Содержание
Напряжение на светодиоде
В сети «гуляют» таблицы со следующими величинами рабочего напряжения светодиодов:
белые 3-3,7 v
синие 2,5-3,7 v
зеленые 2,2-3,5 v
желтые 2,1-2,2 v
красные 1,6-2,03 v
В то же время производители конкретных SMD светодиодов дают следующие напряжение питания светодиодов:
Напряжение красного светодиода самое низкое, а белого – самое высокое.
На цвет свечения светодиода влияют добавки в полупроводнике. Корректировать цвет удается нанесением люминофора, так, например, получают из голубого свечения белый свет.
Падение напряжения на светодиоде зависит не только от цвета свечения, но и от конкретного типа, протекающего тока, температуры и старения. Отвод тепла в лампах, светильниках и прожекторах является очень важной задачей, т.к. сильно влияет на степень деградации светодиодов. .
На практике самым важным параметром светодиода, от которого зависит срок его службы, является номинальный ток. Для светодиодов увеличение тока на 20% выше номинального сокращает срок их службы в несколько раз. Поэтому для светодиодов стабилизатор напряжения не обязателен, важнее поддерживать заданный ток с помощью специальных драйверов, которые автоматически поддерживают ток в широком диапазоне колебаний напряжения питания. «Правильные» драйверы обеспечивают нормальную работу светодиодной лампы в диапазоне питающего напряжения 60-260 вольт.
В случае использования токограничивающих резисторов, напряжение желательно стабилизировать. КПД при таком включении складывается из КПД стабилизатора напряжения и потерь на резисторе и не превышает 80%, в то время как КПД современных драйверов-стабилизаторов тока не ниже 95%.
Наличие технологического разброса прямого падения напряжения даже у диодов произведённых в одном технологическом цикле, делает нежелательным их параллельное включение.
Проблема решается уменьшением тока через светодиоды с соответствующей потерей яркости свечения, либо установкой ограничительного резистора на каждый led.
При последовательном включении все светодиоды в гирлянде, должны быть одного типа или иметь одинаковый рабочий ток.
Следует помнить, что светодиод пропускает ток только при подаче на катод отрицательного напряжения, а на анод положительного.
При обратном включении ток протекает при повышенном напряжении и следствием может стать пробой и выход из строя.
Допустимое обратное напряжение, как правило, находится в пределах 5 вольт.
При питании переменным током надо использовать встречно-параллельное включение диодов.
Зависимость интенсивности излучения светодиода от прямого тока нелинейная, при увеличении тока интенсивность излучения растет не пропорционально.
Как понять, на сколько вольт рассчитан светодиод | Энергофиксик
Конечно, мы все прекрасно знаем, что главным параметром всех светодиодов является номинальный ток. Но кроме этого, так же очень важно знать, на какое напряжение рассчитан светодиод.
Хочу сразу сказать, что под аббревиатурой напряжение светодиода подразумевается разница потенциалов на p – n переходе в открытом состоянии. Этот параметр имеет справочный характер и его можно посмотреть в технической документации, где также указаны и другие параметры светодиодов.
Но зачастую у нас нет под рукой документов на светодиод, который мы нашли у себя в запасах. А вот как узнать падение напряжения в этом случае мы и поговорим в статье.
Определяем падение напряжения теоретическим способом
Итак, у вас есть светодиод, но при этом нет на него документов. Цвет, которым светится светодиод, может вам о многом рассказать, как сам корпус, форма и размеры полупроводникового прибора.
Если у светодиода корпус из прозрачного компаунда, то каким цветом он светится без его подключения загадка. Чтобы определить, а заодно и проверить исправность светодиода, нам потребуется мультиметр.
Переводим переключатель в положение прозвонка и щупами касаемся поочередно выводов диода. При этом у рабочего светодиода в прямом смещении вы увидите, что он слегка засветится.
Таким нехитрым способом вы определили цвет и исправность самого светодиода.
Почему именно важен цвет свечения? Да все просто. Светодиоды разных цветов изготавливаются из различных полупроводниковых компонентов. Именно химия полупроводника во многом определяет, какое падение напряжения будет на P-N переходе.
Но так как во время производства применяется множество химических элементов, то лишь по цвету можно определить только приблизительно на какое напряжение рассчитан тот или иной светодиод.
Если вы знаете какого цвета ваш светодиод, то вполне можно найти в интернете техническую документацию на светодиоды похожей конструкции, но обязательно одного цвета. И уже в ней посмотреть примерно какое напряжение на вашем светодиоде.
Теоретические изыскания вам смогут дать лишь приблизительные данные, но практический опыт позволит определить реальное напряжение светодиода.
Практическое определение напряжения светодиода
Для того, чтобы на практике определить напряжение кроме самого светодиода понадобится еще резистор на сопротивление 580 Ом (можно больше), регулируемый блок питания, например как у меня.
Собираем все наши детали вот по этой схеме:
Тут все очень просто: через резистор мы ограничиваем ток, а мультиметром мы контролируем прямое падение напряжения на светодиоде.
И проверка выглядит следующим образом: от регулируемого источника питания плавно (с нуля) начинаем подавать напряжение. Как только его величина подберется к порогу срабатывания, светодиод засветится.
При дальнейшем повышении напряжения яркость свечения достигнет своего номинала и показания мультиметра (в режиме вольтметра) перестанут расти. Это будет указывать на то, что p – n переход полностью открыт и дальнейшее увеличение напряжения на блоке питания будет прикладываться исключительно к резистору.
Вот эти показания на мультиметре и будут указывать на номинальное прямое напряжение светодиода.
Примечание. Если вы увидели, что на мультиметре установилось напряжение в 1,9 Вольта, но при этом светодиод не светится, то вероятнее всего перед вами инфракрасный светодиод. Чтобы убедиться в этом, возьмите телефон, включите камеру и посмотрите на тестируемый светодиод через нее. Если увидите, что в камере он светится ярко, то значит, вы тестируете именно инфракрасный светодиод.
Заключение
Вот такими нехитрыми способами можно найти напряжение светодиода. Если понравилась статья, то оцените ее лайком. Спасибо за ваше внимание!
Как определить напряжение светодиода мультиметром
В этой статье объясним подробно как определить напряжение светодиода мультиметром.
Тестер транзисторов / ESR-метр / генератор
Многофункциональный прибор для проверки транзисторов, диодов, тиристоров…
Все светодиоды имеют очень важную характеристику — рабочее напряжение (напряжение падения). Величина рабочего напряжения зависит от материалов из которых они сделаны. По рабочему напряжению все светодиоды можно разделить на 2 группы:
- светодиоды с напряжением от 3 В до 3,8 В (синие, белые и некоторые виды сине-зеленые)
- светодиоды с напряжением от1,8 В до 2,1 В (красные, желтые, оранжевые и большинство зеленых)
В связи с тем, что производители часто создают новые модели светодиодов, мы советуем сперва определить напряжение светодиодов, прежде чем использовать их в своих конструкциях.
Определить это напряжение очень легко. Для этого нам потребуется только источник питания с выходным напряжением от 9 до 16 В, мультиметр и резистор сопротивлением 1 кОм (1000 Ом). Это значение сопротивления гарантирует оптимальный ток для нашего светодиода, не слишком высокий и не слишком низкий.
Ниже приводим действия, необходимые для измерения рабочего напряжения светодиода.
ШАГ 1: Определение полярности выводов нашего светодиода.
Чтобы определить полярность нашего светодиода, в его корпусе есть два элемента, которые мы можем оценить.
Первый — длина выводов. Как вы можете видеть на рисунке, самая короткий вывод – это минусовой вывод.
Второй — элемент находится по окружности светодиода. На корпусе есть скос – это минусовой вывод.
Описанный метод определения работает в отношении всех 3 мм и 5 мм светодиодов.
Можно использовать еще и третий метод, состоящий в том, чтобы заглянуть внутрь светодиода, треугольный вымпелобразный сегмент является отрицательным выводом, а другой, без особой формы, является положительным. Конечно же, этот метод небезопасен, поскольку есть несколько типов светодиодов, где расположение противоположное.
ШАГ 2: Подключаем наш светодиод
После того как мы определили полярность нашего светодиода, мы подключаем один из выводов резистора 1 кОм (1000 Ом) последовательно с положительным выводом светодиода, как показано на рисунке.
Затем мы соединяем другой вывод резистора с плюсом источника питания. Наконец, мы подключаем свободный вывод светодиода к минусу источника питания. Светодиод должен загореться.
ШАГ 3: Подготавливаем наш мультиметр
Теперь мы готовим наш мультиметр для проведения измерения. Переместите селектор тестера в положение измерения постоянного напряжения со шкалой до 20 В. Если наш мультиметр не имеет этой шкалы напряжения, то мы можем выбрать 30 В или 50 В.
Подключаем отрицательный щуп (черный) к входу, который имеет обозначение «COM», в то время как положительный (красный) подключаем к входу V-mA-ῼ. На дисплее вы должны увидеть значение «0.00»
ШАГ 4: Определение напряжения светодиода
Прикладываем положительный щуп (красный) к положительному выводу светодиода, в то время как отрицательный (черный) щуп мультиметра прикладываем с отрицательному выводу. На дисплее мультиметра мы должны увидеть рабочее напряжение светодиода.
Мы можем записать это значение, так как оно будет полезно для вычисления значения сопротивления светодиода. Для расчета сопротивления светодиодов используйте онлайн калькулятор.
www.inventable.eu
Блок питания 0…30 В / 3A
Набор для сборки регулируемого блока питания…
Питание светодиодов, блок питания для светодиодов
Постоянные читатели часто интересуются, как правильно сделать питание для светодиодов, чтобы срок службы был максимален. Особенно это актуально для led неизвестного производства с плохими техническими характеристиками или завышенными.
По внешнему виду и параметрам невозможно определить качество. Частенько приходится рассказывать как рассчитать блок питания для светодиодов, какой лучше купить или сделать своими руками. В основном рекомендую купить готовый, любая схема после сборки требует проверки и настройки.
Содержание
- 1. Основные типы
- 2. Как сделать расчёт
- 3. Калькулятор для расчёта
- 4. Подключение в автомобиле
- 5. Напряжения питания светодиодов
- 6. Подключение от 12В
- 7. Подключение от 1,5В
- 8. Как рассчитать драйвер
- 9. Низковольтное от 9В до 50В
- 10. Встроенный драйвер, хит 2016
- 11. Характеристики
Основные типы
Светодиод – это полупроводниковый электронный элемент, с низким внутренним сопротивлением. Если подать на него стабилизированное напряжение, например 3V, через него пойдёт большой ток, например 4 Ампера, вместо требуемого 1А. Мощность на нём составит 12W, у него сгорят тонкие проводники, которыми подключен кристалл. Проводники отлично видно на цветных и RGB диодах, потому что на них нет жёлтого люминофора.
Если блок питания для светодиодов 12V со стабилизированным напряжением, то для ограничения тока последовательно устанавливают резистор. Недостатком такого подключения будет более высокое потребление энергии, резистор тоже потребляет некоторую энергию. Для светодиодных аккумуляторных фонарей на 1,5В применять такую схему нерационально. Количество вольт на батарейке быстро снижается, соответственно будет падать яркость. И без повышения минимум до 3В диод не заработает.
Этих недостатков лишены специализированные светодиодные драйвера на ШИМ контроллерах. При изменениях напряжения ток остаётся постоянным.
Как сделать расчёт
Чтобы рассчитать блок питания для светодиодов необходимо учитывать 2 основных параметра:
- номинальная потребляемая мощность или желаемая;
- напряжение падения.
Суммарное энергопотреблением подключаемой электрической цепи не должно превышать мощности блока.
