Калькулятор арматуры на фундамент ленточный: Калькулятор ленточного фундамента

Содержание

какое ее количество нужно, как вычислить параметры опалубки и сечения

Ленточный фундамент занимает основное место среди всех опорных конструкций для зданий и сооружений.

Он способен эффективно работать на самых сложных грунтах, имеет оптимальный набор эксплуатационных качеств.

Монолитные конструкции ленты не теряют своих рабочих качеств до 150 лет, что превышает срок службы стен дома.

Такие высокие возможности возникли из-за высокой жесткости и прочности ленты, которые обеспечивает совместная работа и металлической арматуры.

Каждый из них выполняет свою функцию, в сумме обеспечивая надежность и высокую несущую способность ленточного основания.

Содержание статьи

Как работает арматура в ленточном фундаменте

Арматурный каркас необходим для компенсации осевых противонаправленных (растягивающих) нагрузок, возникающих в ленте при появлении деформирующих воздействий — изгибающих или скручивающих усилий.

Особенность бетона состоит в способности принимать гигантские давления без каких-либо последствий.

При этом, он практически беззащитен перед разнонаправленными усилиями, быстро покрывается трещинами и разрушается.

Поэтому для ленты крайне опасны любые усилия, приложенные в одной точке — например, боковые или вертикальные нагрузки пучения. Арматурные стержни предназначены для приема этих усилий на себя.

Существует горизонтальная (рабочая) и вертикальная арматура. Основные нагрузки принимают горизонтальные стержни.

Они имеют больший диаметр и рифленую поверхность, обладающую хорошим сцеплением с бетоном.

Вертикальные стержни выполняют две функции:

  • Фиксация рабочей арматуры в необходимом положении до момента заливки бетоном.
  • Частичная компенсация скручивающих усилий.

Первая задача основная, а вторая — дополнительная, поскольку наличие таких специфических нагрузок наблюдается довольно редко.

В большинстве случаев вертикальная (гладкая) арматура служит лишь опорной конструкцией, удерживающей рабочие стержни в необходимом положении до момента заливки.

Они довольно толстые, так как — процесс с достаточно интенсивными воздействиями на каркас, сосредоточенными в одной точке (место падения тяжелого материала в опалубку), а также распределенными по всей длине (штыкование, обработка виброплитой).

Онлайн калькулятор

Как рассчитать ленточный фундамент дома? В этой вам может специально разработанный сервис — ленточного фундамента.

Инструкция по работе с калькулятором

      
            

В сети интернет имеется немало онлайн-калькуляторов, помогающих рассчитать параметры ленточных фундаментов по всем важным позициям. Расчет арматуры с их помощью занимает буквально пару минут.

Например, на сайте необходимо лишь внести собственные данные в соответствующие окошечки программы и нажать кнопку «рассчитать».

Дается схема армирования, в которой надо указать основные параметры — количество рабочих стержней в одном ряду, общее число рядов, расстояние между вертикальными прутками и т. п. В отдельном окне указывается стоимость арматуры за единицу.

В результате программа выдает количество арматуры и общую цену. Расчет производится просто и быстро, кроме арматуры ресурс выдает параметры всех элементов ленты — , количества бетона и т.д.

Недостатком данного калькулятора можно считать необходимость заранее знать схему армирования, диаметр стержней и рыночную стоимость материала.

Если требуется определить количество и сечение стержней, ресурс бесполезен. Он дает только количественную информацию, не касаясь качественных моментов, что иногда не совсем то,что нужно.

ВАЖНО!

Не все онлайн-калькуляторы работают по такому алгоритму. Имеются и другие, определяющие именно размеры и общие параметры арматурного каркаса, которые станут полезными для получения первичной информации. Стоимость материала следует узнавать непосредственно у продавцов, поскольку в этом вопросе имеется масса специфических факторов.

Порядок расчета

Рассмотрим, как рассчитать арматурный каркас ленты самостоятельно.

Прежде всего, необходимо определить количество рабочих стержней в одном ряду. Для этого понадобится использовать требование СП 52-101-2003, ограничивающее максимальное расстояние между соседними прутками в 40 см.

Учитывая, что погружения рабочей арматуры не должна превышать 2-5 см, получаем:

  • Для лент толщиной менее 50 см — 2 рабочих стержня.
  • Для лент шире 50 см — 3 стержня.

В случаях, когда можно использовать и 2, и 3 стержня в одном ряду, обычно стараются подстраховаться и принять большее значение, так как фундамент — ответственный и важный участок постройки.

Вторым этапом является определение диаметра рабочих стержней. Для этого понадобится рассчитать площадь сечения рабочей части ленты, умножив ширину на высоту.

Общая площадь сечения арматуры составляет 0,1% от сечения (это минимально возможное значение, его можно увеличить, но нельзя уменьшать).

Получив это значение, надо разделить его на число рабочих стержней. По таблице диаметров арматурных прутков находится наиболее удачный вариант, который и принимается в работу.

Диаметр вертикальной арматуры выбирается исходя из высоты ленты:

  • При высоте до 60 см — 6 мм.
  • От 60 до 80 см — 8 мм.

Диаметр поперечных стержней обычно принимается равным 6 мм.

Для подсчета количества рабочих стержней надо умножить их число в решетке на общую длину ленты, после чего полученное значение делится на длину рабочего прутка (обычно 6 м, но это значение лучше узнать у продавцов точно).

Вертикальную арматуру рассчитывают путем умножения количества хомутов на длину единицы.

Количество получают делением общей длины ленты на шаг хомутов (обычно 50-70 см).

Пример вычисления необходимых параметров

Рассмотрим расчет арматуры для ленточного фундамента на примере.

Допустим, что высота ленты составляет 100 см, а ширина — 40 см (распространенный вариант ).

Тогда площадь сечения составит:

40 • 100 = 4000 см2.

Определяем общую площадь сечения арматуры (минимальную):

4000 : 1000 = 4 см2.

Поскольку ширина ленты составляет 40 см, то в одной решетке нужно разместить 2 стержня, а общее количество составляет 4 шт.

Тогда минимальная площадь сечения одного прутка составит 1 см2. По таблицам СНиП (или из иных источников) находим наиболее близкое значение. В данном случае можно использовать арматурные стержни толщиной 12 мм.

Определяем количество продольных стержней. Допустим, общая длина ленты составляет 30 м (лента 6 : 6 м с одной перемычкой 6 м).

Тогда количество рабочих стержней при длине 6 м составит:

(30 : 6) • 4 = 20 шт.

Определяем количество вертикальных стержней. Допустим, шаг хомутов составляет 50 см.

Тогда при длине ленты 30 м понадобится:

30 : 0,5 = 60 шт.

Определяем длину одного хомута.

Для этого от ширины и высоты сечения отнимаем по 10 см и складываем результаты:

(40 — 10) + (100 — 10) = 120 см. Длина одного хомута равна 120 • 2 = 140 см = 2,4 м.

Общая длина вертикальной арматуры:

2,4 • 60 = 144 м. Количество стержней при длине 6 м составит 144 : 6 = 24 шт.

ОБРАТИТЕ ВНИМАНИЕ!

Полученные значения следует увеличивать на 10-15%, чтобы иметь запас на случай ошибок или непредвиденных расходов материала.

