес, А. (2004). Conservación de energía en sistemas autoconstruidos. Эль-Касо-де-ла-Куинча Мехорада. Avances en Energías Renovables y Medio Ambiente, 8 (1) 121-125. Recuperado de: http://sedici.unlp.edu.ar/handle/10915/81714.
Фрейре, Д., и Тиноко, Дж.(2015). Estudio de una propuesta de mejoramiento del sistema constructivo adobe (Tesis de grado). Эквадор: Университет Куэнка. Recuperado de :: http://dspace.ucuenca.edu.ec/handle/123456789/22773.
Fuentes Freixanet, В. А. (2009). Modelo de análisis climático y Definición de estrategias de Disño bioclimático para differentes regiones de la República Mexicana. Tesis de Doctor en Diseño. Azcapotzalco: Universidad Autónoma Metropolitana — Unidad Azcapotzalco División de Ciencias y Artes para el Diseño.Recuperado de :: https://core.ac.uk/download/pdf/128736412.pdf.
Гатани, М. (2002). Producción de Ladrillos de Suelo Cemento. ¿Una alternativa eficiente, económica y Sustentable? Actas I Seminario Exposición La tierra cruda en la construcción del hábitat (стр. 203–212). Сан-Мигель-де-Тукуман: Facultad de Arquitectura y Urbanismo. Национальный университет Тукумана.
Гик, К. (2005). Manual de fórmulas técnicas. Мексика: Альфаомега.
Гутьеррес, Р., и Гальегос, Д.(2015). Construcción Sustentable, Análisis de retraso térmico a bloques de tierra comprimida. Contexto, 9 (11). 59-71.Recuperado de: http://contexto.uanl.mx/index.php/contexto/article/view/49.
Hays, A., & Matuk, S. (2003). Рекомендации по разработке технических нормативов по техническому образованию с использованием смесей конструкции на земле. En Técnicas mixtas de construcción Proyecto XIV .6 Proterra Habyted Subprograma XIV-Viviendas de Interés Social. (стр. 121-352). Сальвадор: Ибероамериканская программа Ciencia y Tecnología para el Desarrollo (CYTED).
Хиткот, К. (2011). Тепловые характеристики земляных построек. Informes de la Construcción, 63 (523), 117-126. DOI: http://dx.doi.org/10.3989/ic.10.024.
Houbén, H., & Cuillaud, H. (1984). Земляное строительство. Брюссель: CRATerre / PCC / CRA / UNCHS / ACCD.
INPRES CIRSOC 103, часть III. Норма (2016). Reglamento argentino para construcciones sismorresistentes. 75. Буэнос-Айрес, Аргентина: Национальный институт промышленных технологий.
ИНПРЕС ЦИРСОК 501.Норма (2007). Reglamento argentino de estructuras de mampostería. 64. Буэнос-Айрес, Аргентина: Национальный институт промышленных технологий.
IRAM 11.601. Норма (2002). Aislamiento térmico de edificios. Métodos de cálculo. 52. Буэнос-Айрес, Аргентина.
IRAM 11.603. Норма (2012). Condicionamiento térmico de edificios Clasificación bioambiental de la República Argentina. 43. Буэнос-Айрес, Аргентина.
IRAM 11.625. Норма (2000). Aislamiento térmico de edificios — Verificación de sus condiciones highrotérmicas.41. Буэнос-Айрес, Аргентина.
IRAM 11605. Norma (1996). Acondicionamiento térmico de edificios. Condiciones de Hubabilidad en edificios. Valores máximos de Transmitancia térmica en cerramientos opacos. 27. Буэнос-Айрес, Аргентина.
Лучано Ф., Брейд М., Карай Э., Мерканти Н. и Тирнер Дж. (2006). Proyecto, конструкция и конструкция компонентов вивьендас кон суело-цемент монолитико-ан-ла-провинция-де-корриентес. V Seminario Iberoamericano de Construcción con Tierra — I Seminario Argentino de Arquitectura yConstrucción con Tierra.Мендоса, Аргентина: AHTER-CRIATiC. Recuperado de :: https://dialnet.unirioja.es/servlet/articulo?codigo=4531585.