Падения напряжения зависит от того, какой свет излучает лед чип. Я рекомендую покупать фирменные LED, типа Bridgelux, разброс параметров у них минимальный. Они гарантированно держат заявленные характеристики и имеют запас по ним. Если покупаете на китайском базаре, типа Aliexpress, то не надейтесь на чудо, в 90% вас обманут и пришлют барахло с параметрами в 2-5 раз хуже. Это многократно проверяли мои коллеги, которые заказывали недорогие LED 5730 иногда по 10 раз. Получали они SMD5730 на 0,1W, вместо 0,5W. Это определяли по вольтамперной-характеристике.
Пример различной яркости кристаллов
К тому же у дешевых разброс параметров очень большой. Что бы это определить в домашних условиях своими руками, подключите их последовательно 5-10 штук. Регулирую количество вольт, добейтесь чтобы они слегка светились. Вы увидите, что часть светит ярче, часть едва заметно. Поэтому некоторые в номинальном рабочем режиме будут греться сильнее, другие меньше. Мощность будет на них разная, поэтому самые нагруженные выйдут из строя раньше остальных.
Калькулятор для расчёта
Для удобства читателей опубликовал онлайн калькулятор для расчёта резистора для светодиодов при подключении к стабильному напряжению.
Калькулятор учитывает 4 параметра:
- количество вольт на выходе;
- снижение напряжения на одном LED;
- номинальный рабочий ток;
- количество LED в цепи.
Подключение в автомобиле
..
При заведенном двигателе бывает в среднем 13,5В — 14,5В, при заглушенном12В — 12,5В. Особые требования при включении в автомобильный прикуриватель или бортовую сеть. Кратковременные скачки могут быть до 30В. Если у вас используется токоограничивающее сопротивление, то сила тока возрастает прямо пропорционально повышению напряжению питания светодиодов. По этой причине лучше ставить стабилизатор на микросхеме.
Недостатком использования светодиодных драйверов в авто может быть появление помех на радио в УКВ диапазоне. ШИМ контроллер работает на высоких частотах и будет давать помехи на ваш радиоприёмник. Можно попробовать заменить на другой или линейный типа стабилизатор тока LM317 для светодиодов. Иногда помогает экранирование металлом и размещение подальше от головного устройства авто.
Напряжения питания светодиодов
Из таблиц видно, для маломощных на 1W, 3W этот показатель 2В для красного, желтого цвета, оранжевого. Для белого , синего, зелёного он от 3,2В до 3,4В. Для мощных от 7В до 34В. Эти циферки придется использовать для расчётов.
Таблица для LED на 1W, 3W, 5W
Таблица для мощных светодиодов 10W, 20W, 30W, 50W, 100W
Подключение от 12В
Одно из самых распространенных напряжений это 12 Вольт, они присутствуют в бытовой технике, в автомобиле и автомобильной электронике. Используя 12V можно полноценно подключить 3 лед диода. Примером служит светодиодная лента на 12V, в которой 3 штуки и резистор подключены последовательно.
Пример на диоде 1W, его номинальный ток 300мА.
- Если на одном LED падает 3,2В, то для 3шт получится 9,6В;
- на резисторе будет 12В – 9,6В = 2,4В;
- 2,4 / 0,3 = 8 Ом номинал нужного сопротивления;
- 2,4 * 0,3 = 0,72W будет рассеиваться на резисторе;
- 1W + 1W + 1W + 0,72 = 3,72W полное энергопотребление всей цепи.
Аналогичным образом можно вычислить и для другого количества элементов в цепи.
Подключение от 1,5В
Источник питания для светодиодов может быть и простой пальчиковой батарейкой на 1,5В. Для LED диода требуется обычно минимум 3V, без стабилизатора тут никак не обойтись. Такие специализированные светодиодные драйвера используются в ручных фонариках на Cree Q5 и Cree XML T6. Миниатюрная микросхема повышает количество вольт до 3V и стабилизирует 700мА. Включение от 1.5 вольт при помощи токоограничивающего сопротивления невозможно. Если применить две батареи на 1.5 вольт, соединив их последовательно, получим 3В. Но батарейки достаточно быстро разряжаются, а яркость будет падать еще быстрее. При 2,5В емкости в батареях останется еще много, но диод уже практически потухнет. А светодиодный драйвер будет поддерживать номинальную яркость даже при 1В.
Обычно такие модули заказываю на Aliexpress, у китайцев стоят 50-100руб, в России они дороговаты.
Как рассчитать драйвер
Чтобы рассчитать драйвер питания для светодиодов со стабильным током:
- составьте на бумаге схему подключения;
- если драйвер китайский, то желательно проверить выдержит он заявленную мощность или нет;
- учитывайте, что для разных цветов (синий, красный, зеленый) разное падение вольт;
- суммарная мощность не должна быть выше, чем у источника тока.
Нарисуйте схему включения, на которой распределите элементы, если они подключены не просто последовательно, а комбинировано с параллельным соединением.
На китайском блоке питания неизвестного производителя мощность может быть значительно ниже. Они запросто указывают максимальную пиковую мощность, а не номинальную долговременную. Проверять сложнее, надо предельно нагрузить блок питания и замерить параметры.
Для третьего пункта используйте примерные таблицы для 1W,3W, 5W, 10W, 20W, 30W, 50W, 100W, которые приведены выше. Но больше доверяйте характеристикам, которые вам дал продавец. Для однокристальных бывает 3V, 6V, 12V.
Если энергопотребление цепи в сумме превысит номинальную мощность источника питания, то ток просядет и увеличится нагрев. Он восстановится до нормального уровня, если снизить нагрузку.
Для светодиодных лент сделать расчёт очень просто. Измерьте количество Ватт на 1 метр и умножьте на количество метров. Именно измерьте, в большинстве случаем мощность завышена и вместо 14,4 Вт/м получите 7 Вт/м. Ко мне слишком часто обращаются с такой проблемой разочарованные покупатели.
Низковольтное от 9В до 50В
Кратко расскажу, что использую для включения для блоков на 12В, 19V, 24В и для подключения к автомобильным 12В.
Чаще всего покупаю готовые модули на ШИМ микросхемах:
- бывают повышающие, например, на входе 12V, на выходе 22В;
- понижающие, например из 24В до 17В.
Не всем хочется тратить большую денежку на покупку готового прожектора для авто, светодиодного светильника или заказывать готовый драйвер. Поэтому обращаются ко мне, что бы из подручных комплектующих собрать что-нибудь приличное. Цена таких модулей начинается от 50руб до 300руб за модель на 5А с радиатором. Покупаю заранее по несколько штук, расходятся быстро.
Больше всех популярен вариант на линейной ИМС LM317T LM317, простой, надежный устаревший.
Очень популярны модели на LM2596, но она уже устарела и советую обратить внимание на более современное с хорошим КПД. Такие блоки имеют от 1 до 3 подстроечных сопротивлений, которыми можно настроить любые параметры до 30В и до 5А.
Встроенный драйвер, хит 2016
В начале 2016 года стали набирать популярность светодиодные модули и COB диоды с интегрированным драйвером. Они включаются сразу в сеть 220В, идеальный вариант для сборки светотехники своими руками. Все элементы находятся на одной теплопроводящей пластине. ШИМ контроллеры миниатюрные, благодаря хорошему контакту с системой охлаждения. Тестировать надежность и стабильность еще не приходилось, первые отзывы появятся минимум через полгода использования. Уже заказал самую дешевую и доступную модель COB на 50W. Чтобы найти такие на китайском базаре Алиэкспресс, укажите в поиске «integrated led driver».
Характеристики
Глобальная проблема, это подделка светодиодов Cree и Philips в промышленных масштабах. У китайцев для этого есть целые предприятия, внешне копируют на 95-99%, простому покупателю отличить невозможно. Самое плохое, когда такую подделку вам продают под видом оригинального Cree T6. Вы будете подключать поддельный по техническим спецификациям оригинального. Подделка имеет характеристики в среднем на 30% хуже. Меньше световой поток, ниже максимальная рабочая температура, ниже энергопотребление. Про обман вы узнаете очень не скоро, он проработает примерно в 5-10 раз меньше настоящего, особенно на двойном токе.
Недавно измерял световой поток своих фонариков на левых Cree производства LatticeBright. Доставал всю плату с драйвером и ставил в фотометрический шар. Получилось 180-200 люмен, у оригинала 280-300лм. Без серьезного оборудования, которое преимущественно есть в лабораториях, вы не сможете измерить, соответственно узнать правду.
Иногда попадаются разогнанные диоды, сила тока на которых на 30%-60% выше номинальной, соответственно и мощность. Недобросовестный производитель, особенно подвально-китайский пользуется тем, что срок службы трудно измерить в часах. Ведь никто не засекает отработанное время, а когда светильник или светодиодный прожектор выйдут из строя продавца уже не найти. Да и искать бессмысленно, срок гарантии на такую продукцию дают всегда меньше периода службы.
Напряжение led в обратном направлении не имеет практики
Для правильного подключения и понимания принципов работы различных контроллеров и драйверов светодиодов необходимо хотя бы поверхностно разобраться с понятием ток, напряжение , область допустимой мощности эксплуатации и овладеть минимальным набором терминов и приёмов электроники для начинающих. Мы постараемся объяснить это понятным языком как для «чайника». Напряжение светодиодов – это непосредственно напряжение на кристалле светодиода и оно мало зависит от протекающего по кристаллу тока. Обратите внимание на следующий график
Характеристики светодиодов напряжение и ток
По вертикальной оси отложен ток в миллиамперах, по горизонтальной оси отложено напряжение в вольтах. Рассмотрим участок отрицательных токов и напряжений – это ситуация когда напряжение прикладывается к кристаллу в нерабочем обратном направлении – диод запирается. Хорошо видно что напряжение светодиодов до примерно 25 вольт практически не вызывает протекание тока сквозь кристалл и лишь превышение порога в 25 вольт вызывает существенное увеличение протекающего тока . Обратное пробивное напряжение светодиодов не является стандартизированным выдерживаемым при производстве параметром и может существенно различаться у различных экземпляров и различного цвета свечения LED , но в данной ситуации нас интересует лишь принцип – поэтому конкретная величина пробивного напряжения нам сейчас не важна. Так вот при превышении порога в 25 вольт увеличение напряжения на несколько вольт сильно увеличивает протекающий сквозь кристалл ток, до определённого момента это не важно , но при превышении допустимой рассеиваемой на кристалле мощности происходит так называемый тепловой пробой кристалла. Немного формул : рассеиваемая мощность P=UxI , где – напряжение на кристалле , — ток протекающий сквозь кристалл , — мощность выделяющаяся на кристалле. При размере smd светодиода в простонародье именуемого 3528 допустимая неразрушающая мощность равняется примерно 0,25 ватт. При превышении этого порога будут происходить необратимые процессы – светодиод просто сгорит. При напряжении порядка 25 вольт достаточно будет тока в 100 миллиампер. По нашей ВАХ это будет примерно соответствовать 27 вольтам обратного напряжения. То есть если приложить к кристаллу в обратном направлении напряжение в 27 вольт – кристалл перегорит — напряжение светодиодов
в обратном направлении не должно быть больше 25 вольт. . Какие выводы следует сделать на основании этого графика?
Напряжение светодиодов в 25 вольт приложенное в обратном напряжении выведет кристалл из строя , при этом напряжение в 12 – 15 вольт в обратном направлении абсолютно безопасно для LED.
Рабочее напряжение светодиодов приложеное в обратном направлении не зажигает и не выводит из строя кристалл.
Для использования в наружной рекламе LED обратная ветвь ВАХ больше нам не нужна – посмотрим напряжение светодиодов в прямом направлении.