Виды и размеры

Существует две основные :

  • Металлическая.
  • Композитная.

Металлические стержни, используемые для сборки арматурного каркаса, имеют ребристую или гладкую поверхность.

Ребристые стержни идут на горизонтальную (рабочую) арматуру, так как они имеют повышенную силу сцепления с бетоном, необходимую для качественного выполнения своих функций.

Вертикальные прутки, как правило, гладкие, так как их задача сводится к поддержанию в нужном положении рабочих стержней до момента заливки. Диаметр стержней колеблется в пределах от 5,5 до 80 мм. используются рабочие стержни 10, 12 и 14 мм и гладкие 6-8 мм.

Композитная арматура состоит из разных элементов:

  • Стекло.
  • Углерод.
  • Базальт.
  • Арамид.
  • Полимерные добавки.

Наиболее широко применяется стеклопластиковая арматура.

Она имеет наибольшую прочность, самая жесткая и устойчивая к растягивающим нагрузкам из всех остальных вариантов.

Как и все виды композитных стержней, стеклопластиковая арматура полностью устойчива к воздействию влаги.

Производители заявляют о неизменности эксплуатационных качеств в течение всего периода службы, но на практике справедливость такого утверждения пока не проверена. Проблема композитной арматуры в сложности технологии, из-за которой качество материала у разных производителей заметно отличается.

Кроме того, композитные стержни не способны сгибаться, что неудобно при сборке каркасов и снижает прочность угловых соединений каркаса.

ВАЖНО!

Среди строителей отношение к композитной арматуре сложное. Не отрицая положительных качеств, они не слишком доверяют малоизученным строительным материалам, не прошедшим полный цикл эксплуатации. Кроме того, металлическая арматура имеет вполне определенные технические характеристики, тогда как композитные виды обладают довольно большим разбросом свойств. Все эти факторы ограничивают применение композитных стержней.

Как сделать правильный выбор

Выбор арматурных стержней основан на расчетных данных и предпочтениях строителей.

Обычно выбирают металлические стержни, хотя и композитную арматуру с каждым годом все активнее применяют при строительстве ленточных оснований. Предпочтение металлическим пруткам отдается из-за возможности придать им необходимый изгиб, чего со стеклопластиковыми стержнями сделать невозможно.

Особенно это важно при строительстве лент с криволинейными участками или при наличии углов перелома, отличных от 90°.

Кроме того, металлическая арматура экономичнее, так как позволяет делать хомуты из одного прутка, без необходимости создавать несколько точек соединения.

Диаметры стержней давно отработаны на практике, нередко их выбирают без предварительного расчета — при около 30 см используют пруток 10 мм, для лент шириной 40 см выбирают 12-мм стержни, а при ширине более 50 см — 14 мм. Толщину вертикальной арматуры определяют по высоте ленты, до 70 см выбирают 6 мм, а при высоте свыше 70 см — 8 мм и более.

Полезное видео

В данном разделе Вы также сможете посмотреть как производится расче на примере реальной стройки:

Заключение

Грамотно выбранная схема армирования и сам материал обеспечивают прочность и устойчивость ленты к возможным нагрузкам.

Сложные и проблемные грунты, склонные к пучению или сезонным подвижкам, требуют ответственного и внимательного подхода к .

Необходимо учитывать, что все расчетные значения определяют минимальные параметры конструкции, требующие некоторого увеличения для определенного запаса прочности.

Выбирая арматуру и схему армирования, надо умножать все значения на 1,2-1,3 (коэффициент надежности), чтобы снизить риск появления непредвиденных факторов.

Вконтакте

Facebook

Twitter

Google+

Одноклассники

Калькулятор Армирование_Ленты_Онлайн v.1.0 — армирование ленточного фундамента

Калькулятор Армирование-Ленты-Онлайн v.1.0

Расчет продольной рабочей, конструктивной и поперечной арматуры для ленточного фундамента. Калькулятор основан на СП 52-101-2003 (СНиП 52-01-2003, СНиП 2.03.01-84), Пособие к СП 52-101-2003, Руководство по конструированию бетонных и железобетонных конструкций из тяжелого бетона (без предв. напряжения).

Результаты

Параметры проектируемого фундамента

Ширина фундамента, м:

Высота фундамента, м:

Сечение ленты, м2:

Общая длина ленты, м:

Объем фундамента, м3:

Расчет арматуры

Продольная рабочая арматура

Диаметр арматуры, мм:

Расчитанная площадь сечения арматуры в верхнем (нижнем) поясе, мм2:

Подобранная площадь сечения арматуры в верхнем (нижнем) поясе, мм2:

Количество стержней арматуры в верхнем (нижнем) поясе, шт:

Количество стержней арматуры на сечение ленты, шт:

Общая площадь сечения арматуры, мм2:

Общая длина стержней, м:

Общая масса арматуры, кг:

Объем арматуры на ленту, м3:

Продольная конструктивная арматура (противоусадочная)

Диаметр арматуры не менее (оптимально 12мм), мм:

Количество стержней арматуры на сечение ленты, шт:

Количество горизонтальных рядов:

Расстояние между рядами (шаг), мм:

Общая длина стержней, м:

Общая масса арматуры, кг:

Объем арматуры на ленту, м3:

Поперечная арматура (хомуты)

Диаметр арматуры, мм:

Расстояние между хомутами (шаг), мм:

Количество хомутов на ленту, шт:

Длина одного хомута (с учетом крюков), м:

Общая длина стержней, м:

Общая масса арматуры, кг:

Объем арматуры на ленту, м3:

Общая масса и объем арматуры на ленту

Масса арматуры, кг:

Объем арматуры на ленту, м3:

Алгоритм работы калькулятора

Конструктивное армирование

Если выбран данный пункт меню, калькулятор рассчитает минимальное содержание рабочей продольной арматуры для конструкции фундамента согласно СП 52-101-2003. Минимальный процент армирования для железобетонных изделий лежит в диапазоне 0.1-0.25% от площади сечения бетона, равной произведению ширины ленты на рабочую высоту ленты.

СП 52-101-2003 Пункт 8.3.4 (аналог Пособие к СП 52-101-2003 Пункт 5.11, Руководство по конструированию бетонных и ж/б конструкций из тяжелого бетона пункт 3.8)

 

Пособие к СП 52-101-2003 Пункт 5.11

 

В нашем случае минимальный процент армирования составит 0.1% для растянутой зоны. В связи с тем, что в ленточном фундаменте растянутой зоной может быть как верх ленты, так и низ, процент армирования составит 0.1% для верхнего пояса и 0.1% для нижнего пояса ленты.

Для продольной рабочей арматуры используются стержни диаметром 10-40мм. Для фундамента рекомендуется использовать стержни диаметром от 12мм.