Мас, Дж. М., и Киршбаум, К. Ф. (2012). Estudios de resistencia a la compresión en bloques de suelo-цемент. Avances en Energías Renovables y Medio Ambiente, 16, 77-84. Recuperado de :: https://www.mendoza-conicet.gob.ar/asades/modulos/averma/trabajos/2012/2012-t005-a010.pdf.
Маццео, Дж., Ласус, О., Калоне, М., Сангинетти, Дж., Феррейро, А., Маркес, Дж., И Мато, Л.(2007). Proyecto hornero: prototipo global de Experimentación construcción con materiales naturales. Монтевидео, Уругвай: Университет Республики. Recuperado de :: https://hdl.handle.net/20.500.12008/9469.
МакГенри-младший, П. (1996). Adobe. Cómo construir fácilmente. Мексика: Триллы.
Ministerio de Transportes, Comunicaciones, Vivienda y Construcción. (2000). Norma Técnica de edificaciónE.080. 16. Лима, Перу. Recuperado de: https://www.sencico.gob.pe/descargar. php? idFile = 3478.
Минке, К. (2005). Manual de construcción con tierra. La tierra como material de construcción y su aplicación en la arquitectura actual (2-е изд.) Кассель, Алемания: Fin de Siglo.
Моэвус М., Энгер Р. и Фонтейн Л. (2012). Гигротермомеханические свойства земляных материалов для строительства: обзор литературы. Терра, 12, 1-10. Recuperado de :: https://hal.archives-ouvertes.fr/hal-01005948.
Муньос, Н., Томас, Л., и Марино, Б. (2015). Comportamiento térmico dinámico de muros típicos empleando el método de la admitancia.Energías Renovables Y Medio Ambiente (ERMA), 36. 31–39. Recuperado de: http://www.ekeko.org/ojs8/index.php/ERMA/article/view/125.
Невес, К. (2006). O uso do solo-cimento em edificações. Опыт, который нужно сделать CEPED. V Ибероамериканский семинар по строительству на Тьерре — I Аргентинский семинар по архитектуре и строительству на Тьерре, (стр. 1-11). Мендоса, Аргентина: AHTER-CRIATiC. Recuperado de: https://dialnet.unirioja.es/servlet/articulo?codigo=4529722.
Пиаттони, К., Квальярини, Э., & Lenci, S. (2011). Экспериментальный анализ и моделирование механического поведения глиняных кирпичей. Строительство и строительные материалы, 2067-2075. http://dx.doi.org/10.1016/j.conbuildmat.2010.11.039.
Понс, К. (2018). Características generales del adobe como material de construcción. Recuperado de :: http://ecosur.org/index.php/es/ecomateriales/ adobe / 712-caracteristicas-generales-del-adobe-como-material-de-construccion.
Ривера Торрес, Дж. (2012). El adobe y otros materiales de sistemas constructivos en tierra cruda: caracterización con fines estructurales.Апунтес. Revista de Estudios sobre patrimonio culture, 25 (2). 164-181. Recuperado de :: https://revistas.javeriana.edu.co/index.php/revApuntesArq/article/view/8763.
Ротондаро, Р. (2011). Adobe: Técnicas de construcción con tierra. Бразилия: PROTERRA
Ру К., Р., Эспуна М., Дж., И Карсия И., В. (2008). Influencia del Cemento Portland en las características de resistencia de compresión simple y permeabilidad en los BTC. Seminário Ibero-Americano de Construção com Terra -II Congresso de Arquitetura e Construção com Terra no Brasil (стр.210-219). Бразилия: UTN Rafaela.
Санчес М., Бельярдо Х., Казенаве С. и Шак Дж. (2008). Elaboración de bloques de suelo-cemento con barros de excación para pilotes. Иберо-американо-де-конструкторское сообщество Терра-II Конгресс Аркитетура и Конструкторское товарищество Терра-но-Бразилия (стр. 190–197). Бразилия: UTN Rafaela.
Вальдес, К., и Рапиман, Дж. (2007). Propiedades físicas y mecánicas de bloques de Germigón compuestos con áridos reciclados. Información Tecnológica, 18 (3), 81-88.Recuperado de: https://scielo.conicyt.cl/pdf/infotec/v18n3/art10.pdf.