Максимальное рабочее напряжение светодиода. Blog › Методы определения полярности у светодиодов
Содержание:
Светодиоды уже давно используются в различных сферах жизни и деятельности людей. Благодаря своим качествам и техническим характеристикам, они приобрели широкую популярность. На основе этих источников света создаются оригинальные светотехнические конструкции. Поэтому у многих потребителей до воль но часто возникает вопрос, как подключить светодиод к 12 воль там. Данная тема очень актуальна, поскольку такое подключение имеет принципиальные отличия от других типов ламп. Следует учитывать, что для работы светодиодов используется только постоянный ток. Большое значение имеет соблюдение полярности при подключении, в противном случае, светодиоды просто не будут работать.
Особенности подключения светодиодов
В большинстве случаев для подключаемых светодиодов требуется ограничение тока с помощью резисторов. Но, иногда вполне возможно обойтись и без них. Например, фонарики, брелоки и другие сувениры со светодиодными лампочками питаются от батареек, подключенных напрямую. В этих случаях ограничение тока происходит за счет внутреннего сопротивления батареи. Ее мощность настолько мала, что ее попросту не хватит, чтобы сжечь осветительные элементы.
Однако при некорректном подключении эти источники света очень быстро перегорают. Наблюдается стремительное падение , когда на них начинает действовать нормальный ток. Светодиод продолжает светиться, но в полном объеме выполнять свои функции он уже не может. Такие ситуации возникают, когда отсутствует ограничивающий резистор. При подаче питания светильник выходит из строя буквально за несколько минут.
Одним из вариантов некорректного подключения в сеть на 12 воль т является увеличение количества светодиодов в схемах более мощных и сложных устройств. В этом случае они соединяются последовательно, в расчете на сопротивление батарейки. Однако при перегорании одной или нескольких лампочек, все устройство выходит из строя.
Существует несколько способов, как подключить светодиоды на 12 воль т схема которых позволяет избежать поломок. Можно подключить один резистор, хотя это и не гарантирует стабильную работу устройства. Это связано с существенными различиями полупроводниковых приборов, несмотря на то, что они могут быть из одной партии. Они обладают собственными техническими характеристиками, отличаются по току и напряжению. При превышении током номинального значения один из светодиодов может перегореть, после этого остальные лампочки также очень быстро выйдут из строя.
В другом случае предлагается соединить каждый светодиод с отдельным резистором. Получается своеобразный стабилитрон, обеспечивающий корректную работу, поскольку токи приобретают независимость. Однако данная схема получается слишком громоздкой и чрезмерно загруженной дополнительными элементами. В большинстве случаев ничего не остается, как подключить светодиоды к 12 воль там последовательно. При таком подключении схема становится максимально компактной и очень эффективной. Для ее стабильной работы следует заранее позаботиться об увеличении питающего напряжения.
Определение полярности светодиода
Чтобы решить вопрос, как подключить светодиоды в цепь 12 воль т, необходимо определить полярность каждого из них. Для определения полярности светодиодов существует несколько способов. Стандартная лампочка имеет одну длинную ножку, которая считается анодом, то есть, плюсом. Короткая ножка является катодом — отрицательным контактом со знаком минус. Пластиковое основание или головка имеет срез, указывающий на место расположения катода — минуса.
В другом способе необходимо внимательно посмотреть внутрь стеклянной колбочки светодиода. Можно легко разглядеть тонкий контакт, который является плюсом, и контакт в форме флажка, который, соответственно, будет минусом. При наличии мультиметра можно легко определить полярность. Нужно выполнить установку центрального переключателя в режим прозвонки, а щупами прикоснуться к контактам. Если красный щуп соприкоснулся с плюсом, светодиод должен загореться. Значит черный щуп будет прижат к минусу.
Тем не менее, при кратковременном неправильном подключении лампочек с нарушением полярности, с ними не произойдет ничего плохого. Каждый светодиод способен работать только в одну сторону и выход из строя может случиться только в случае повышения напряжения. Значение номинального напряжения для отдельно взятого светодиода составляет от 2,2 до 3 воль т, в зависимости от цвета. При подключении светодиодных лент и модулей, работающих от 12 воль т и выше, в схему обязательно добавляются резисторы.
Расчет подключения светодиодов в схемах на 12 и 220 воль т
Отдельный светодиод невозможно напрямую подключить к источнику питания на 12 В поскольку он сразу же сгорит. Необходимо использование ограничительного резистора, параметры которого рассчитываются по формуле: R= (Uпит-Uпад)/0,75I, в которой R является сопротивлением резистора, Uпит и Uпад — питающее и падающее напряжения, I — ток, проходящий по цепи, 0,75 — коэффициент надежности светодиода, являющийся постоянной величиной.
В качестве примера можно взять схему, используемую при подключение светодиодов на 12 воль т в авто к аккумулятору. Исходные данные будут выглядеть следующим образом:
- Uпит = 12В — напряжение в автомобильном аккумуляторе;
- Uпад = 2,2В — питающее напряжение светодиода;
- I = 10 мА или 0,01А — ток отдельного светодиода.
В соответствии с формулой, приведенной выше, значение сопротивления будет следующим: R = (12 — 2,2)/0,75 х 0,01 = 1306 Ом или 1,306 кОм. Таким образом, ближе всего будет стандартная величина резистора в 1,3 кОм. Кроме того, потребуется расчет минимальной мощности резистора. Данные расчеты используются и при решении вопроса, как подключить мощный светодиод к 12 воль там. Предварительно определяется величина фактического тока, которая может не совпадать со значением, указанным выше. Для этого используется еще одна формула: I = U / (Rрез.+ Rсвет), в которой Rсвет является сопротивлением светодиода и определяется как Uпад.ном. / Iном. = 2.2 / 0,01 = 220 Ом. Следовательно, ток в цепи составит: I = 12 / (1300 + 220) = 0,007 А.
В результате, фактическое падение напряжения светодиода будет равно: Uпад.свет = Rсвет х I = 220 х 0,007 = 1,54 В. Окончательно значение мощности будет выглядеть так: P = (Uпит. — Uпад.)² / R = (12 -1,54)²/ 1300 = 0,0841 Вт). Для практического подключения значение мощности рекомендуется немного увеличить, например, до 0,125 Вт. Благодаря этим расчетам, удается легко подключить светодиод к аккумулятору 12 воль т. Таким образом, для правильного подключения одного светодиода к автомобильному аккумулятору на 12В, в цепи дополнительно понадобится резистор на 1,3 кОм, мощность которого составляет 0,125Вт, соединяющийся с любым контактом светодиода.
Расчет осуществляется по такой же схеме, что и для 12В. В качестве примера берется такой же светодиод с током 10 мА и напряжением 2,2В. Поскольку в сети используется переменный ток напряжением 220В, расчет резистора будет выглядеть следующим образом: R = (Uпит.-Uпад.) / (I х 0,75). Вставив в формулу все необходимые данные, получаем реальное значение сопротивления: R = (220 — 2.2) / (0,01 х 0,75) = 29040 Ом или 29,040 кОм. Ближайший стандартный номинал резистора — 30 кОм.
Далее выполняется расчет мощности. Вначале определяется значение фактического тока потребления: I = U / (Rрез.+ Rсвет). Сопротивление светодиода рассчитывается по формуле: Rсвет = Uпад.ном. / Iном. = 2.2 / 0,01 = 220 Ом. Следовательно, ток в электрической цепи будет составлять: I = 220 / (30000 + 220) = 0,007А. В результате, реальное падение напряжение на светодиоде будет следующим: Uпад.свет = Rсвет х I = 220 х 0,007 = 1,54В.
Для определения используется формула: P = (Uпит. — Uпад.)² / R = (220 -1,54)² / 30000 = 1,59Вт. Значение мощности следует увеличить до стандартного, составляющего 2Вт. Таким образом, чтобы подключить один светодиод к сети с напряжением 220В понадобится резистор на 30 кОм с мощностью 2Вт.
Однако в сети протекает переменный ток и горение лампочки будет происходить лишь в одной полуфазе. Светильник будет выдавать быстрый мигающий свет, с частотой 25 вспышек в секунду. Для человеческого глаза это совершенно незаметно и воспринимается как постоянное свечение. В такой ситуации возможны обратные пробои, которые могут привести к преждевременному выходу из строя источника света. Чтобы избежать этого, выполняется установка обратно направленного диода, обеспечивающего баланс во всей сети.
Ошибки при подключении
Наверняка, те, кто только начал заниматься электроникой знакомы со светодиодом и представляют что это такое. Для тех, кто смутно представляют, что такое светоизлучающий диод как раз и написана эта статья.
Светодиоды в настоящее время активно (можно сказать, сверхактивно) применяются как в бытовой, так и в промышленной радиоэлектронной аппаратуре. Начиная с 70-х годов ХХ века светодиоды стали более активно применяться в радиоэлектронике, так как технологии тех лет позволили начать массовое производство светодиодов, а, следовательно, продавать светодиоды по доступным ценам.
На принципиальных схемах обычный светодиод обозначается, как и полупроводниковый диод, но в кружке. Для указания того, что изображён именно излучающий диод рядом с условным изображением рисуются две стрелки, направленные от условного обозначения диода.
условное обозначение светодиода
Как же “засветить” светодиод?
Для начала нужно найти или купить на радиорынке самый обычный 3-х вольтовый светодиод любого цвета свечения, кому какой нравиться. Так как светодиод – это полупроводниковый p-n переход, то он, как и обычный диод пропускает ток лишь в одном направлении
. Это следует учитывать при подключении питания к светодиоду.
Для питания светодиода понадобиться источник питания напряжением 3 вольта. В простейшем случае подойдёт плоская литиевая батарейка на 3 вольта – такие часто используются для питания пультов автомагнитол и автомобильных CD/MP3-проигрывателей.
Плюсовой вывод батареи питания подключают к анодному выводу светодиода, а минусовой вывод к катодному выводу светодиода. Узнать, где катод (отрицательный вывод) светодиода, а где анод (положительный вывод) можно несколькими способами.
У новых, только что купленных светодиодов выводы ещё не укорочены (при монтаже, например) и наиболее длинный вывод и есть анод. Более короткий, следовательно – катод.
Также со стороны катодного вывода пластиковый корпус светодиода имеет плоскую засечку
по торцу.
Если корпус светодиода выполнен из прозрачной пластмассы, то визуально нетрудно определить, что светоизлучающий кристалл размещён на электроде, на краю которого размещена как бы чашка, в которой и находится светоизлучающий кристалл. Вывод электрода с “чашкой” и есть отрицательный (катодный). От кристалла отходит тонкий “усик” – тоненький проводок, который соединён с анодным
выводом светодиода.
Бояться переполюсовки при подключении питания светодиода не стоит, в худшем случае светодиод просто не будет светиться. Правда, если светодиод является частью сложного электронного устройства, то следует учесть последствия неправильного включения светодиода в схему.
Что следует бояться при подключении светодиода так это превышения питающего напряжения, так как при этом происходит нагрев и разрушение кристалла светодиода. В большинстве случаев сгоревший светодиод можно легко определить по внешнему виду. При сгорании светодиода, в месте, где расположен светоизлучающий кристалл, образуется хорошо заметное на глаз чёрное пятно – это и есть сгоревший кристалл
.
Проверить исправность светодиода можно с помощью широко распространённых мультиметров серий DT-83x, MAS-83x и им подобных, а также усовершенствовать уже имеющийся мультиметр , встроив в прибор светодиодный фонарик.
Любой любитель самоделок и электроники используют диоды в качестве индикаторов, или в качестве световых эффектов и освещения. Чтобы Led прибор светился, нужно его правильно подключить. Вам уже известно, что диод проводит . Поэтому прежде чем паять, нужно определить где анод и катод у светодиода.
Вы можете встретить два обозначения LED на принципиальной электрической схеме.
Треугольная половина обозначения – анод, а вертикальная линия – катод. Две стрелки обозначают то, что диод излучает свет. Итак, на схеме указывается анод и катод диода, как найти его на реальном элементе?
Цоколевка 5мм диодов
Чтобы подключить диоды как на схеме нужно определиться где у светодиода плюс и минус. Для начала рассмотрим на примере распространённых маломощных 5 мм диодов.