Пособие к СП 52-101-2003 Пункт 5.17

 

Руководство по конструированию бетонных и ж/б изделий из тяжелого бетона пункт 3. 11

 

Руководство по конструированию бетонных и ж/б конструкций из тяжелого бетона пункт 3.27

 

Руководство по конструированию бетонных и ж/б конструкций из тяжелого бетона пункт 3.94

 

Руководство по конструированию бетонных и ж/б конструкций из тяжелого бетона пункт 3.94

 

Расстояние между стержнями продольной рабочей арматуры

Пособие к СП 52-101-2003 Пункт 5.13 (СП 52-101-2003 Пункт 8.3.6)

 

Пособие к СП 52-101-2003 Пункт 5.14 (СП 52-101-2003 Пункт 8.3.7)

 

Руководство по конструированию бетонных и ж/б конструкций из тяжелого бетона пункт 3.95

 

 

Конструктивная арматура (противоусадочная)

Согласно руководству по конструированию бетонных и ж/б конструкций из тяжелого бетона пункт 3.104 (аналог Пособие к СП 52-101-2003 Пункт 5. 16) для балок высотой более 700мм предусматривается конструктивная арматура по боковым поверхностям (2 прутка арматуры в одном горизонтальном ряду). Расстояние между стержнями конструктивной арматуры по высоте должно быть не более 400мм. Площадь сечения одной арматуры должна составлять не менее 0,1% от площади сечения, равной по высоте расстоянию между этими стержнями, по ширине половине ширины ленты, но не более 200мм.

Руководство по конструированию бетонных и ж/б конструкций из тяжелого бетона пункт 3.104 (Пособие к СП 52-101-2003 Пункт 5.16)

 

 

По расчету получается, что максимальный диаметр конструктивной арматуры составит 12мм. По калькулятору может получаться и меньше (8-10мм), но все же, чтобы иметь запас прочности лучше использовать арматуру диаметром 12мм.

Пример

Исходные данные:

  • Размеры фундамента в плане: 10х10м (+одна несущая внутренняя стена )
  • Ширина ленты: 0.4м (400мм)
  • Высота ленты: 1м (1000мм)
  • Защитный слой бетона: 50мм (выбран по умолчанию)
  • Диаметр арматуры: 12мм

Расчет:

Рабочая высота сечения ленты [ho] = Высота ленты – (Защитный слой бетона + 0. 5 * Диаметр рабочей арматуры) = 1000 – (50 + 0.5 * 12) = 944 мм

Площадь сечения рабочей арматуры для нижнего (верхнего) пояса = (Ширина ленты * Рабочая высота сечения ленты) * 0.001 = (400 * 944) * 0.001 = 378 мм2

Подбираем кол-во стержней по СП 52-101-2003 приложения 1.

Сечение подбираем большее либо равное найденному сечению выше.

Получилось 4 стержня арматуры диаметром 12мм (4Ф12 А III) с площадью поперечного сечения 452мм.

Итак, мы нашли стержни для одного пояса нашей ленты (допустим нижнего). Для верхнего получится столько же. В итоге:

Кол-во стержней на нижний пояс ленты: 4

Кол-во стержней на верхний пояс ленты: 4

Общее кол-во продольных рабочих стержней: 8

Общее сечение продольной рабочей арматуры на ленту = Поперечное сечении одного стержня * Общее кол-во продольных стержней = 113.1 * 8 = 905мм2

Общая длина ленты = Длина фундамента * 3 + Ширина фундамента * 2 = 10 * 3 + 10 * 2 = 50м (47. 6м в калькуляторе с учетом ширины ленты)

Общая длина стержней = Общая длина ленты * Общее кол-во продольных стержней = 47.6 * 8 = 400м = 381м

Общая масса арматуры = Масса одного метра арматуры (находим по таблице выше) * Общая длина стержней = 0.888 * 381 = 339кг

Объем арматуры на ленту = Сечение одной продольной арматуры * Общую длину стержней / 1000000 = 113.1 * 381 / 1000000 = 0.04м3

Расчетное армирование

Если выбран данный тип меню, то расчет продольной рабочей арматуры для растянутой зоны будет выполнен по формулам пособия к СП 52-101-2003.

В нашем случае растянутая арматура устанавливается сверху и снизу ленты, поэтому у нас будет рабочая арматура и в сжатой и в растянутой зоне.

Пример

Исходные данные:

  • Ширина ленты: 0.4м
  • Высота ленты: 1м
  • Защитный слой бетона: 50мм
  • Марка (класс) бетона: М250 | B20
  • Диаметр арматуры: 12мм
  • Класс арматуры: А400
  • Макс. изгибающий момент в фундаменте: 70кНм

Расчет

Для нахождения Rb воспользуемся таблицей 2.2 пособия к СП 52-101-2003

Для нахождения Rs воспользуемся таблицей 2.6 пособия к СП 52-101-2003

Максимальный изгибающий момент [M] у нас был предварительно найден. Для его нахождения понадобится знать распределенную нагрузку от веса дома (включая фундамент). Для данных целей можно воспользоваться калькулятором: Вес-Дома-Онлайн v.1.0

Расчетная схема для нахождения изгибающего момента: балка на упругом основании.

Расчет для наглядности будем производить в [см].

Рабочая высота сечения [ho] = Высота ленты – (Защитный слой бетона + 0.5 * Диаметр арматуры) = 100см – [5см + 0.6см] = 94.4см 

Am = 700000кгс*см / [117кг/см2 * 40см * 94.4см * 94.4см] = 0.016

As = [117кгс/см2 * 40см * 94.4см] * [1 – кв. корень (1 – 2 * 0.016)] / 3650кгс/см2 = 2,06см2 = 206мм2

Теперь нам нужно сравнить площади сечения рабочей арматуры полученную по расчету и площадь сечения конструктивного армирования (0. 1% от сечения ленты). Если площадь конструктивного армирования окажется больше расчетного, то принимается конструктивное, если нет то расчетное.

Площадь сечения растянутой арматуры при конструктивном армировании (0.1%): 378мм2

Площадь сечения растянутой арматуры при расчете: 250мм2

В итоге выбираем площадь сечения при конструктивном армировании.

Поперечное армирование (хомуты)

Поперечное армирование рассчитывается по данным пользователя.

Нормативы поперечного армирования

Пособие к СП 52-101-2003 Пункт 5.18

Пособие к СП 52-101-2003 Пункт 5.21

Пособие к СП 52-101-2003 Пункт 5.21

Пособие к СП 52-101-2003 Пункт 5.23

Пособие к СП 52-101-2003 Пункт 5.20

Руководство по конструированию бетонных и ж/б конструкций из тяжелого бетона. Пункт 3.105

Руководство по конструированию бетонных и ж/б конструкций из тяжелого бетона. Пункт 3.106

Руководство по конструированию бетонных и ж/б конструкций из тяжелого бетона. Пункт 3.107

Руководство по конструированию бетонных и ж/б конструкций из тяжелого бетона. Пункт 3.109

Руководство по конструированию бетонных и ж/б конструкций из тяжелого бетона. Пункт 3.111

Руководство по конструированию бетонных и ж/б конструкций из тяжелого бетона. Пункт 2.14

Пособие к СП 52-101-2003 Пункт 5.24

Пособие к СП 52-101-2003 Пункт 5.22

Защитный слой бетона

Пособие к СП 52-101-2003 Пункт 5.6

Пособие к СП 52-101-2003 Пункт 5.8 (Руководство по конструированию бетонных и ж/б конструкций из тяжелого бетона пункт 3.4)

Полезное

Нормативная документация

СП 52-101-2003 Бетонные и жб конструкции без предв. напряжения арматуры   

Пособие к СП 52-101-2003 по проектированию бетонные и жб конструкции без предв. напряжения арматуры

СНиП 2.03.01-84 Бетонные и железобетонные конструкции   

Руководство по конструированию бетонных и жб конструкций из тяжелого бетона (без предв. напряжения)

Книги

Армирование элементов монолитных железобетонных зданий И.Н. Тихонов 2007г.