Вега, П., Андрес, Дж., Куэрра, М., Моран, Дж., Агуадо, П., и Лламас, Б. (2011). Механическая характеристика традиционных адобэ с севера Испании. Строительство и строительные материалы, 25 (7), 3020-3023. DOI: http://dx.doi.org/10.1016/j.conbuildmat.2011.02.003.
Вассуф, М. (2014). Passivhaus — de la casa pasiva al estándar. Барселона: Густаво Чили.
Ямин Лакутюр, Л., Филлипс Бернал, К., Рейес Ортис, Дж., И Руис Валенсия, Д. (2007). Estudios de weakrabilidad sísmica, rehabilitationación y refuerzo de casas en adobe y tapia pisada. Апунтес. Revista de Estudios sobre patrimonio culture, 20 (2). 286-377. Recuperado de https://revistas.javeriana.edu.co/index.php/revApuntesArq/article/view/8984.
Юсте, Б. (2014). Arquitectura en tierra. Caracterización de los tipos edificatorios (Tesis de Máster de Arquitectura, Energía y Medio Ambiente). Каталония: Политехнический университет Каталонии.Recuperado de :: https://wwwaie.webs.upc.edu/maema/wp-content/uploads/2016/07/26-Beatriz-Yuste-Miguel-Arquitectura-de-tierra_COMPLETO.pdf
Банкноты
Куитиньо Росалес М. Дж., Ротондаро Р., Эстевес А. (2020). Сравнительный анализ термических аспектов и механической стойкости строительных материалов и элементов с землей. Revista de Arquitectura (Богота), 22 (1). 138-151. http://dx.doi.org/10.14718/RevArq.2020.2348
R-показателей изоляции и других строительных материалов
В этой статье есть таблица значений R для строительных материалов, но сначала мы должны быстро осветить некоторые основы, касающиеся значений R, U-факторов и расчета теплового сопротивления.
Что такое R-значения?
В строительстве R-значение является мерой способности материала сопротивляться тепловому потоку от одной стороны к другой. Проще говоря, R-значения измеряют эффективность изоляции, а большее число представляет более эффективную изоляцию.
R-значения складываются. Например, если у вас есть материал с R-значением 12, прикрепленным к другому материалу с R-value 3, то оба материала вместе имеют R-значение 15.
R-значение Единицы
Как мы уже говорили, показатель R измеряет термическое сопротивление материала. Это также можно выразить как разность температур, которая заставит одну единицу тепла проходить через одну единицу площади за период времени.
Уравнение R-value (Британские единицы) R-value Equation (SI)
Два приведенных выше уравнения используются для расчета R-ценности материала. Имейте в виду, что из-за единиц измерения имперское значение R будет немного меньше, чем значение R.В приведенных ниже таблицах используются имперские единицы, поскольку наш веб-сайт ориентирован на рынок Северной Америки.
Что такое U-фактор?
Многие программы моделирования энергопотребления и расчеты кода требуют U-факторов (иногда называемых U-значениями) сборок. U-фактор — это коэффициент теплопередачи, который просто означает, что он является мерой способности сборки передавать тепловой энергии по своей толщине. U-фактор сборки является обратной величиной общего R-значения сборки.Уравнение показано ниже.
Уравнение фактора U
Таблицы R-значений строительных материалов
Значения R для конкретных узлов, таких как двери и остекление, в таблице ниже являются обобщениями, поскольку они могут значительно различаться в зависимости от специальных материалов, используемых производителем. Например, использование газообразного аргона в стеклопакете с двойным стеклопакетом значительно улучшит R-значение. Обратитесь к документации производителя для получения информации о значениях, характерных для вашего проекта.