На рисунке выше изображен: А — анод, К — катод и схематическое обозначение.
Обратите внимание на колбу. В ней видно две детали – это небольшой металлический анод, и широкая деталь похожая на чашу – это катод. Плюс подключается к аноду, а минус к катоду.
Если вы используете новые LED элементы, вам еще проще определить их цоколевку. Определить полярность светодиода поможет длина ножек. Производители делают короткую и длинную ножку. Плюс всегда длиннее минуса!
Если вы паяете не новый диод, тогда плюс и минус у него одинаковой длины. В таком случае определить плюс и минус поможет тестер или простой мультиметр.
Как определить анод и катод у диодов 1Вт и более
В и прожекторах 5мм образцы используются всё реже, на их смену пришли мощные элементы мощностью от 1 ватта или SMD. Чтобы понять где плюс и минус на мощном светодиоде, нужно внимательно посмотреть на элемент со всех сторон.
Самые распространённые модели в таком корпусе имеют мощность от 0,5 ватт. На рисунке красным обведена пометка о полярности. В данном случае значком «плюс» помечен анод у светодиода 1Вт.
Как узнать полярность SMD?
SMD активно применяются практических в любой технике:
- Лампочки;
- светодиодные ленты;
- фонарики;
- индикация чего-либо.
Их внутренностей разглядеть не получится, поэтому нужно либо использовать приборы для проверки, либо полагаться на корпус светодиода.
Например, на корпусе SMD 5050 есть метка на углу в виде среза. Все выводы, расположенные со стороны метки – это катоды. В его корпусе расположено три кристалла, это нужно для достижения высокой яркости свечения.
Подобное обозначение у SMD 3528 тоже указывает на катод, взгляните на эту фотографию светодиодной ленты.
Маркировка выводов SMD 5630 аналогична – срез указывает на катод. Его можно распознать еще и по тому, что теплоотвод на нижней части корпуса смещён к аноду.
Как определить плюс на маленьком SMD?
В отдельных случаях (SMD 1206) можно встретить еще один способ обозначения полярности светодиодов: с помощью треугольника, П-образной или Т-образной пиктограммы на поверхности диода.
Выступ или сторона, на которую указывает треугольник, является направлением протекания тока, а вывод расположенный там – катодом.
Определяем полярность мультиметром
При замене диодов на новые, вы можете определить плюс и минус питания вашего прибора по плате.
Светодиоды в прожекторах и лампах обычно распаяны на алюминиевой пластине, поверх которой нанесён диэлектрик и токоведущие дорожки. Сверху она обычно имеет белое покрытие, на нём часто указана информация о характеристиках источника питания, иногда и распиновка.
Но как узнать полярность светодиода в лампочке или матрице если на плате нет сведений?
Например, на этой плате указаны полюса каждого из светодиодов и их наименование – 5630.
Чтобы проверить на исправность и определить плюс и минус светодиода воспользуемся мультиметром. Черный щуп подключаем в минус, com или гнездо со знаком заземления. Обозначение может отличаться в зависимости от модели мультиметра.
Далее выбираем режим Омметра или режим проверки диодов. Затем подключаем поочередно щупы мультиметра к выводам диода сначала в одном порядке, а потом наоборот. Когда на экране появятся хоть какие-то значения, или диод загорится – значит полярность правильная. На режиме проверки диодов значения равны 500-1200мВ.
В режиме измерения значения будут подобными тем, что на рисунке. Единица в крайнем левом разряде обозначает превышение предела, либо бесконечность.
Другие способы определения полярности
Самый простой вариант для определения где плюс у светодиода – это батарейки с материнской платы, типоразмера CR2032.
Её напряжение порядка 3-х вольт, чего вполне хватит чтобы зажечь диод. Подключите светодиод, в зависимости от его свечения вы определите расположение его выводов. Таким образом можно проверить любой диод. Однако это не очень удобно.
Можно собрать простейший пробник для светодиодов, и не только определять их полярность, но и рабочее напряжение.
Схема самодельного пробника
При правильном подключении светодиода через него будет протекать ток порядка 5-6 миллиампер, что безопасно для любого светодиода. Вольтметр покажет падение напряжения на светодиоде при таком токе. Если полярность светодиода и пробника совпадёт – он засветится, и вы определите цоколевку.
Знать рабочее напряжение нужно, так как оно отличается в зависимости от типа светодиода и его цвета (красный берет на себя менее 2-х вольт).
И последний способ изображен на фото ниже.
Включите на тестере режим Hfe, вставьте светодиод в разъём для проверки транзисторов, в область помеченной как PNP, в отверстия E и C, длинной ножкой в E. Так можно проверить работоспособность светодиода и его распиновку.
Если светодиод выполнен в другом виде, например, smd 5050, вы можете воспользоваться этим способом просто – вставьте в E и C обычные швейные иглы, и прикоснитесь к ним контактами светодиода.
Любому любителю электроники, да и самоделок вообще нужно знать, как определить полярность светодиода и способы их проверки.
Будьте внимательны при выборе элементов вашей схемы. В лучшем случае они просто быстрее выйдут из строя, а в худшем – мгновенно вспыхнут синем пламенем.
Известно, что светодиод в рабочем состоянии пропускает ток только в одном направлении. Если его подключить инверсионно, то постоянный ток через цепь не пройдет, и прибор не засветится. Происходит это потому, что по своей сущности прибор является диодом, просто не каждый диод способен светиться. Получается, что существует полярность светодиода, то есть он чувствует направление движения тока и работает только при определенном его направлении.
Определить полярность прибора по схеме не составит труда. Светодиод обозначают треугольником в кружке. Треугольник упирается всегда в катод (знак «−», поперечная черточка, минус), положительный анод находится с противоположной стороны.
Но как определить полярность, если вы держите в руках сам прибор? Вот перед вами маленькая лампочка с двумя выводами-проводками. К какому проводку подключать плюс источника, а к какому минус, чтобы схема заработала? Как правильно установить сопротивление где плюс?
Определяем зрительно
Первый способ – визуальный. Предположим, вам необходимо определить полярность абсолютно нового светодиода с двумя выводами. Посмотрите на его ножки, то есть выводы. Один из них будет короче другого. Это и есть катод. Запомнить, что это катод можно по слову «короткий», поскольку оба слова начинаются на буквы «к». Плюс будет соответствовать тому выводу, который длиннее. Иногда, правда, на глаз определить полярность сложновато, особенно когда ножки согнуты или поменяли свои размеры в результате предыдущего монтажа.
Глядя в прозрачный корпус, можно увидеть сам кристаллик. Он расположен как будто в маленькой чашечке на подставке. Вывод этой подставки и будет катодом. Со стороны катода также можно увидеть небольшую засечку, как бы срез.
Но не всегда эти особенности заметны у светодиода, поскольку некоторые производители отходят от стандартов. К тому же есть много моделей, изготовленных по другому принципу. На сложных конструкциях сегодня производитель ставит значки «+» и «−», делают отметку катода точкой или зеленой линией, чтобы все было предельно понятно. Но если таких отметок нет по каким-то причинам, то на помощь приходит электрическое тестирование.
Применяем источник питания
Более эффективный способ определить полярность – подключить светодиод к источнику питания. Внимание! Выбирать надо источник, напряжение которого не превышает допустимое напряжение светодиода. Можно соорудить самодельный тестер, используя обычную батарейку и резистор. Это требование связано с тем, что при обратном подключении светодиод может перегореть или ухудшить свои световые характеристики.
Некоторые говорят, что подключали светодиод и так и сяк, и он от этого не портился. Но все дело в предельном значении обратного напряжения. К тому же, лампочка может сразу и не погаснуть, но срок ее работы уменьшится, и тогда ваш светодиод проработает не 30-50 тысяч часов, как указано в его характеристиках, а в несколько раз меньше.
Если мощности элемента питания для светодиода не хватает, и прибор не светится, как вы его ни подключаете, то можно соединить несколько элементов в батарею. Напоминаем, что элементы соединяются последовательно плюс к минусу, а минус к плюсу.
Применение мультиметра
Существуют прибор, который называется мультиметром. Его с успехом можно использовать, чтобы узнать, куда подключать плюс, а куда минус. На это уходит ровным счетом одна минута. В мультиметре выбирают режим измерения сопротивления и прикасаются щупами к контактам светодиода. Красный провод указывает на подключение к плюсу, а черный – к минусу. Желательно, чтобы касание было кратковременным. При обратном включении прибор ничего не покажет, а при прямом включении (плюс к плюсу, а минус к минусу) прибор покажет значение в районе 1,7 кОм.
Можно также включать мультиметр на режим проверки диода. В этом случае при прямом включении светодиодная лампочка будет светиться.
Данный способ самый эффективный для лампочек, излучающих красный и зеленый свет. Светодиод, дающий синий или белый свет рассчитан на напряжение, большее 3 вольт, поэтому не всегда при подключении к мультиметру он будет светиться даже при правильной полярности. Из этой ситуации можно легко выйти, если использовать режим определения характеристик транзисторов. На современных моделях, таких как DT830 или 831, он присутствует.
Диод вставляют в пазы специальной колодки для транзисторов, которая обычно расположена в нижней части прибора. Используется часть PNP (как для транзисторов соответствующей структуры). Одну ножку светодиода засовывают в разъем С, который соответствует коллектору, вторую ножку – в разъем Е, соответствующий эмиттеру. Лампочка засветится, если катод (минус), будет подключен к коллектору. Таким образом, полярность определена.
Параметры белого светодиода ток и напряжение. Особенности питания белых светодиодов. Схема, описание
Светодиод представляет собой полупроводниковый прибор, следовательно, включать его нужно строго соблюдая полярность. Для этого его выводы имеют соответствующие названия: Анод – «плюс» и катод – «минус».
Светодиод будет гореть только при прямом включении, как показано на рисунке. При включении обратном, в большинстве случаев, он безвозвратно выходит из строя.
Так как светодиод будет работать только при определённых значениях напряжения и силе проходящего через него тока, в схему подключения вводится дополнительно ограничивающее сопротивление, которое рассчитывается исходя из закона Ома для участка цепи:
R
=U
гасящее/I
светодиода,
где R
– сопротивление токоограничивающего резистора в омах,
I
светодиода – сила тока, при которой светодиод будет нормально работать,
U
гасящее – напряжение которое нужно погасить резистором. Оно рассчитывается по формуле:
U
гасящее=U
ист.питания — U
светодиода, где
U
ист.питания – напряжение источника питания к которому нужно подключить светодиод,
U
светодиода – рабочее напряжение светодиода (при котором он будет работать нормально).
Теперь рассмотрим непосредственно различные схемы подключения светодиодов.
Как подключить один светодиод?
Допустим у нас есть светодиод с рабочим напряжение 3 В и рабочим током 20 мА. Нам необходимо подключить его к источнику питания с напряжением 12 В.
Переведем единицы измерения данных к используемым в формуле:
20мА = 0,02А.
Теперь найдем нужные величины:
Uгасящее = 12 – 3 = 9 В – «лишнее» напряжение, которое необходимо погасить резистором.
R = 9В/0,02А = 450 Ом.
Таким образом, один светодиод с рабочим напряжением 3 В и рабочим током 20мА необходимо подключать согласно рисунку 1 через сопротивление 450 Ом. Если в качестве источника питания используется не стабилизированный источник (значение напряжения может колебаться), то сопротивление можно взять немножко большего номинала, например, 490 Ом.
Как подключить несколько светодиодов?
Рассмотрим схему подключения нескольких светодиодов показанную на рисунке 2. Из школьного курса физики известно, что при последовательном соединении, которое наблюдается на рисунке 2, общее рабочее напряжение светодиодов будет равняться их сумме рабочих напряжений каждого, а сила тока, протекающего через полученную цепочку, будет одинакова в любых ее точках. Из последнего можно сделать вывод: включать светодиоды по данной схеме можно только с одинаковым рабочим током, иначе их яркость будет отличатся. Например, по цепочке будет течь ток силой 20мА, а рабочий ток светодиода – 30мА, значит он будет светить тускнее чем при нормальной работе.