Строительные калькуляторы

Расчет арматуры на ленточный фундамент

Ленточный фундамент наиболее распространен при самостоятельном возведении различных построек. Однако заливка в опалубку одного лишь бетонного раствора не делается. Для укрепления фундамента производится его армирование, что значительно усиливает конструкцию и повышает ее несущую способность. 

На практике для обустройства такого «проволочного» каркаса используется металлический пруток (можно использовать новейшую композитную арматуру). Он может быть гладким или ребристым, иметь различный диаметр. Но в процессе подготовки к проведению работ необходимо рассчитать арматуру для ленточного фундамента с помощью удобного онлайн-калькулятора. Ведь если его окажется значительно больше, то куда потом девать излишки? А если не хватит, то это задержка, простой, потеря времени.

Что учесть при расчете

  1. Любой металл подвержен коррозии. Следовательно, надежность конструкции, в которой он был использован, при его прямом контакте с водой резко снижается. В процессе монтажа, а также при дальнейшей эксплуатации бетон частично начинает крошиться. Плюс к этому, в него с разной степенью интенсивности (в зависимости от марки, наличия или отсутствия различных добавок, качества гидроизоляции) постепенно впитывается влага. Для защиты от нее арматуры каркас монтируется таким образом, чтобы все его части (прутки) отстояли от поверхности заливки примерно на 50 мм. Причем с любой стороны – с боков, сверху, снизу.
  2. Нагрузка на вертикальные (и поперечные) части каркаса (прутки) ниже, чем на продольные. Поэтому для экономии можно использовать продукцию с меньшим диаметром. Обычно для ленточного монолита частного строения берут пруток 10 или 12 мм (для продольной укладки) и 6 или 8 мм – для вертикальной и поперечной.
  3. Если лента имеет разную ширину (например, по периметру и внутри строения, под несущие перегородки), то расчет производится отдельно для каждой части.
  4. Соединение продольных элементов делается с взаимным перекрытием – примерно на 50 см. Следовательно, длина каждого последующего прутка «уменьшается» на эту величину.
  5. При заливке бетона каркас «распирает» под тяжестью раствора, особенно если использован заполнитель с крупными фракциями. Поэтому для укрепления конструкции дополнительно из этого же прутка по всему периметру ставятся скобы (в виде буквы «П»), которые «стягивают» боковые стенки «решетки».
  6. Количество рядов по горизонтали и вертикали зависит от параметров ленты – ее ширины и глубины закладки (высоты). Чтобы не заниматься вычислениями по формулам, в которых и не каждый разберется, используют ориентировочные данные. Для небольших частных построек этого вполне достаточно.

Расстояние между прутками в горизонтальной плоскости выбирается так, чтобы между ними было не более 25 – 30 см. Как правило, они укладываются по 4 штуки в ряд. Между вертикальными элементами (и поперечными) – от 30 до 60 см по всей ленте.

Расчет производится на основании проекта, по которому будет возводиться дом. Исходными данными являются параметры монолита. Все данные замеров, во избежание путаницы, записываются в метрах.

Калькулятор расчета

 

Приведем сам алгоритм, выбрав произвольные данные. Подставить истинные их значения для конкретной конструкции труда не составит.

  • Измеряется длина ленты – L. Вдоль нее будет уложено в одном ряду, к примеру, 4 прутка. Допустим, таких рядов, в соответствие с глубиной заливки, будет 3. Следовательно, общая длина прутка = L х 4 х 3.
  • Количество мест соединений продольных элементов 24. Мы знаем, что каждое из них «уменьшает» пруток на длину перекрытия. Следовательно, получается: 50 см х 24 = 120 см = 12м.
  • По всей длине нужно уложить скобы, поперечные и вертикальные прутки.
  • Общая длина материала получается:

(L х 4 х 3) + 12 м + (длина поперечин, умноженная на их количество) + (длина вертикальных прутков х на количество) + (длина скобы х на количество).

Но это, если вся конструкция собирается из материала одного и того же сечения. В случае использования прутков различных диаметров подсчет ведется для каждого из них отдельно. Весь процесс армирования подробно описан в этой статье.

При наличии внутренних несущих стен для их основания вычисления проводятся по той же методике.

Несколько советов:

  • Ребристый пруток (в отличие от гладкого) более надежно «сцепляется» с бетонным раствором.
  • Необходимо выбирать прутки такой длины, чтобы при их продольной укладке было как можно меньше стыков.
  • Соединения по углам ленты не допускаются. Только – изгиб прутков.
  • Материала для арматуры нужно брать чуть больше требуемого, так как отрезки прутков могут понадобиться и для других целей. Например, установить закладные при облицовке газобетонных стен кирпичной кладкой. Вариантов много, поэтому нужно учесть все нюансы строительства, чтобы не ездить на закупки по несколько раз.

Онлайн расчет ленточного фундамента — бесплатный калькулятор

Онлайн калькулятор по расчету ленточного фундамента. Расчет необходимых материалов для монолитного ленточного фундамента (количество бетона, арматуры).

Выберите тип ростверка:

Параметры фундамента:

Расчет арматуры:

Расчет опалубки ростверк:

Рассчитать

Результаты расчетов

Фундамент:

Общая длина ленты: 0 м.

Площадь подошвы ленты: 0 м2.

Площадь внешней боковой поверхности: 0 м2.

Объем бетона (с 10% запасом): 0 м3.

Вес бетона: 0 кг.

Нагрузка на почву: 0 кг/см2.

Расчет арматуры ростверка:

Минимальный диаметр поперечной арматуры (хомутов): 0 мм.

Максимальный шаг поперечной арматуры (хомутов) для ростверка: 0 мм.

Общий вес хомутов: 0 кг.

Опалубка:

Минимальная толщина доски при опорах через каждый 1 метр: 0 мм.

Максимальное расстояние между опорами: 0 м.

Количество досок для опалубки: 0 шт.

Периметр опалубки: 0 м.

Объем досок для опалубки: 0 м3.

Примерный вес досок для опалубки: 0 кг.

Дополнительная информация о калькуляторе

Онлайн калькулятор монолитного ленточного фундамента поможет рассчитать необходимые параметры фундамента данного типа: размеры фундамента, количество опалубки и бетона, количество и диаметр арматуры. Чтобы определить оптимальный тип фундамента для своего сооружения, следует обязательно обратиться к специалистам за консультацией.

Обратите внимание!
При расчётах учитываются нормативы из ГОСТ Р 52086-2003, СНиП 3.03.01-87 и СНиП 52-01-2003 «Бетонные и железобетонные конструкции».

По своей конструкции ленточный фундамент – это замкнутая полоса из железобетона, погружённая в землю и проходящая под всеми несущими стенами строения. Нагрузка, которую оказывает здание, равномерно распределяется по всей площади фундамента (длине ленты). Такая конструкция предотвращает деформацию постройки из-за естественного вспучивания почвы, сокращает риск, что здание просядет либо изменит форму. Наиболее ответственные участки в данном фундаменте – углы, на которых сосредоточены основные нагрузки.