Материал | Толщина | R-значение (F ° · кв.фут · ч / британская тепловая единица) | |
---|---|---|---|
Воздушная пленка | |||
Внешний вид | 0,17 | ||
Внутренняя стена | 0,68 | ||
Внутренний потолок 0,68 0,68 Воздушное пространство | |||
Минимум от 1/2 дюйма до 4 дюймов | 1,00 | ||
Строительная плита | 0.45 | ||
Гипсокартон | 5/8 « | 0,5625 | |
Фанера | 1/2″ | 0,62 | |
Фанера | 1 « | 1/2 « | 1,32 |
Древесно-стружечная плита средней плотности | 1/2″ | 0,53 | |
Изоляционные материалы | 9024-Минеральный Волокно с металлическими шпильками 2х4 @ 16 «OC | 5.50 | |
Минеральное волокно R-11 с деревянными шпильками 2×4 @ 16 дюймов OC | 12,44 | ||
Минеральное волокно R-11 с металлическими шпильками 2×4 @ 24 дюйма OC | 6.60 | Минеральное волокно с металлическими штифтами 2×6 при OC 16 дюймов | 7,10 |
Минеральное волокно R-19 с металлическими штифтами 2×6 @ 24 дюйма OC | 8,55 | ||
R-19 Минеральное волокно с 2×6 деревянными стойками @ 24 «OC | 19.11 | ||
Пенополистирол (экструдированный) | 1 « | 5,00 | |
Пенополиуретан (вспененный на месте) | 1″ | 6,25 | |
9142 | |||
лицевой 7.20 | |||
Каменная кладка и бетон | |||
Обычный кирпич | 4 « | 0.80 | |
Лицевой кирпич | 44 | ||
Бетонная кладка (CMU) | 4 « | 0,80 | |
Бетонная кладка (CMU) | 8″ | 1,11 | |
Бетонная кладка 909 | 1,28 | ||
Бетон 60 фунтов на кубический фут | 1 дюйм | 0,52 | |
Бетон 70 фунтов на кубический фут | 1 дюйм | 0,42 | |
кубических футов 90 дюймов на 80 фунтов | 0.33 | ||
Бетон 90 фунтов на кубический фут | 1 дюйм | 0,26 | |
Бетон 100 фунтов на кубический фут | 1 дюйм | 0,21 | |
Бетон 120 фунтов на кубический фут 1 | 0,13 | ||
Бетон 150 фунтов на кубический фут | 1 дюйм | 0,07 | |
Гранит | 1 дюйм | 0,05 | |
Песчаник / известняк 1 9042 909 | 08 | ||
Сайдинг | |||
Алюминий / винил (без теплоизоляции) | 0,61 | ||
Алюминий / винил (1/2 дюйма, изоляция 1⁄2 дюйма) | |||
Напольные покрытия | |||
Твердая древесина | 3/4 « | 0,68 | |
Плитка | 0.05 | ||
Ковер с волокнистой подкладкой | 2,08 | ||
Ковер с резиновым подкладом | 1,23 | ||
| |||
| |||
Деревянная черепица | 0,97 | ||
Остекление | |||
Одинарная панель | 1/4 «0.91 | ||
Двойное стекло с воздушным пространством 1/4 дюйма | 1,69 | ||
Двойное стекло с воздушным пространством 1/2 дюйма | 2,04 | ||
Двойное стекло с воздушным пространством 3/4 дюйма | 2,38 | ||
Тройное стекло с воздушными пространствами 1/4 дюйма | 2,56 | ||
Тройное стекло с воздушными пространствами 1/2 дюйма | 3,23 | ||
4 | |||
Дерево, твердая сердцевина | 1 3/4 « | 2.17 | |
Металлическая дверь с твердой изоляцией, изоляция из полистирола Расчет по ASTM C518 | 1,5 — 2 дюйма | 6,00 — 7,00 | |
Металлическая дверь с твердой изоляцией, изоляция из полистирола ASTM C1363 Оперативная | 1,5 дюйма | 2,20 — 2,80 | |
Металлическая дверь с твердой изоляцией, полиуретановая изоляция ASTM C518 Расчетное | 1,5 — 2 дюйма | 10,00 — 11,00 | |
Металлическая дверь с твердой изоляцией, изоляция из полиуретана ASTM C1363 9142 .5–2 дюйма | 2,50 — 3,50 |
Значения в приведенной выше таблице были взяты из ряда источников, в том числе: ASHRAE Handbook of Fundamentals , ColoradoENERGY.org, и Building Construction Illustrated , автор Francis D.K. Чинг. Также использовались другие второстепенные источники. Archtoolbox не тестирует материалы или сборки.