Перейдем к расчетам. Так как общее рабочее напряжение цепочки равно сумме рабочих напряжений каждого светодиода в ней, то
Uгасящее=Uист.питания – (Uсветодиода 1 + Uсветодиода 2).
Подключим два светодиода с рабочим напряжением 3В и рабочей силой тока 20мА к источнику питания напряжением 12В по схеме на рисунке 2. Опять же нужно перевести миллиамперы в амперы: 20мА=0,02А
R=6/0,02=300 Ом
Таким образом, два светодиода с рабочим напряжением 3 В и рабочим током 20мА необходимо подключать согласно рисунку 2 через сопротивление 300 Ом. Не забываем, что если в качестве источника питания используется не стабилизированный источник (значение напряжения может колебаться), то сопротивление можно взять немножко большего номинала, например, 330 Ом.
Как подключить разные светодиоды к одному источнику питания?
Существует большое количество разнообразных светодиодов, которые могут отличатся как по цвету свечения, так и по мощности излучения светового потока, а, следовательно, и рабочие параметры тоже будут отличаться между собой. Если же необходимо подключить разные светодиоды к одному источнику питания, необходимо отсортировать их по одинаковой рабочей силе тока, после чего подключить по схеме, приведенной на рисунке 3.
Например, нам необходимо подключить 2 красных светодиода с рабочим напряжением 2,5В и рабочей силой тока 20мА, 2 желтых светодиода с рабочим напряжением 3В и рабочим током 25мА и 1 синий светодиод с рабочим напряжением 3,5В и рабочим током 50мА. Сортируем их по одинаковым параметрам. В нашем случае получатся три группы: красные, желтые и синий. Далее для каждой группы в отдельности рассчитываем сопротивление по методике описанной выше.
Для красных:
Uгасящее=12- (2,5+2,5)=7В
R=7В/0,02А=350 Ом.
Для желтых:
Uгасящее=12- (3+3)=6В
R=6В/0,025А=240 Ом.
Для синего:
Uгасящее=12- 3,5= 8,5В
R=8,5В/0,05А=170Ом.
Ограничивающие сопротивления рассчитаны, осталось лишь подключить их по схеме 3.
Можно ли подключить светодиод с рабочим напряжением 3В к источнику питания 3В (или меньше)?
Подобные подключения допускаются, но не желательны, так как яркость будет зависеть непосредственно от источника питания.
Можно ли включать параллельно светодиоды с одинаковым рабочим напряжением?
Такое включение так же допустимо, но параметры диодов, иногда даже из одной партии, могут отличатся, что непосредственно скажется на их яркости – один ярче, другой тускее.
RGB –светодиоды
Существуют полупроводниковые приборы, у которых в корпусе может сразу находится красный (R- RED), зеленый (G-GREEN) и синий (B- BLUE) светодиоды. Изменяя их яркости, можно добиться общего излучения любого цвета на подобии смешивания цветов в палитре. Например, если зажечь все три светодиода на полную мощность – получится белый. Если же зажечь только красный и зеленый – получится желтый. Изменяя яркости светодиодов можно изменять оттенки полученных цветов.
Обратите внимание, что приведенные схемы являются простейшими и приблизительными. По этому, дабы повысить срок работы светодиода, необходимо использовать стабилизированные источники питания. Так как яркость светодиода, а, значит, и работа зависят непосредственно от силы тока протекающего через него, то стабилизаторы необходимо использовать по току, а не по напряжению.
Светодиод пропускает электрический ток только в одном направлении, а это значит что для того чтобы светодиод излучал свет, он должен быть правильно подключен. У светодиода два контакта: анод(плюс) и катод (минус). Обычно, длинный контакт у светодиода — это анод, но бывают и исключения, так что лучше уточнить данный факт в технических характеристиках конкретного светодиода.
Светодиоды относятся к такому типу электронных компонентов, которому, для долгой и стабильной работы, важно не только правильное напряжение, но и оптимальная сила тока — так что всегда, при подключении светодиода, нужно их подключать через соответствующий резистор. Иногда этим правилом пренебрегают, но результат чаще всего один — светодиод или сразу сгорает, или его ресурс очень значительно сокращается. В некоторые светодиоды резистор встроен «с завода» и их сразу можно подключать к источнику 12 или 5 вольт, но такие светодиоды в продаже встречаются довольно-таки редко и чаще всего к светодиоду необходимо подключать внешний резистор.
Стоит помнить, что резисторы так же отличаются своими характеристиками и, для подключения их к светодиодам, вам необходимо выбрать резистор правильного номинала. Для того чтобы рассчитать необходимый номинал резистора следует воспользоваться законом Ома — это один из самых важных физических законов, связанных с электричеством. Данный закон все учили в школе, но практически никто его не помнит.
Закон Ома — это физический закон с помощью которого вы можете определить взаимозависимость напряжения (U), силы тока (I) и сопротивления (R). Суть эго проста: сила тока в проводнике прямо пропорциональна напряжению между концами проводника, если при прохождении тока свойства проводника не меняются.
Этот закон визуально отображается при помощи формулы: U= I*R
Когда вы знаете напряжение и сопротивления, с помощью этого закона можна найти силу тока по формуле: I = U/R
Когда вам известно напряжение и сила тока, можно найти сопротивление: R = U/I
Когда вам известна сила тока и сопротивление, можно вычислить напряжение: U = I*R
Теперь рассмотрим на примере. У вас есть светодиод с рабочим напряжением в 3 В и силой тока в 20 мА, вы его хотите подключить к источнику напряжения 5В из USB-разъема или БП, чтобы при этом он не сгорел. Значит у нас есть напряжение 5 В, но светодиоду нужно только 3 В, значит от 2 В нам необходимо избавиться (5В — 3В=2В). Чтобы избавится от лишних 2 В нам необходимо подобрать резистор с правильным сопротивлением, которое рассчитывается следующим образом: мы знаем напряжение от которого необходимо избавиться и знаем силу тока нужную светодиоду — воспользуемся формулой изложенной выше R = U/I. Соответственно 2В/0.02 А= 100 Ом. Значит, вам необходим резистор на 100 Ом.
Иногда, в зависимости от характеристик светодиода, необходимый резистор получается с нестандартным номиналом, который нельзя найти в продаже, например 129 или 111.7 Ом. В таком случае, необходимо просто взять резистор немного большего сопротивления, чем рассчитанный — светодиод будет работать не на 100 процентов своей мощности, а примерно на 90-95 %. В таком режиме светодиод будет работать более надежно, а снижение яркости визуально не будет заметно.
Также можно рассчитать, какой мощности резистор вам нужен — для этого умножаем напряжение, которое будет задерживаться на резисторе, на силу тока, которая будет в цепи. В нашем случае это 2В х 0.02 А = 0.04 Вт. Значит вам подойдет резистор такой мощности или большей.
Светодиоды иногда подключают по несколько штук параллельно или последовательно, используя один резистор. Для правильного подключения следует помнить что при параллельном подключении суммируется сила тока, а при последовательном суммируется требуемое напряжение. Параллельно и последовательно можно подключать только одинаковые светодиоды с использование одного резистора, а если вы используете разные светодиоды с разными характеристиками, то лучше рассчитать каждому светодиоду свой резистор — так будет надежней. Светодиоды даже одной модели имеют небольшое расхождение в параметрах, и при подключении большого количества светодиодов параллельно или последовательно, это небольшое расхождение в параметрах может выдать результатом много сгоревших светодиодов. Еще одним подводным камнем может стать тот факт, что продавец или производитель (намного реже) может дать немного не верные данные по светодиодам, а сами светодиоды могут иметь не четкое рабочее напряжение, а набор из параметров минимального/оптимального и максимального напряжения. Данный фактор не будет особо влиять при подключении небольшого количества светодиодов, а в случае подключения большого количества — результатом могут быть все те же сгоревшие светодиоды. Так что с параллельным и последовательным подключением не стоит чересчур увлекаться, надежней будет, чтобы к каждому светодиоду или небольшой группе светодиодов (3-5 штук) подключался отдельный резистор. Рассмотрим несколько примеров подключения.
Пример 1.
Вы хотите подключить последовательно три светодиода, каждый из которых рассчитан на 3 В и 20 мА, к источнику тока с напряжением 12 В (например из molex-разъема). Три светодиода по 3 вольта каждый будут вместе потреблять 9 вольт (3 В x 3=9 В). Наш источник тока обладает напряжением в 12 вольт, соответственно от 3 вольт надо будет избавиться (12 В — 9 В = 3 В). Так как подключение последовательное, то сила тока составит 20мА, соответственно 3 вольта (напряжение, от которого необходимо избавится) делим на 0.02 А (сила тока, необходимая каждому светодиоду) и получаем значение необходимого сопротивления — 150 Ом. Значит, нужен резистор на 150 Ом.
Пример 2.
У вас в наличии четыре светодиода, каждый из которых рассчитан на 3 вольта, и источник питания на 12 В. В такой ситуации можно подумать, что резистор не нужен, однако это не так — светодиоды очень чувствительны к силе тока и лучше добавить в цепь резистор на 1 Ом. Резистор данного номинала не повлияет на яркость свечения, а будет чем-то на подобии «предохранителя» — светодиоды будут работать намного надежней. Без применения резистора, в данному случае, светодиоды могут попросту сгореть, быстро или не очень.
Пример 3
. Вы хотите параллельно подключить три светодиода, каждый из которых рассчитан на 3 В и 20 мА, к источнику тока с напряжением 12 В. Поскольку при параллельном подключении суммируется сила тока, а не напряжение, трем светодиодам потребуется сила тока в 60 мА (20 мА x 3 = 60 мА). Наш источник тока обладает напряжением в 12 вольт, а светодиодам необходимо напряжение в 3 вольта, соответственно от 9 вольт необходимо избавиться (12 В — 3 В = 9 В). Так как подключение параллельное, то сила тока составит 60мА, соответственно 9 вольт (напряжение, от которого необходимо избавится) делим на 0.06 А (сила тока, необходимая всем светодиодам) и получаем значение необходимого сопротивления — 150 Ом. Значит, нужен резистор на 150 Ом.
Так же в интернете существует большое количество разнообразных «калькуляторов для светодиодов», которыми вы можете воспользоваться. Достаточно зайти на соответствующий сайт, указать характеристики светодиодом и источника тока и вы получите все необходимые данные по резистору, а так же его цветовую маркировку.
Размещено компанией
Светодиоды. Особенности питания белых светодиодов
Рассмотрим более подробно особенности питания белых светодиодов
. Как
известно, светодиод имеет нелинейную вольтамперную характеристику с характерной
«пяткой» на начальном участке (рис. 4.21).
Как мы видим, светодиод начинает светиться, если на него подано напряжение
больше 2,7 В.
Внимание!
При превышении порогового напряжения (выше 3 В) ток через
светодиод начинает быстро расти и здесь требуется ограничить ток,
стабилизировать его на определенном уровне.
Рис. 4.21. Вольт-амперная характеристика светодиода белого свечения
Простейшим ограничителем тока через светодиод является резистор
. Существует
несколько вариантов схемотехнического включения светодиодов. Они делятся на
схемы с параллельным, последовательным и смешанным включением. При
последовательном включении
светодиодов (как показано рис. 4.22) протекающий
через светодиоды ток I будет равен
Последовательное включение преследует цель либо повысить мощность излучения,
либо увеличить излучаемую поверхность.