Существует несколько вариантов конструкции ленточного фундамента. Он может быть мелко- или глубокозаглублённым, сборным или монолитным. Выбор конкретного типа зависит от предполагаемой нагрузки, конструкции здания, конфигурации несущих стен, характеристик почвы и других индивидуальных параметров.

Ленточный фундамент имеет настолько широкое применение, что его можно использовать для всех типов построек, включая подвалы и цокольные этажи. Во многом поэтому он наиболее распространён при постройке частных домов. К тому же он имеет оптимальное соотношение себестоимости и функциональности.

Проектирование фундамента – особенно важная часть строительства здания. Если фундамент подвергнется деформации или будет спроектирован ошибочно, это скажется на всей постройке. Исправлять ошибку в фундаменте – дело дорогостоящее, сложное и возможное далеко не всегда. Воспользуйтесь данным калькулятором, чтобы избежать ошибок в проектировании и расчетах.

Также вы можете задать свой вопрос или оставить пожелание по улучшению данного калькулятора. Будем рады вашим комментариям!

Пояснения к результатам расчетов

Общая длина ленты

Длина периметра фундамента. Измеряется по внешней стороне контура.

Площадь подошвы ленты

Площадь горизонтального основания фундамента, которое опирается на почву. Определяет потребность в гидроизоляции фундамента.

Площадь внешней боковой поверхности

Площадь боковой поверхности фундамента. Определяет потребность в утеплителе для внешней стороны сооружения.

Объем бетона

Количество бетона, требуемое для полной заливки фундамента. Возможны уплотнения при заливке, а также неточности при доставке бетона на место. Рекомендуем заказывать бетон с запасом в 10%.

Вес бетона

Приблизительный вес бетона при его средней плотности.

Нагрузка на почву от фундамента

Нагрузка, которую фундамент оказывает на площадь опоры (почву).

Минимальный диаметр продольных стержней арматуры

Определяется исходя из нормативов СНиП.

Минимальное количество рядов арматуры сверху и снизу

Минимально необходимое число продольных стержней в верхних и нижних поясах ленты, необходимое для обеспечения устойчивости к деформации силами растяжения и сжатия.

Общий вес арматуры

Вес всех стержней, составляющих арматуру фундамента.

Величина нахлеста арматуры

Размер нахлёста при соединении стержней арматуры.

Суммарная длина арматуры

Включает всю продольную арматуру каркаса, включая нахлёст стержней.

Минимальный диаметр поперечной арматуры (хомутов)

Определяется исходя из нормативов СНиП.

Шаг поперечной арматуры (хомутов)

Минимальный шаг хомутов, требуемый для сохранения жесткости арматурного каркаса.

Общий вес хомутов

Масса хомутов, необходимых при строительстве фундамента.

Минимальная толщина доски опалубки (при опорах через каждый метр)

Рассчитывается исходя из нормативов ГОСТ Р 52086-2003, при заданном шаге опоры и других параметрах фундамента.

Количество досок для опалубки

Количество досок заданной толщины для фундамента указанного размера. За основу берется доска длиной 6 метров.

Периметр опалубки

Полный периметр опалубки ленточного фундамента, включая внутренние перегородки.

Объем и примерный вес досок для опалубки

Вес опалубки в килограммах, а также объем досок в кубических метрах.

Расчет бетона, арматуры для фундаментов в онлайн калькуляторе: ленточный, плита, свайный

Для этого нужно внести данные в соответствующие ячейки с учетом запаса толщины стен фундамента не меньше 5 см. Если межкомнатные перегородки не относятся к несущей конструкции, то под ними можно обустраивать легкую основу с особыми показателями. Рекомендуется проводить их расчет отдельно.
При выборе ленточного фундамента в каждое поле вводится значение длины, высоты и толщины несущих стен. На основе расчетов определяется площадь основания для приобретения необходимого количества гидроизоляции, объем бетона и число плит перекрытия. Этот тип представляет собой закрытую железобетонную полосу, принимающую и равномерно распределяющую нагрузку от несущих стен.

Для плитного фундамента заполняются только значения длины стен и общей высоты основы. Это обусловлено его небольшим заглублением, отсутствием необходимости выполнения серьезных земляных работ. Он может укладываться на глубине до 50 см на основе песчаной подушки с использованием гидроизоляции и утеплителя. Такой тип выбирается при постройке небольшого здания на пучинистых грунтах.

Какой марки бетон нужен для заливки фундамента?

Чтобы не переплатить и выбрать соответствующий по параметрам материал, необходимо обратиться к специалистам. Они объяснят назначение различных марок в зависимости от типа возводимого здания:

  • М200 (В15). Применяется для легких щитовых построек;
  • М250 (В20). Используется при строительстве бревенчатых или брусовых одноэтажных конструкций без мансарды;
  • М300 (В22,5). Подойдет для домов из пеноблоков, керамзитобетона и газосиликатных блоков;
  • М350 (В25). Необходим для тяжелых кирпичных стен одноэтажного здания;
  • М400 тяжелый бетон. Является усиленным вариантом двухэтажных домов из кирпича и соответствует классу бетона В30.

При расчете фундамента дома лучше выбирать прочный материал, который не подвергаться деформации, не разрушится под воздействием влаги и веса всей конструкции.

Онлайн калькулятор расчета монолитного плитного фундамента (плиты, УШП)

Онлайн калькулятор расчета размеров, арматуры и количества бетона монолитного ленточного фундамента

Онлайн калькулятор расчета буронабивных свайно-ростверковых и столбчатых фундаментов

Калькулятор расчета минимального количества прутов арматуры для ленточного фундамента

Ленточный фундамент славится своей универсальностью, поэтому его очень часто выбирают для возведения домов и придомовых построек. Конечно, если проектируется крупное здание, то не обойтись без тщательных расчетов, которые должны выполнять специалисты-архитекторы. Но при строительстве на своем участке небольших сооружений бытового или хозяйственного предназначения (бани, гаража, птичника, сарая и т.п.) – вполне можно обойтись и собственными силами.

Калькулятор расчета минимального количества прутов арматуры для ленточного фундамента

Это вовсе не означает, что расчеты не потребуются – любой ленточный фундамент должен отвечать определенным требованиям и нормативам, нарушать которые не рекомендуется. Одно из них – необходимое и достаточное армирование ленты. В решении этого вопроса помощь окажет калькулятор расчета минимального количества прутов арматуры для ленточного фундамента.

Ниже будут приведены краткие пояснения по проведению расчетов.

Калькулятор расчета минимального количества прутов арматуры для ленточного фундамента

Перейти к расчётам

Пояснения по проведению расчетов

Расчёт несложен: он базируется на специальной формуле, учитывающей площадь сечения фундаментной ленты – от нее зависит и необходимая общая площадь сечения продольных прутов основного армирования.