Двери и агрегаты
В приведенной выше таблице вы заметите, что для изолированных металлических дверей с полиуретановой изоляцией предусмотрены два совершенно разных значения R.На основании ASTM C518 (метод расчета) дверь имеет значение R до 11, но при использовании ASTM C1363 (проверено / работоспособно) та же дверь имеет значение R только до 3,5. Это огромная разница и, по сути, сводится к тому, что ASTM C518 является теоретическим максимумом, основанным на тепловом испытании в установившемся режиме только части дверной панели. Однако все мы знаем, что рама, прокладки и оборудование значительно влияют на коэффициент теплопередачи. Поэтому был внедрен новый стандартный тест ASTM C1363, который тестирует всю дверную сборку.
включая раму и фурнитуру.
Результаты ASTM C1363 намного ниже, но они гораздо более точны для реальных условий установки. Фактически, двери работают так же, как и раньше — просто значения R намного больше соответствуют тому, как дверь действительно работает. Многие архитекторы в настоящее время определяют двери с тестом ASTM C1363 в качестве стандарта на коэффициент теплопередачи. Ожидается, что этому примеру последуют и другие продукты.
Для получения дополнительной информации ознакомьтесь со статьей Института стальных дверей. Почему изменились рейтинги тепловых характеристик?
Роль теплоизоляции и аккумулирования тепла в энергетических характеристиках стеновых материалов: исследование с помощью моделирования
Материалы для внешних стен
Были вычислены все потенциальные материалы k и C V в вышеуказанных диапазонах в BuildingEnergy как внешние или внутренние стены.Предполагалось, что помещение будет располагаться в Хэфэе, Китай, где сезон охлаждения / лета длится с 15 июня по 5 сентября, а сезон отопления / зимы — с 5 декабря по 5 марта следующего года. Климатические данные, используемые в BuildingEnergy, были типичными ежегодными метеорологическими данными, предоставленными Китайскими наборами метеорологических данных для анализа температурной среды. Толщина внешней и внутренней стенок была установлена равной 240 и 100 мм, соответственно, и другие толщины стенки могут быть эквивалентно преобразованы в эти значения с помощью обработки, описанной в дополнительной информации.Благодаря такой обработке выводы из фиксированных толщин будут универсальными для всех значений толщин.
На рисунке 1 показаны контуры энергопотребления для внешних стен из различных материалов, в которых материалы внутренних стен закреплены как обычные кирпичи. Теплофизические свойства кирпича представлены в таблице 1. Как показано на рис. 1, теплопроводность и объемная теплоемкость материалов наружных стен оказывают значительное влияние на энергетические характеристики, а потребление энергии сильно варьируется вместе с k и C V .Нулевое значение может быть достигнуто для чрезвычайно низкого значения k из-за отсутствия окна и внутреннего источника тепла.
Рис. 1: Контуры энергопотребления по отношению к внешним стенам.
Когда материалы внешней стены различаются по своей теплопроводности и объемной теплоемкости, материалы внутренней стены остаются неизменными. ( a ) Результаты для лета в Хэфэе и ( b ) для зимы в Хэфэе. Несколько распространенных строительных материалов также расположены на рисунках в соответствии с их свойствами.
Таблица 1 Теплофизические свойства типовых строительных материалов.
Для летнего применения (рис. 1 (a)), как правило, уменьшение проводимости или увеличение объемной теплоемкости материалов приводит к снижению потребления энергии охлаждения в помещении. Низкий k и высокий C V подразумевают небольшой коэффициент температуропроводности α , который определяется как k / C V или k / ( ρc p ). α влияет на переходный процесс теплопроводности через стену: в материалах с малым α тепло передается медленно, и, таким образом, внешняя среда оказывает меньшее влияние на внутреннюю среду, чем ситуация с материалами с большим α. В дополнение к замедлению теплопроводности внутри стены через небольшой α , низкий k также способствует блокированию теплопередачи через границу внешней стены. Если k достаточно низкое, тепло может редко достигать внутренней поверхности из окружающей среды, поэтому C V не может оказывать свое влияние на процесс теплопередачи внутри.Как следствие, когда k ниже 0,25 Вт / (м · K) на рис. 1 (a), контурные линии почти горизонтальны, что означает, что C V оказывает незначительное влияние на энергетические характеристики. и что низкий k имеет приоритет перед большим C V .