Рис. 4.22. Схема последовательного включения светодиодов
Недостатками последовательного включения является
:
- во-первых, с увеличением числа светодиодов увеличивается и напряжение
питания, потому что для прохождения тока через последовательно включенные
светодиоды необходимо соблюдение условия Uпит > Uvd1 + Uvd4 + Uvd3; - во-вторых, увеличение числа светодиодов понижает надежность системы, при
выходе из строя одного из светодиодов перестают работать все последовательно
включенные светодиоды.
При параллельном включении
светодиодов через каждый излучатель протекает
отдельный ток, задаваемый отдельным токозадающим резистором.
На рис. 4.23 показана схема параллельного включения излучающих диодов.
Суммарный ток, потребляемый из источника питания, в этом случае равен
Рис. 4.23. Схема параллельного включения светодиодов
Преимуществом
параллельного включения является высокая надежность, так
как при выходе из строя одного из излучателей остальные продолжают работать.
Недостатки
:
- каждый светодиод потребляет отдельный ток и повышается
энергопотребление; - увеличиваются потери на токозадающих резисторах.
Наиболее эффективным является смешанное (комбинированное)
последовательно-параллельное включение
, показанное на рис. 4.24. В этом случае
число последовательно включенных излучателей ограничено напряжением питания, а
число параллельных ветвей выбирается в зависимости от требуемой мощности.
Рис. 4.24. Схема последовательно- параллельного включения светодиодов
где n — число последовательно включенных
светодиодов в одной ветви; N — число параллельных ветвей.
Смешанное соединение включает в себя положительные свойства вариантов
параллельного и последовательного включения.
В связи с тем, что зрительный аппарат человека является инерционным, довольно
часто при питании светодиодов используют импульсный ток
. Величина среднего
импульсного тока, протекающего через светодиод, определяется из выражения
На рис. 4.25 показаны временные диаграммы импульсного тока.
Рис. 4.25. Временные диаграммы импульсного тока
Если заданы длительность импульса и длительность паузы, то можно определить
значение максимально допустимого значения импульсного тока:
где Iном — номинальный ток светодиода.
Как уже упоминалось, резистор является элементом, ограничивающий ток,
протекающий через светодиод. Но резистор удобно применять, если питающее
напряжение постоянно. На практике часто случается, что напряжение не стабильно,
например, напряжение аккумуляторной батареи уменьшается при ее разряде довольно
в широких приделах. В этом случае широко применяют линейные стабилизаторы тока
.
Простейший линейный стабилизатор тока можно собрать на широко распространенных
микросхемах типа КР142ЕН12(А), LM317 (и их многочисленных аналогах), как
показано на рис. 4.26.
Рис. 4.26. Схема простейшего линейного стабилизатора тока
Резистор R выбирается в пределах 0,25-125 Ом, при этом ток через светодиод
определяется выражением
Схема построения таких стабилизаторов тока отличается простотой (микросхема и
один резистор), компактностью и надежностью. Надежность дополнительно
обусловлена развитой системой защиты от перегрузок и перегрева, встроенной в
микросхему стабилизатора.
Для стабилизации токов от 350 мА и выше можно использовать и более мощные
микросхемы линейных регуляторов с малым падением напряжения серий 1083,
1084,1085 различных производителей либо отечественные аналоги КР142Eh32А/24А/26А.
Но у линейных стабилизаторов тока есть существенные недостатки
:
- низкий КПД;
- большие потери сильный нагрев при регулировки больших токов.
Поэтому в данный момент все чаще применяются импульсные преобразователи и
стабилизаторы для питания светодиодов и светодиодных модулей. На рис. 4.27
представлены внешний вид светодиодного модуля и вторичной оптики.
Рис. 4.27. Внешний вид светодиодного модуля и вторичной оптики
Следует отметить, что светодиоды и преобразователь питания конструктивно
выполнены на единой плате.
Смотрите другие статьи
раздела
.
Калькулятор светодиодных резисторов
Токоограничивающий резистор, иногда называемый нагрузочным резистором или последовательным резистором, подключается последовательно со светоизлучающим диодом (LED), чтобы на нем было правильное прямое падение напряжения.
Если вам интересно, «Какой резистор мне использовать с моим светодиодом?», Или если вам интересно, какой резистор вы должны использовать с питанием 12 В или 5 В, тогда эта статья поможет.
На схеме выше вы можете увидеть распиновку светодиода.Катод — отрицательная клемма. Это на плоской стороне диода, а вывод короче. Анод положительный и имеет более длинный вывод. Если вам всегда интересно, что является отрицательным или положительным, то приведенная выше анимация поможет тренировать мозг. Вы только посмотрите на это, надеюсь, он утонет …
Калькулятор токоограничивающего резистора
— Серия
прямое напряжение
Прямое падение напряжения обычно обозначается просто как прямое напряжение — это конкретное значение для каждого светодиода.Вы можете получить это из таблицы вашего компонента. Однако, если вы не можете найти спецификацию, вы всегда можете обратиться к таблице, приведенной ниже. Он показывает падение напряжения в прямом направлении для каждого обычно доступного светодиода по цвету.
Вы также можете измерить его с помощью цифрового измерителя. Практически любой дешевый счетчик имеет эту менее известную возможность.
Как измерить прямое напряжение Vf
Если у вас есть цифровой мультиметр, то вы также можете измерить прямое падение напряжения.У вашего измерителя будет символ диода на переднем циферблате, поэтому просто переместите селекторный переключатель на него и измерьте его! Большинство инженеров не знают об этой функции, поэтому держите это в секрете!
Красный зонд измерителя подключается к аноду, а черный зонд подключается к катодному выводу, который является более коротким проводом. Ваш цифровой измеритель должен предоставлять вам хорошее точное значение, которое вы можете использовать.
Диаграмма по цвету
Цвет светодиода | Прямое напряжение Vf | Прямой ток Если |
Белый | 3.2–3,8 В | 20–30 мА |
Теплый белый | 3,2–3,8 В | 20–30 мА |
Синий | 3,2–3,8 В | 20–30 мА мА |
Красный | 1,8–2,2 В | 20–30 мА |
Зеленый | 3,2–3,8 В | 20–30 мА |
Желтый | 1,8–2,2 В | от 20 мА до 30 мА |
Оранжевый | 1.От 8 до 2,2 В | от 20 до 30 мА |
Розовый | от 3,2 до 3,8 В | от 20 до 30 мА |
UV | от 3,2 до 3,8 В | от 20 до 30 мА |
Вот диаграмма, показывающая прямое напряжение по цвету для широко доступных светодиодов на eBay. Сейчас они очень дешевы, и вы можете получить сумку светодиодов высокой яркости практически за копейки. Все они доступны в размерах 3 мм, 5 мм и 10 мм. Катодный вывод обычно имеет длину 17 мм, а анод — 19 мм.
Из-за нелинейного характера кривой характеристики диода светодиод работает в очень узком диапазоне параметров прямого напряжения и прямого тока.
Например, красный светодиод имеет типичное прямое напряжение 1,8 В и максимальное прямое напряжение 2,2 В. Он имеет типичный прямой ток 20 мА и максимальный прямой ток 30 мА. Инженеры-электронщики обычно используют типичные рабочие параметры.
Самое замечательное в этих светодиодах то, что все они имеют типичный прямой ток около 20 мА, что означает, что вы можете применить закон Ома для определения номинала последовательного резистора.
Выбор резистора для использования со светодиодами
Напряжение питания Вс | Vf = 1,8 В | Vf = 3,2 В |
3,3 В | 75 Ом | 5 Ом |
5 В | 160 Ом | 90 Ом |
9 В | 360 Ом | 290 Ом |
12 В | 510 Ом | 440 Ом |
Как видно из диаграммы выше, обычно используются два прямых напряжения.Красный, желтый и оранжевый светодиоды относятся к категории 1,8 В, а белый, синий, зеленый, розовый, УФ — к категории 3,2 В.
Таким образом, я составил другую диаграмму, показывающую значения последовательного резистора, необходимые для этих двух категорий падения напряжения. На диаграмме показаны расчетные значения при напряжении питания 3,3 В, 5 В, 9 В и 12 В. Это типичные напряжения, используемые любителями для своих проектов. Просто воспользуйтесь таблицей значений стандартных резисторов, чтобы найти ближайшее из возможных значений.
Пример 1. Синий светодиод имеет типичное прямое падение напряжения 3,2 В, поэтому при использовании напряжения питания 3,3 В требуется резистор 5 Ом. Однако, если вы используете напряжение питания 5 В, то потребуется резистор на 90 Ом. Как видите, номинал резистора увеличивается с увеличением напряжения питания.
Пример 2: Если вы используете желтый светодиод, то он имеет типичное прямое напряжение 1,8 В. Следовательно, значения резистора 75 Ом, 160 Ом, 360 Ом и 510 Ом могут использоваться, когда напряжение питания равно 3. .3 В, 5 В, 9 В и 12 В соответственно.
Формула для расчета номиналов резисторов
Напряжение на шине Vs равно сумме напряжений на светодиоде и резисторе.
Учитывая прямое напряжение диода Vf, напряжение на резисторе равно Vs –Vf.
Учитывая прямой ток, мы знаем, что этот же ток течет и по цепи в резисторе. Следовательно, у нас есть вся информация, чтобы использовать закон Ома для расчета номинала последовательного резистора.
Схема с несколькими светодиодами — серия
Несколько светодиодов можно подключать последовательно, однако напряжение питания ограничивает количество светодиодов, которые вы можете установить. Как видите, полное прямое напряжение — это сумма всех прямых напряжений, представленных каждым светодиодом. Очевидно, что суммарное прямое напряжение должно быть меньше напряжения питания. Если вы используете источник питания 12 В, у вас может быть до семи светодиодов последовательно.
Цепь с несколькими светодиодами — параллельная
Вот такой правильный способ подключения нескольких светодиодов параллельно.У каждого светодиода есть собственный резистор, ограничивающий ток.
В этой конфигурации у вас может быть много светодиодов; однако ограничивающим фактором является сила тока, которую может обеспечить источник питания. Полный ток — это сумма всех индивидуальных прямых токов каждого светодиода.
Что такое падение напряжения? — Элементный светодиод
Падение напряжения определяется как величина потери напряжения во всей или части цепи из-за сопротивления. Провода, электрические компоненты и практически все, что пропускает ток, всегда будет иметь внутреннее сопротивление или импеданс по отношению к протеканию тока.
Как падение напряжения может повлиять на светодиодную систему освещения?
Важность падения напряжения для светодиодного освещения заключается в том, что светодиод требует минимального количества тока для правильного освещения. Сила тока меньше минимального может привести к мерцанию светодиода, уменьшению его яркости или изменению цвета. Это часто наблюдается при более длительных пробегах светодиодной ленты. Результатом является заметный сдвиг в цвете или разнице яркости светодиодов на одном конце по сравнению с другим.
Как клиенты могут избежать эффекта падения напряжения с помощью диодных светодиодных решений?
Лучше всего это продемонстрировать на примере использования диодной светодиодной ленты.Технические характеристики показывают, что он может работать на высоте до 40 футов. Давайте сделаем это с помощью простых шагов, описанных ниже.
1. Рассчитайте требуемую мощность.
В спецификациях указано, что диодная светодиодная лента потребляет 2,09 Вт на фут. Диодный светодиод проверяет падение напряжения в продуктах и указывает максимальные пробеги. Если вы остаетесь в пределах протестированной максимальной длины пробега, просто рассчитайте мощность на фут или на приспособление, чтобы определить надлежащую мощность драйвера. Для максимального пробега в 40 футов потребуется не менее 83.6 Вт для правильного питания светодиодной ленты. (2,09 Вт на фут x 40 футов = 83,6 Вт)
2. Определите подходящий калибр проводов для прокладки между драйвером и светодиодным светильником. Продукты
с диодными светодиодами будут работать только в соответствии с указаниями при условии падения напряжения между драйвером и светодиодными лампами не более 3%. Степень падения напряжения определяется четырьмя основными факторами: входным напряжением (12 В или 24 В), длиной кабеля, калибром проводов и общей нагрузкой на осветительные приборы (ватты и амперы).