  • В качестве исходных величин принимается высота ленты (с учетом подземной, заглубленной ее части и цоколя) и ее ширина.
  • При ширине ленты более 150 мм настоятельно рекомендуется выполнять армирование минимум с двумя прутьями в каждом ярусе.
  • Если получено нечетное значение прутьев (от 5 и более), один «лишний» прут желательно поместить в нижнем ярусе, там, где лента испытывает максимальные нагрузки.
  • Количество прутов напрямую зависит от диаметра используемой арматуры – можно оценить, какой вариант станет более предпочтительным с точки зрения стоимости материала и сложности выполнения обвязки арматурного каркаса.

Цены на арматуру

арматура

После того как определились с числом прутьев для основного продольного армирования, можно перейти к расчетам количества арматуры, с учетом длины фундаментной ленты, перехлестов, угловых соединений и т.п.

Нюансы заливки ленточного фундамента

Качественно выполненный фундамент – основа безопасности и длительности эксплуатации всего здания. Много полезной информации по этому поводу можно почерпнуть из статьи нашего портала, посвященной заливке фундамента собственными силами.

Расчет арматуры для ленточного фундамента, примеры, онлайн-калькулятор

Стандартный калькулятор онлайн расчета фундамента ленточного типа помогает вычислить необходимое количество стройматериалов и подобрать армирование. Закладка связанного каркаса из стальных прутьев является обязательным этапом, эта конструкция противостоит силам растяжения, возникающим при подвижках грунта и воздействии весовых нагрузок. Для арматуры цель заключается в выборе правильного и оптимального в плане цены размещения прутьев, подбора подходящего типа и диаметра металлопроката, определении суммарного метража и веса. Основной регламентирующий документ – СНиП 52-101 от 2003 года.

Оглавление:

  1. Что учесть при составлении схемы?
  2. Самостоятельный расчет по шагам
  3. Полезные рекомендации

Исходные данные и условия для расчета арматуры

Этот этап проводится после определения ширины основы и проверки ее соответствия весовым нагрузкам и геологическим условиям участка. В начале известны назначение и этажность постройки, материалы, тип и однородность грунта, уровень подземных вод. Эти данные служат основой для выбора глубины закладки, оптимальной марки бетона, толщины подушки. Знание длины, высоты и ширины ленты позволяет без проблем получать величину объема монолита, его периметра и сечения. В процессе учитываются не только наружные стены, ленточный фундамент заливается под все несущие конструкции, включая внутренние перегородки, правильный онлайн-калькулятор всегда предлагает выбрать нужную схему.

Самостоятельный расчет армирования начинается с составления схемы каркаса и определения необходимого диаметра прутьев. У ленточного типа предусматривается как минимум два ряда продольно расположенных стержней, это условие обязательно. СП указывают пределы при размещении и фиксации арматуры:

  • Максимальный промежуток между двумя продольными прутьями – 40 см. Выполнение этого условия подразумевает закладку дополнительного стержня при превышении ширины ленты свыше 50 см.
  • Расстояние от металла до боковых и нижних стен бетонной конструкции не может быть меньше 50-70 мм, верхних – 70-80. Но при этом крайние элементы каркаса не смещают в центр, в случае ленты это делает бессмысленным сам процесс армирования.
  • Интервал между рядами по вертикали варьируется от 60 до 80 см. С учетом вышеизложенного это означает, что при высоте фундамента в пределах 1 мм (т.е. мелкозаглубленного типа) двух поясов армирования достаточно, но при необходимости закладки ниже уровня промерзания грунта (1,5-2 м) или строительстве дома с подвалом частота рядов возрастает.
  • Поддерживающие (монтажные) вертикальные и поперечные ряды связываются в единую конструкцию и пересекаются друг с другом, шаг размещения варьируется от 30 до 80 см.
  • В качестве горизонтальных прутьев, принимающих и распределяющих основные нагрузки, используются изделия с периодическим профилем (имеющие маркировку АIII или А3). Для вертикальных и продольных допускается применение гладких марок (АI или А1, соответственно). Ребристая поверхность обеспечивает более качественное сцепление с частицами бетона.

Диаметр продольной арматуры для фундамента выбирается из учета требований СНиП: минимальное процентное соотношение стали в бетонной конструкции составляет 0,1% от ее сечения. Рассмотрим пример: для ленточного основания шириной в 40 см и высотой 1 м выбирается схема из 4 прутьев, требуемая площадь сечения – от 4 см2 и выше. Существуют специальные таблицы, помогающие подобрать оптимальный диаметр одного продольного стержня, в данном случае это 12 мм. При их отсутствии расчет проводят самостоятельно, величина сечения находится по формуле: F=π·R2, где π=3,1415, R – радиус. Для обеспечения равномерного распределения нагрузки все продольные элементы должны иметь одинаковый диаметр, при наличии изделий с разным сечением (к примеру, 14 и 12 мм) более толстые прутья укладываются снизу.

Минимальный диаметр остальной арматуры для связки составляет 6 мм, верхний предел в частном строительстве – 10. В отличие от продольных неразрывных прутьев эти стержни представляют собой отрезки нужной длины, немного превышающие высоту и ширину каркаса, т.е. выступающие за края стыков.

Рекомендуемый тип фиксации пересекающихся и угловых элементов – обвязка проволокой, сварочное соединение не подходит из-за риска коррозии и разрушения стыков.

Пример расчета

Исходные данные: для фундамента под деревянный дом с шириной ленты в 40 см и высотой в 100 требуется определить количество арматуры. Несущими являются только наружные стены, длина составляет 10 м, ширина – 6. С учетом вышеизложенных требований для данного дома подходит схема с 4 продольными ребристыми прутьями с диаметром в 12 мм, размещенных на расстоянии в 80 см между собой по высоте. Шаг вертикальных и поперечных стержней – 50 см.

Рекомендуемая последовательность расчета:

  • Определяется минимальный метраж для продольных рядов с учетом периметра здания: (6+10)×2=32 м. Соответственно, на схему из 4 прутьев потребуется не менее 88 м.
  • Рассчитывается общая длина арматуры для поперечных элементов каркаса: периметр дома делится на шаг размещения: 32/0,5=64 узла. Расстояние между продольными рядами – 30 см, но с учетом выступания концов за края стыка отрезки нарезают по 34 см как минимум (рекомендуемый запас для выполнения данного условия – от 10 %). Таким образом, для соединения каркаса поперек потребуется 64×0,34≈22 м арматуры.
  • Находится длина отрезков вертикальных стержней и их общий метраж. Для приведенной высоты ленточного фундамента она составляет 0,8+0,8×10 %≈0,88 м, для определения их количества число узлов умножают на 4. На них уйдет: 64×4×0,88≈225 м.
  • Требуемый вес (продукция реализуется в кг и тоннах). Используются стандартные значения для изделий выбранного диаметра: 1 п.м. металлопроката А3 сечением в 12 мм весит 0,888 кг, то же для гладкой разновидности 10 мм – 0,617. В итоге потребуется не менее 88×0,888=79 кг рифленой продукции и (225+22)×0,617=152 кг стали А1.

Приведенная схема расчета арматуры для ленточного фундамента является упрощенной и не учитывает запасы на закладку при соединении двух продольных прутьев (не менее 30 см), потребность в усилении углов и другие факторы. Большинство онлайн-калькуляторов их также не берет во внимание, полученный результат показывает необходимый минимум и помогает составить бюджет строительства. Для исключения ошибки предусматривается 10-12 % запас.