По мере увеличения k наклоны контурных линий также увеличиваются, а именно, возрастает значимость C V . Когда k больше 3.0 Вт / (м · К) линии почти вертикальные, что означает, что на энергетические характеристики почти исключительно влияет C V . Такое явление можно объяснить с помощью приближения сосредоточенной емкости. Когда это приближение выполняется, т.е. допущение о равномерном распределении температуры внутри твердого тела является разумным, градиентами температуры внутри твердого тела можно пренебречь, поэтому изменение теплопроводности оказывает незначительное влияние на теплопроводность.В основном, приближение сосредоточенной емкости выполняется для ситуации, когда сопротивление проводимости внутри твердого тела намного меньше, чем сопротивление конвекции между поверхностью и жидкостью 24 . В нашем случае, если k достаточно велико, стена может вести себя как твердое тело с сосредоточенной емкостью, в результате чего на энергетические характеристики индивидуально влияет C V .
Для зимнего применения (рис. 1 (b)) общая тенденция того, как свойства материала влияют на энергоэффективность, согласуется с таковой летом, но наклон контурных линий почти равен нулю, когда C V ≳ 2000 кДж / (м 3 · K), что указывает на то, что C V имеет ограниченное влияние зимой.
Некоторые типичные строительные материалы, свойства которых представлены в таблице 1, также показаны на рис. 1. Когда они сделаны из одного из этих материалов, соответствующая внешняя стена отличается по энергетическим характеристикам. Обычно наблюдается тенденция к снижению потребления энергии с уменьшением проводимости. Для близких значений k (например, гранит и мрамор) потребление энергии определяется как C V : материал с более высоким значением C V приводит к более низкому потреблению энергии.
Как упоминалось выше, энергетические характеристики на рис. 1 обсуждались при фиксированной толщине стенок. В практических ситуациях толщина с такими же энергетическими характеристиками также может быть эталонным параметром. На рис. 2 показано сравнение толщины и массы некоторых типичных материалов, чьи характеристики охлаждающей энергии приближаются к показателям кирпичной стены 240 мм. Толщина пенополистирола составляет всего 2% от мрамора и 7,5% от кирпича. Кроме того, масса на единицу площади стенки полистирола намного меньше, чем у других материалов из-за низкой плотности полистирола.Малая масса на единицу площади означает меньшую стоимость строительства, а меньшая толщина приводит к большей полезной площади. Поэтому внешняя стена из легких изоляционных материалов, таких как полистирол, будет рекомендована в зданиях после улучшения механической прочности.
Рис. 2: Сравнение толщины и массы на единицу площади стенок типичных материалов.
По энергетическим характеристикам внешняя стена из различных материалов близка к кирпичной стене толщиной 240 мм.Например, потребление энергии на охлаждение помещения с внешней стеной из мрамора толщиной 850 мм примерно равно таковому с внешней стеной из кирпича толщиной 240 мм.
Материалы для внутренних стен
Теперь рассмотрим энергоэффективность материалов для внутренних стен. Аналогичная контурная карта представлена на рис. 3, на котором материалами наружных стен являются обычные кирпичи. Можно заметить, что потребление энергии уменьшается, когда k увеличивается, когда k ≲ 0.5 Вт / (м · К). Высокое значение k способствует теплопроводности. Летом, например, температура поверхности на внутренней стороне может быть снижена за счет отвода некоторого количества тепла внутрь стены, что приведет к снижению потребления энергии на охлаждение (как уравнение (8) в дополнительной информации объясняет). Для материалов k выше 0,5 Вт / (м · К) контурные линии вертикальные, поэтому на энергетические характеристики влияет исключительно объемная теплоемкость.Увеличение C V приводит к снижению потребления энергии как на охлаждение, так и на нагрев. Что касается материалов в Таблице 1, то железобетон, объемная теплоемкость которого самая высокая, является лучшим кандидатом в качестве материала внутренних стен.
Рисунок 3: Контуры энергопотребления по отношению к внутренним стенам.
Когда материалы внутренних стен меняются, материалы наружных стен остаются неизменными. ( a ) Результаты для лета в Хэфэе и ( b ) для зимы в Хэфэе.На рисунках также показаны несколько распространенных строительных материалов.