Электрик или установщик может использовать приведенную ниже таблицу, чтобы определить подходящий калибр проводов для установки. Если в нашем примере драйвер установлен в 20 футах от диодной светодиодной ленты, вторая диаграмма показывает, что правильный калибр провода — 16 AWG.
Таблицы падения напряжения для диодных светодиодных ленточных ламп можно найти на страницах с описанием продуктов.
5-миллиметровое расположение выводов светодиода, характеристики, прямое напряжение и техническое описание
Конфигурация контактов
Имя контакта | Описание |
Анод | Положительный полюс светодиода |
Катод | Отрицательный вывод светодиода |
Характеристики и технические характеристики
- Превосходная атмосферостойкость
- 5 мм, круглая, стандартная направленность
- УФ-стойкий эпоксидный материал
- Прямой ток (IF): 30 мА
- прямое напряжение (VF): 1.От 8 В до 2,4 В
- обратное напряжение: 5V
- Рабочая температура: от -30 ℃ до + 85 ℃
- Температура хранения: от -40 ℃ до + 100 ℃
- Сила света: 20 мкд
Краткое описание
Светодиод — это двухпроводной полупроводниковый источник света, который при активации излучает свет. Когда соответствующее напряжение подается на вывод светодиода, электроны могут рекомбинировать с электронными дырками внутри устройства и выделять энергию в виде фотонов.Этот эффект известен как электролюминесценция. Цвет светодиода определяется шириной запрещенной зоны полупроводника.
Как использовать светодиод?
Прямое напряжение, необходимое для включения светодиода, зависит от цвета светодиода. Если вы подаете точное значение прямого напряжения, вы можете подключить светодиод непосредственно к источнику. Если напряжение выше, чем используйте сопротивление последовательно со светодиодом, для расчета значения сопротивления используйте формулу:
R = (V S - V LED * X) / I LED Где, V S - напряжение питания V LED - прямое напряжение светодиода. X - количество светодиодов, подключенных последовательно I LED - ток светодиода
Проверьте приведенную ниже таблицу на предмет прямого напряжения светодиода в соответствии с его цветом
Цвет светодиода | прямое напряжение |
Красный | 1.63 ~ 2,03 В |
Желтый | 2,10 ~ 2,18 В |
Оранжевый | 2,03 ~ 2,10 В |
Синий | 2,48 ~ 3,7 В |
Зеленый | 1.9 ~ 4,0 В |
фиолетовый | 2,76 ~ 4,0 В |
УФ | 3,1 ~ 4,4 В |
Белый | 3,2 ~ 3,6 В |
Приложения
- Индикация
- Игрушки и игры
- Светотехника
- Электронные проекты
2D-Модель
LEC Expert blog — Мысли и экспертные решения в светодиодах
Тип источника питания, выбранный для светодиодов, является решающим фактором в обеспечении надежной и долговечной установки.LEC Lyon сделала свой выбор в отношении источников питания как по току, так и по напряжению.
Чтобы понять проблемы, связанные с источником питания светодиодов, необходимо различать источники питания для светодиодных компонентов и светодиодных фонарей ts.
Блок питания для светодиодов
Светодиодные осветительные диоды питаются от тока , поскольку их световой поток пропорционален току , протекающему через них.
Несколько диодов , соединенных последовательно — , которые, таким образом, имеют одинаковый ток, протекающий через них, будут излучать каждый одинаковый световой поток .Если диоды соединены параллельно , каждый светодиод получает одинаковое напряжение , но через них протекает другой ток из-за эффекта дисперсии на вольт-амперной характеристике (кривая I — В). В результате каждый диод излучает различных световых потока .
Для работы каждого диода (светодиода) требуется примерно 3 Вольт на его выводах. Например, для серии из 5 диодов на выводах требуется примерно 15 вольт.Для подачи стабилизированного тока при соответствующем напряжении LEC использует электронный модуль , называемый драйвером.
Есть 2 решения:
1. Внешний привод (установленный внешний фонарь) , с источником питания безопасного сверхнизкого напряжения (SELV) (класс III).
2. Внутренний привод (установлен внутри фонарей) , то есть блок с электронным модулем, обеспечивающим регулируемый ток.
На этот драйвер может подаваться питание 230 В (класс I или класс II) или безопасное сверхнизкое напряжение (класс III), например 24 В.
LEC рекомендует второй вариант источника питания, поскольку он дает 5 основных преимуществ:
Источник питания для светодиодных фонарей — 5 основных преимуществ
1. Безопасное сверхнизкое напряжение возможно независимо от количества светодиодов
светодиода должны быть установлены последовательно, чтобы гарантировать одинаковый уровень тока в каждом из них от одного источника. В результате, чем больше светодиодов, тем выше напряжение на выводах светодиодов. Если это внешний драйвер, то безопасное сверхнизкое напряжение быстро прекращается.Интеграция драйвера в фары позволяет всей установке получать питание от безопасного сверхнизкого напряжения (SELV), независимо от количества источников света.
2. Более надежная установка
Инженеры-монтажники
обладают опытом в стандартах проводки для светодиодных фонарей, соединенных параллельно, что означает, что окончательная установка будет проще и надежнее.
3. Долговечные огни
Драйверы
обеспечивают дополнительную защиту, особенно от повышения температуры и перенапряжения, тем самым гарантируя более длительный срок службы изделия.
4. Более безопасный ввод в эксплуатацию
Интеграция источника питания светодиодов в драйвер позволяет избежать неправильного обращения в полевых условиях и улучшает их способность выдерживать горячее подключение. Если вы физически подключаете светильник со светодиодами только к внешнему драйверу, который уже включен, то это может вызвать перенапряжение на светодиодах при их подключении и, как следствие, их выход из строя.
5. Более простое обслуживание
Любые технические проблемы легче увидеть в светодиодных лампах с источником питания (подключенных параллельно).В мире электроники, к которому относится светодиод, встречающиеся неисправности в основном связаны с разомкнутыми цепями (компонентные или решетчатые дорожки). При параллельном подключении светодиодов только соответствующее устройство отображается как неисправное, в то время как каждое устройство последовательно отображается как неисправное.
Источник питания для светодиодов — сколько он стоит?
Вопреки расхожему мнению, светодиодные фонари со встроенным источником питания не обязательно дороже .На практике общая стоимость установки , , часто выше для фонарей без встроенного драйвера. Это связано с тем, что инженеры-монтажники должны предусмотреть большее количество внешних источников питания и адаптироваться к ограничениям установки , особенно для проводки. Все это подразумевает скрытых затрат.
В течение последних 40 лет LEC наилучшим образом удовлетворяла потребности наших клиентов, находя самого высокого качества и наиболее подходящее решение для каждого проекта.С этой целью мы по возможности встраиваем в светильники источник питания 230 В, а также сокращаем общие затраты на установку , а не цены на продукцию. По этой причине наши специалисты всегда рекомендуют светильники с внутренним драйвером, питаемым от источника напряжения (230 В или SELV).
Если вам нужен совет по выбору источника питания для вашего проекта освещения, запишитесь на прием к одному из наших экспертов.
КАКОЕ прямое напряжение светодиода? — Цементные ответы
Обычно прямое напряжение светодиода находится в пределах 1.8 и 3,3 вольт. Он зависит от цвета светодиода. Красный светодиод обычно падает примерно от 1,7 до 2,0 вольт, но поскольку падение напряжения и частота света увеличиваются с увеличением ширины запрещенной зоны, синий светодиод может упасть примерно от 3 до 3,3 вольт.
Какое прямое падение напряжения у светодиода? 3,3 вольт
ЧТО светодиод прямого тока? Что такое прямой ток, I F, светодиода? Прямой ток светодиода IF — это ток, который протекает через выводы светодиода от анода к катоду, чтобы светодиод мог получать достаточный ток для включения.Как вы можете видеть выше, положительное напряжение должно быть приложено к светодиоду от анода к катоду.
Как определить прямое напряжение светодиода? Чтобы измерить прямое напряжение, установите мультиметры в правильные настройки (т. Е. Ток и напряжение). Перед тестированием всегда устанавливайте максимальное значение сопротивления, чтобы не перегореть светодиод. Возможно, будет проще зажать выводы мультиметра, вставив провода с твердым сердечником в макетную плату.
КАКОЙ светодиод прямое напряжение? Обычно прямое напряжение светодиода находится в пределах 1.8 и 3,3 вольт. Он зависит от цвета светодиода. Красный светодиод обычно падает примерно от 1,7 до 2,0 вольт, но поскольку падение напряжения и частота света увеличиваются с увеличением ширины запрещенной зоны, синий светодиод может упасть примерно от 3 до 3,3 вольт.
КАКОЕ прямое напряжение светодиода? — Дополнительные вопросы
Как измерить диод?
Что такое прямое напряжение на светодиодах?
Прямое напряжение определяет величину напряжения, необходимого для протекания тока через диодный переход.Любое напряжение ниже этого уровня приводит к тому, что светодиод остается «разомкнутым» или непроводящим. Это открытое состояние также означает, что любые компоненты, включенные последовательно со светодиодом, также не будут иметь тока, протекающего через них!
Какое среднее прямое падение напряжения на светодиодах?
3,3 В
Как измеряется падение напряжения на диоде?
Диод с прямым смещением действует как замкнутый переключатель, пропуская ток. В режиме проверки диодов мультиметра между измерительными выводами создается небольшое напряжение.Затем мультиметр отображает падение напряжения, когда измерительные провода подключены к диоду при прямом смещении.
Какой светодиодный ток?
Для большинства распространенных светодиодов требуется прямое рабочее напряжение приблизительно от 1,2 до 3,6 вольт с номинальным прямым током примерно от 10 до 30 мА, причем наиболее распространенным диапазоном является 12-20 мА.
Что такое прямое падение напряжения на диоде?
Прямое падение напряжения — это падение напряжения на диоде при прямой проводимости.… ЗЕНЕРОВЫЕ ДИОДЫ ПРОВОДЯТ ВПЕРЕДНЕЕ НАПРЯЖЕНИЕ И ИМЕЮТ ТАКОЕ ПЕРЕПАД НАПРЯЖЕНИЯ, КАК ДРУГИЕ КРЕМНИЕВЫЕ ДИОДЫ. Счетный диод (напряжение) падает. (Примечание: вы получите диодное падение для каждого направления тока.)
Что такое прямое падение напряжения?
Прямое падение напряжения — это падение напряжения на диоде при прямой проводимости. … ЗЕНЕРОВЫЕ ДИОДЫ ПРОВОДЯТ ВПЕРЕДНЕЕ НАПРЯЖЕНИЕ И ИМЕЮТ ТАКОЕ ПЕРЕПАД НАПРЯЖЕНИЯ, КАК ДРУГИЕ КРЕМНИЕВЫЕ ДИОДЫ. Счетный диод (напряжение) падает. (Примечание: вы получите диодное падение для каждого направления тока.)
Что такое прямой и обратный ток?
Диод (PN переход) в электрической цепи позволяет току течь легче в одном направлении, чем в другом. Прямое смещение означает подачу напряжения на диод, позволяющее легко протекать току, в то время как обратное смещение означает подачу напряжения на диод в противоположном направлении.
Светодиодные фонари светятся переменным или постоянным током?
В большинстве приложений светодиоды питаются от источника постоянного тока, но переменный ток дает несколько существенных преимуществ.Lynk Labs разработала технологию, которая позволяет управлять светодиодами напрямую от источника переменного тока. Светодиоды обычно считаются устройствами постоянного тока, работающими от нескольких вольт постоянного тока.
Как рассчитать прямой ток диода?
Приближение прямого тока, как мы его будем называть, приводит к следующей формуле: i (v) ≈ISexp (vηVT) v> 0,2V.