Что еще следует учесть, потребность в подушке

При возведении на сложных грунтах допустимый минимум диаметра арматуры составляет не 12, а 16 мм. То же относится к необходимости заливки конструкций тяжелыми марками бетона. Вне зависимости от типа постройки для соединения отдельных элементов армокаркаса используется вязальная проволока, а не сварка. Расчет ее количества несложный: число узлов умножают на длину отрезка на обвязку (30-50 мм), метраж пересчитывается в вес, из-за риска разрывов материал приобретается с 50-100 % запасом.

Арматура не укладывается на грунт, для предотвращения подобной ситуации под нижний ряд каркаса подкладывают кирпичи или специальные пластиковые стаканчики. Засыпка и трамбовка песчаной подушки под ленточное основание – обязательный этап, данный слой снижает нагрузку на нижний продольный ряд. На подвижных грунтах он занимает не менее 30 см. В особо сложных случаях организовывается фундамент с подушкой под ленту из тощего бетона толщиной около 10 см, армирование этого слоя необязательно.

Расчетные модули

> Фундаменты> Стеновая опора

Нужно больше? Задайте нам вопрос

Этот модуль обеспечивает анализ единичной полосы непрерывного настенного фундамента с приложенными осевыми, моментными и поперечными нагрузками. Также можно указать перекрывающие нагрузки, которые будут применяться к площади основания (за исключением области, покрытой стеной). Модуль также обеспечивает автоматический расчет допустимого увеличения давления на грунт в зависимости от ширины основания и / или глубины под поверхностью.

Модуль проверяет давление грунта при эксплуатации, устойчивость при опрокидывании, устойчивость при скольжении, устойчивость при подъеме, изгиб опоры и односторонний сдвиг опоры.

Общий

На этой вкладке собраны значения свойств материала, коэффициенты снижения прочности и другие параметры, влияющие на конструкцию.

f’c

Прочность бетона на сжатие в течение 28 суток.

fy

Предел текучести арматуры.

Ec

Модуль упругости бетона.

Плотность бетона

Плотность бетона используется для расчета собственного веса основания, когда выбран этот параметр.

Значения Phi

Введите значения уменьшения емкости, которые будут применяться к Vn и Mn.

Включите вес опоры как постоянную нагрузку

Щелкните [Да], чтобы модуль рассчитал вес основания и применил его как нагрузку, направленную вниз.Собственная масса основания будет умножена на коэффициент статической нагрузки в каждой комбинации нагрузок.

Мин. Соотношение стали — Температура / Усадка Reinf.

Введите минимальное соотношение температуры / усадки стали, рассчитанное с использованием толщины фундамента. Это вызовет предупреждающее сообщение, если секция недостаточно усилена.

Минимальный коэффициент безопасности при опрокидывании

Введите минимально допустимое отношение момента сопротивления к моменту опрокидывания.Если фактическое передаточное число меньше указанного минимального передаточного числа, появится сообщение о том, что устойчивость при опрокидывании не удовлетворена.

Минимальный запас прочности при скольжении

Введите минимально допустимое отношение силы сопротивления к силе скольжения. Если фактическое передаточное число меньше указанного минимального передаточного числа, будет выдано сообщение о том, что устойчивость скольжения не удовлетворена.

Допустимые значения почвы

Допустимое давление на грунт

Введите допустимое давление на грунт.Это сопротивление рабочей нагрузке, которое будет сравниваться с расчетным давлением грунта при рабочей нагрузке (нагрузки не учитываются при расчете прочности).

Увеличить подшипник за счет веса опоры

Щелкните [Да], чтобы модуль рассчитал вес одного квадратного фута (вид сверху) основания и прибавил его к допустимому значению несущей способности почвы. Это позволяет избежать ущерба грунту из-за собственного веса основания и полезно в ситуациях, когда в инженерно-геологическом отчете указаны допустимые значения чистого давления в опоре.

Пассивное сопротивление скольжению грунта

Введите значение пассивного давления грунта на сопротивление скольжению. Это значение будет использоваться для определения компонента сопротивления скольжению, создаваемого пассивным давлением почвы. Затем сопротивление скольжению из-за пассивного давления добавляется к сопротивлению скольжению из-за трения, чтобы определить общее сопротивление скольжению для каждой комбинации нагрузок.

Коэффициент трения грунт / бетон

Введите коэффициент трения между почвой и основанием, который будет использоваться при расчетах сопротивления скольжению.

Увеличение подшипников почвы

В этом разделе можно указать некоторые размеры, превышение которых автоматически увеличит допустимое давление на грунт.

Глубина основания основания под поверхностью почвы: Расстояние от низа основания до верха почвы. Это значение используется для определения допустимого увеличения давления на грунт и пассивного сопротивления скольжению грунта, но НЕ используется в других расчетах в этом модуле.

Увеличивается в зависимости от глубины основания: Предоставляет метод автоматического увеличения базового допустимого давления на грунт на основе глубины основания ниже некоторой контрольной глубины. Собирает следующие параметры:

Допустимое увеличение давления на фут: Определяет величину, на которую может быть увеличено базовое допустимое давление на грунт на каждый фут глубины ниже некоторой контрольной глубины.

Когда основание опоры ниже: Определяет необходимую глубину, чтобы начать реализацию постепенного увеличения допустимого давления на грунт на основе глубины опоры.

Пример: Предположим следующее: Базовое допустимое давление на грунт = 3 тыс. Фунтов силы. Основание основания находится на уровне 6 футов-0 дюймов ниже поверхности почвы. В геотехническом отчете указывается, что увеличение опорного давления на 0,15 тыс.футов допускается для каждого фута глубины, когда основание находится глубже, чем на 4 фута ниже поверхности почвы. Поскольку вы указали, что опора находится на 6 футов ниже поверхности почвы, модуль автоматически рассчитает скорректированное допустимое давление на грунт, равное 3 тыс.футов + (6 ‘- 4’) * 0,15 тыс.футов = 3.30 тыс. Фунтов

Увеличение в зависимости от ширины основания: Предоставляет метод автоматического увеличения базового допустимого давления на грунт на основе ширины основания, превышающей некоторый контрольный размер. Собирает следующие параметры:

Допустимое увеличение давления на фут: Определяет величину, на которую может быть увеличено базовое допустимое давление на грунт для каждого фута шириной, превышающей некоторый контрольный размер.

Когда максимальная длина или ширина больше, чем: Указывает требуемый размер, чтобы начать реализацию постепенного увеличения допустимого давления на грунт на основе ширины опоры.

Пример: Предположим следующее: Базовое допустимое давление на грунт = 3 тыс. Фунтов силы. Ширина опоры составляет 6 футов 0 дюймов. В геотехническом отчете указывается, что увеличение давления почвы на грунт на 0,15 тыс. Футов за фут для каждой ноги, если ширина основания превышает 4 фута-0 дюймов. Модуль автоматически рассчитает скорректированное допустимое давление на грунт, равное 3 тыс. Фунтов / футов + (6 футов — 4 футов) * 0,15 тыс. Фунтов / футов = 3,3 тыс. Фунтов / футов.

Примечание. Увеличение в зависимости от глубины и ширины основания является накопительным.