Обратите внимание, что когда k и C V изменяются, потребление энергии изменяется от 7,2 до 8,3 кВтч / м 2 летом, а диапазон составляет 35,88 ~ 36,28 кВтч / м 2 зимой. Тем не менее, соответствующие диапазоны на рис. 1 составляют 0 ~ 22,5 и 0 ~ 87,2 кВтч / м 2 . Более широкие диапазоны подразумевают более значительную роль внешней стены в энергетических характеристиках, в то же время больший потенциал для улучшения.
Теплопроводность и объемная теплоемкость — неотъемлемые теплофизические свойства материала. Тем не менее, материалы воплощены в некоторых компонентах здания, таких как стена, окно, пол и т. Д. По этой причине инженеры предпочитают использовать параметры, которые могут описывать весь компонент для конкретных материалов. Общий коэффициент теплопередачи, также называемый значением U , и общая теплоемкость обычно используются для характеристики теплоизоляции и способности аккумулировать тепло стены соответственно.С учетом анализа, приведенного в дополнительной информации, требования к материалам стен можно также сформулировать как потребность в стене в целом, что можно резюмировать следующим образом: общая теплоемкость как внешних, так и внутренних стен должна быть высокой. , а значение U внешней стены должно быть низким.
Воздействие окон и внутреннее тепловыделение
Как было заявлено ранее, до сих пор мы игнорировали потенциальное влияние окна.На рис. 4 (а, б) изображены характеристики комнаты с окном. Стеклопакет, расположенный в центре внешней стены, имеет размер 1,5 × 1,5 м 2 и коэффициент пропускания солнечного света 77%. Сравнивая ситуации с окном и без него, обнаруживается, что наличие окна увеличивает потребление энергии на охлаждение, но не меняет тенденцию того, как материалы стен влияют на энергоэффективность. Из-за отсутствия окна минимальное энергопотребление, которое можно получить за счет улучшения внешней стены, равно нулю на рис.1 (а), тогда как соответствующее значение с окном составляет 11,4 кВтч / м 2 на рис. 4 (а). Промежуток между нижними пределами создается прозрачной частью оболочки, то есть окном, и может быть заполнен путем непрерывного развития окон, показывая, что оболочка здания с высокими эксплуатационными характеристиками должна быть достигнута путем одновременного улучшения конструкции. прозрачные и непрозрачные детали.
Рис. 4: Потребление энергии на охлаждение из различных материалов для комнаты с окном и внутреннее тепловыделение в Хэфэе.
( а, б) В помещении цельностеклянное окно размером 1,5 м × 1,5 м. ( c, d ) Помимо окна учитывается также внутренний приток тепла. Эти цифры могут обобщить открытия для более практических ситуаций.
Для дальнейшего обобщения результатов в комнате с окном также учитывались внутренние тепловыделения, чтобы смоделировать более реалистичную ситуацию. Тепловыделение от людей и оборудования принято равным 4,3 Вт на единицу площади пола, а от освещения — 3.5 Вт на единицу площади пола при включенном свете с 18:00 до 22:00 ежедневно. Результаты представлены на рис. 4 (c, d), который иллюстрирует, что учет внутреннего притока тепла не меняет общих правил влияния материалов стен на энергетические характеристики. Влияние других конфигураций комнаты на общие правила, например, ориентация, размер комнаты, также оказалось незначительным, и детали можно увидеть в дополнительной информации.
Влияние климатических условий
Вышеупомянутые обсуждения были начаты для города Хэфэй, который имеет климат жаркого лета и холодной зимы.Чтобы изучить влияние климата, на рис. 5 показаны ситуации для Пекина с холодным климатом и Гуанчжоу с климатом жаркого лета и теплой зимы. В Гуанчжоу отсутствует отопительный период из-за того, что средняя температура самого холодного месяца все еще составляет 14 ° C. Тенденции влияния свойств материала на потребление энергии полностью такие же, как и в Хэфэе, что означает, что эти тенденции не зависят от климата. Единственная разница заключается в диапазонах энергопотребления: комнаты в Гуанчжоу демонстрируют более высокое потребление охлаждения, чем в Хэфэе, а комнаты в Пекине имеют более высокое потребление тепла.