Что такое прямое напряжение?
Прямое напряжение — это величина напряжения, необходимая для протекания тока через диод.Это важно знать, потому что, если вы пытаетесь получить сигнал через диод, который меньше прямого напряжения, вы будете разочарованы.
Почему светодиод используется при прямом смещении?
Когда светоизлучающий диод (LED) смещен в прямом направлении, свободные электроны в зоне проводимости рекомбинируют с дырками в валентной зоне и высвобождают энергию в виде света. … В диодах с нормальным p-n переходом наиболее широко используется кремний, поскольку он менее чувствителен к температуре.
Какое прямое напряжение идеального диода?
Что такое прямое напряжение и обратное напряжение?
Что такое прямое напряжение и обратное напряжение?
Какое прямое падение напряжения зеленого светодиода?
около 1.8 В
Сколько вольт может принимать светодиод?
в технических описаниях светодиодов. Обычно прямое напряжение светодиода составляет от 1,8 до 3,3 В. Он зависит от цвета светодиода. Красный светодиод обычно падает примерно от 1,7 до 2,0 вольт, но поскольку падение напряжения и частота света увеличиваются с увеличением ширины запрещенной зоны, синий светодиод может упасть примерно от 3 до 3,3 вольт.
Минимальное ограниченное напряжение для светодиодных индикаторов 5 распространенных цветов
Стандартные технические характеристики напряжения светодиодных ламп составляют 12 В и 24 В, и одна группа светодиодных ламп 12 В состоит из трех светодиодов, а 24 В светодиодная лампа состоит из шести светодиодов.Однажды какой-то заказчик попросил уменьшить напряжение источника питания, но здесь мы должны заметить, что не все цвета и все характеристики светодиодных фонарей могут быть использованы при снижении напряжения источника питания, и его нельзя уменьшать безоговорочно. Чтобы классифицировать напряжение того, какие типы светодиодных фонарей можно уменьшить, сначала посмотрите на напряжение возбуждения пяти стандартных светодиодов.
1. белый светодиод: 3,0 ~ 3,3 В
2. красный светодиод: 1,8 ~ 2,2 В
3.Синий светодиод: 3,0 ~ 3,2 В
4. зеленый светодиод: 2,9 ~ 3,1 В
5. желтый светодиод: 1,8 ~ 2,0 В
Стандартные спецификации напряжения источника питания постоянного тока, доступные на рынке, составляют 6 В, 9 В, 12 В, 18 В, 24 В, а затем понижающие характеристики светодиодных ламп также должны соответствовать вышеуказанным спецификациям, в противном случае согласование мощности это тоже проблема.
A. Использование нескольких типов светодиодов общего цвета в качестве примеров для иллюстрации минимального предела напряжения группы из 3 светодиодов.
1. Белые светодиоды: в соответствии с минимальным напряжением питания: 3 * 3,0 = 9 В, если источник питания светодиодной лампы составляет 9 В, и к этой светодиодной лампе нельзя добавить резистор ограничения тока. Если светодиодные индикаторы из других групп сломаны, это приведет к увеличению тока на светодиодном индикаторе этой группы, что приведет к сгоранию светодиода. Но если добавить ограничивающий резистор тока к этой группе светодиодов, он будет ниже, чем минимальное напряжение управления светодиодами, и это повлияет на силу света и эффект свечения светодиодной лампы.Таким образом, минимальный предел напряжения для белых светодиодов составляет 12 В.
2. красные светодиоды: в соответствии с минимальным напряжением питания 1,8 В: 3 * 1,8 В = 5,4 В, тогда, исходя из общей спецификации напряжения источника питания, подойдет 6 В. Так как 6–5,4 В = 0,6 В, мы можем добавить 30 Ом токоограничивающий резистор. Таким образом, минимальный предел напряжения красного светодиода составляет 6 В.
3. Синие светодиоды: минимальный предел напряжения для синих светодиодных индикаторов такой же, как и для белых светодиодных индикаторов, который составляет 12 В.
4.Зеленые светодиоды: согласно минимальному управляющему напряжению 2,9 В: 3 * 2,9 В = 8,7 В, тогда, исходя из общих характеристик напряжения источника питания, 9 В. 9В-8,7В = 0,3В, мы также можем добавить резистор ограничения тока 15 Ом. Таким образом, минимальный предел напряжения зеленых светодиодов составляет 9 В.
5.Желтые светодиоды: минимальный предел напряжения желтого светодиода такой же, как и у красного светодиода, который составляет 6 В.
B. минимальный предел напряжения группы из шести светодиодов:
1.Белые светодиоды: согласно минимальному напряжению питания: 6 * 3,0 = 18 В, если источник питания светодиодной лампы составляет 18 В, к этой светодиодной лампе нельзя добавить резистор ограничения тока. Если светодиодные индикаторы из других групп сломаны, это вызовет текущую складку на светодиодном индикаторе этой группы, что приведет к горению светодиода. Но если добавить резистор, ограничивающий ток, к этой группе светодиодов, он будет ниже минимального напряжения возбуждения светодиода, и это повлияет на силу света и эффект свечения светодиодной лампы. Таким образом, нижний предел напряжения белых светодиодов составляет 24 В.
2. красные светодиоды: в соответствии с минимальным напряжением вождения: 6 * 1,8 В = 10,8 В, в соответствии с общей спецификацией источника питания 12 В в порядке. Поскольку 12 В-10,8 В = 1,2 В, мы также можем добавить ограничивающий ток резистор на 60 Ом. Таким образом, минимальное напряжение красного светодиода составляет 12 В.
3. Синие светодиоды: минимальный предел напряжения синего светодиода такой же, как и у красного светодиода, который составляет 24 В.
4.Зеленые светодиоды: в соответствии с минимальным напряжением вождения: 6 * 2.9 В = 17,4 В, тогда, исходя из общих характеристик напряжения источника питания, 18 В. 18 В-17,4 В = 0,6 В, мы также можем добавить резистор ограничения тока 30 Ом. Таким образом, минимальное ограничивающее напряжение зеленого светодиода составляет 18 В.
5.Желтые светодиоды: минимальное предельное напряжение желтого светодиода такое же, как и у красного светодиода, которое составляет 12 В.
Зависимость постоянного тока от постоянного напряжения: Найдите подходящий источник питания для светодиодов
Тот факт, что светодиоды являются устройствами постоянного тока, не означает, что они требуют источника питания постоянного тока.В некоторых случаях лучше всего подойдут источники питания с постоянным напряжением. Мы сравниваем драйверы светодиодов постоянного тока и драйверы светодиодов постоянного напряжения, чтобы помочь вам выбрать идеальный источник питания для светодиодов для вашего приложения.
Зачем мне нужен светодиодный драйвер?
Светодиоды
работают от низкого напряжения постоянного тока, но розетки обычно поставляют электричество высокого напряжения с переменным током. Основная цель драйвера светодиода — преобразовать этот более высокий переменный ток в электричество постоянного тока низкого напряжения, для работы с которым предназначены светодиоды.
Светодиоды
— это устройства постоянного тока с прямым падением напряжения. Это означает, что напряжение питания должно превышать это падение, чтобы позволить току течь, и, контролируя ток, вы контролируете интенсивность. Слишком большой или слишком низкий ток может привести к изменению или ухудшению светового потока с большей скоростью из-за более высоких температур внутри светодиода. Драйвер светодиода реагирует на меняющиеся потребности цепи светодиода, обеспечивая постоянное количество энергии (в пределах номинального диапазона тока) светодиоду, поскольку его электрические свойства изменяются с температурой.
Существует несколько различных типов внешних светодиодных драйверов, но их можно разбить на два основных типа: драйверы постоянного тока (CC), и драйверы постоянного напряжения (CV), .
Когда использовать драйверы постоянного тока
Драйвер светодиода постоянного тока изменяет напряжение в электронной схеме, чтобы поддерживать постоянный электрический ток. Это гарантирует, что независимо от колебаний напряжения ток, подаваемый на светодиод, будет поддерживаться на заданном уровне.Драйверы постоянного тока предназначены для светодиодов, которым требуется фиксированный выходной ток и диапазон напряжений. Драйверы постоянного тока обычно указывают свои характеристики на устройстве, только с одним номинальным выходным током и диапазоном напряжений, которые варьируются в зависимости от мощности светодиода.
Если вы строите собственное устройство или работаете с мощными светодиодами, вам подойдут драйверы постоянного тока, потому что они предотвращают перегорание или тепловой пробой, никогда не превышая максимальный указанный ток для светодиода.Дизайнеры обычно считают, что этими драйверами легче управлять в приложениях, и они обеспечивают более постоянный уровень яркости. Управление током, а не напряжением, обеспечивает более точный контроль мощности, рассеиваемой светодиодами, и помогает разработчикам гораздо точнее прогнозировать интенсивность отказов, чем при использовании источников постоянного напряжения.
Когда использовать драйверы постоянного напряжения
Драйверы постоянного напряжения бывают разных форм, от обычных источников питания до закрытых, в зависимости от их целевого применения.Драйверы постоянного напряжения имеют фиксированное напряжение, которое обычно составляет 12 В постоянного тока или 24 В постоянного тока. Они используются для светодиодов, которым требуется одно стабильное напряжение и ток, который уже регулируется либо с помощью простых резисторов, либо с помощью внутреннего драйвера постоянного тока, расположенного внутри светодиодного модуля .
Если вы уже подтвердили, что ваш светодиод или матрица рассчитаны на определенное напряжение, драйверы светодиодов постоянного тока обычно более интуитивно понятны для инженеров-проектировщиков и часто являются более дешевым решением по сравнению с драйверами постоянного тока.
Цепочка светодиодов
При последовательном подключении светодиодов прямое падение напряжения каждого светодиода в цепочке является аддитивным. Вот почему драйверы постоянного тока всегда определяют диапазон выходного напряжения, на который они способны. Несколько цепочек последовательно соединенных светодиодов можно разместить параллельно и управлять ими с помощью драйверов постоянного тока с несколькими выходами для ограничения напряжения возбуждения.
Когда несколько цепочек светодиодов используются последовательно, наиболее эффективным способом управления ими является источник постоянного тока, при котором светодиоды подключаются непосредственно к клеммам источника питания.Однако, если струны соединены параллельно, согласование тока во всех струнах может быть затруднено. В этом случае используется внешний компонент для управления током, что приводит к менее эффективному общему количеству люмен на ватт.
Зависимость постоянного тока от постоянного напряжения: примеры применения
Выбор типа драйвера светодиода может сильно зависеть от предполагаемого конечного использования и других ограничений. Для вывесок и других приложений, в которых используются яркие или контрастные цвета, источник постоянного напряжения может быть более экономичным и более простым в разработке.Кроме того, любые изменения цвета имеют тенденцию быть относительными и будут иметь минимальное влияние на эффективность видимого света. Эффективность также менее важна для вывесок, а дополнительный теплоотвод более экономичен, когда приложение представляет собой одиночную установку, в отличие от освещения, распределенного по всему объекту.
Однако, когда предполагается конечное использование для освещения, драйверы постоянного тока могут быть лучшим выбором. Это позволяет более равномерно контролировать качество и яркость света, а системы можно легко настроить так, чтобы светодиоды работали в наиболее эффективном диапазоне.Работа светодиодов в их наиболее эффективном диапазоне обычно требует меньшего теплоотвода, а металла от осветительной арматуры обычно достаточно для распространения тепла и поддержания работы светодиодов в идеальном и эффективном состоянии.
Понимание функциональных различий в управлении светодиодами с постоянным током или источниками постоянного напряжения может помочь дизайнеру оптимизировать их конструкцию для достижения целей по светоотдаче, качеству света и долговечности конструкции.
Популярные блоки питания для светодиодов
Посмотреть похожие продукты
Посмотреть похожие продукты
Посмотреть похожие продукты
Посмотреть похожие продукты
.