Размер опоры и арматура

Вкладка «Размеры»

Ширина основания: Определите ширину основания.

Ширина стены: определите ширину поддерживаемой стены.

Смещение центра стены от осевой линии фундамента: задайте размер между осевой линией стены и осевой линией фундамента. Положительные смещения сдвигают стену к правому краю основания.

Толщина основания: Определите толщину основания.

Автоматический расчет размера и толщины опор: Обеспечивает автоматизированную процедуру увеличения размеров опор до тех пор, пока давление почвы не будет удовлетворено и односторонний сдвиг не станет приемлемым.

Примечание. Любые приложенные перекрывающие нагрузки не учитываются в области, занимаемой стеной.

Усиливающий язычок

Размер арматурного стержня: укажите размер арматурного стержня, который следует учитывать для стержней, идущих параллельно ширине фундамента.

Шаг арматурных стержней: предоставляет возможность указать явное значение для шага арматурных стержней или указать количество стержней на длине 12 дюймов.

Арматурный стержень от центра до бетонной кромки @ снизу: укажите прозрачную крышку плюс 1/2 диаметра арматурного стержня.

Прикладные нагрузки

Вкладка «Вертикальные нагрузки»

Предоставляет поля ввода для вертикальных нагрузок и давления покрывающих пород. Вертикальные нагрузки указаны в тысячах фунтов на фут, и считается, что они действуют в центре ширины стены.Перекрывающие нагрузки указаны в тысячах фунтов на квадратный фут, и считается, что они действуют на верхнюю поверхность основания, за исключением площади, занимаемой стеной.

Вкладка Moments & Shears

Предоставляет поля ввода для моментов и сдвигов. Моменты указаны в тысячах футов на фут. Ножницы указываются в тысячах фунтов на фут, и считается, что они действуют на высоте, указанной в поле «Приложение сдвига над верхней частью основания».Ножницы создают момент, равный силе сдвига, умноженной на расстояние от нижней части основания до места приложения силы сдвига.

Сочетания нагрузок

Вкладка «Комбинации нагрузок» используется для определения комбинаций нагрузок, которые будут использоваться в расчете. Вкладка «Комбинации нагрузок LRFD» управляет комбинациями, которые используются для проверки конструкции железобетона. Вкладка «Комбинации давления почвы» управляет комбинациями, которые используются для оценки давления почвы на грунт.Коэффициент увеличения грунта может применяться к сочетанию нагрузок на основе сочетания нагрузок, как это разрешено инженерно-геологическим отчетом. Вкладка «Комбинации устойчивости» управляет комбинациями нагрузок, которые используются для проверки работоспособности при опрокидывании, скольжении и подъеме.

Эти вкладки позволяют пользователю выбирать из наборов комбинаций нагрузок, которые поставляются с программой, или выбирать из пользовательских наборов комбинаций нагрузок, которые были созданы и сохранены на машине пользователя.Также можно разблокировать выбранный набор комбинаций нагрузок и внести изменения в факторы непосредственно в этом представлении.

Пользователь может контролировать, какие комбинации запускать, а какие игнорировать. Наконец, эти вкладки позволяют пользователю указать, должна ли программа рассматривать алгебраический знак указанных коэффициентов нагрузки при ветровых и сейсмических нагрузках как обратимые или нет. Это может быть удобным способом убедиться, что эти нагрузки исследуются как действующие как в положительном, так и в отрицательном направлении, если это предусмотрено конструкцией.Обратите внимание, однако, что если этот параметр выбран, изменение алгебраического знака будет применяться ко ВСЕМ ветровым нагрузкам и / или ВСЕМ сейсмическим нагрузкам, включая горизонтальные И вертикальные нагрузки.

Расчеты

Вкладка результатов

На этой вкладке суммируются контрольные значения (наивысший коэффициент использования) для каждого проектного соображения из всех комбинаций нагрузок, которые были запущены. Для комбинации управляющих нагрузок он представляет Приложенную нагрузку, Допустимую или доступную сопротивляющуюся нагрузку, отношение приложенной нагрузки к нагрузке и управляющую комбинацию нагрузок, которая обеспечивает это регулирующее отношение.

Вкладка «Давление на грунт»

Для каждой комбинации служебной нагрузки на этой вкладке представлена ​​общая вертикальная нагрузка, результирующий эксцентриситет, давление почвы на левом и правом концах основания, допустимое давление почвы и отношение фактического давления почвы к допустимому.

Вкладка «Устойчивость к опрокидыванию и скольжению»

Для каждой комбинации служебной нагрузки на этой вкладке представлены опрокидывающий момент, момент сопротивления и отношение момента сопротивления к моменту опрокидывания относительно левого и правого краев основания.

Он также сообщает о силе скольжения, силе сопротивления и отношении силы сопротивления к силе скольжения.

Язычок изгиба опоры

На этой вкладке представлены результаты расчета изгиба на основе сочетания нагрузок.

Упор для опоры на ножки

На этой вкладке представлены результаты расчета на сдвиг для сочетания нагрузок на основе сочетания нагрузок.

Вкладка 3D

На этой вкладке представлена ​​трехмерная визуализация фундамента:

Вкладка 2D

На этой вкладке представлены виды фундамента в плане и в разрезе:

Дизайн фундамента | Tekla Tedds

Фундамент — одна из самых важных частей конструкции и одна из самых дорогих.Несложные, конструктивные и экономичные фундаменты являются основой успешного проектирования конструкций как на простых, так и на сложных участках. Tedds повышает производительность и качество строительства и строительства, заменяя повторяющиеся трудоемкие ручные расчеты автоматизированными расчетами конструкции фундамента. Это делает проектирование фундамента более эффективным, так что вы можете надежно создавать простые, но безопасные конструкции, которые ускоряют строительство в земле.

Анализ и проектирование опор

Tedds поддерживает анализ и проектирование опор для Еврокода и США.Эти расчеты позволяют быстро проверить результаты анализа и проектирования или только анализа подушечного или ленточного фундамента из железобетона или простого бетона.

Анализ свай

Чтобы ускорить время проектирования фундамента, этот расчет анализа свай для Еврокода и США выполняет статический анализ стойкости одиночных свай, забитых или пробуренных, в пластах из нескольких геоматериалов. Стальные, бетонные или деревянные сваи можно анализировать на сжимающие и растягивающие осевые нагрузки и боковые нагрузки.Расчет боковой нагрузки предназначен только для коротких жестких свай.

Конструкция заглушки

Этот расчет свайных заглушек для Еврокода и США проверяет конструкцию заглушек свай, поддерживающих одну колонну до 9 свай. Колонна может подвергаться осевому сжатию или растяжению, сдвигающим нагрузкам и двухосному изгибу. Возможные варианты нагрузки включают постоянную, вынужденную, снеговую и ветровую для всех типов нагрузки. Могут быть определены постоянные и наложенные дополнительные нагрузки. Стальные, бетонные или деревянные сваи можно определить по прочности на сжатие, растяжение и сдвиг.Определенные мощности сравниваются с результатами анализа.

Бетонная плита / плита на грунте

Этот конкретный расчет позволяет быстро оценить способность элементов плота выдерживать различные нагрузки без превышения допустимого опорного давления. Он также определяет количество арматуры, необходимой для поддержки нагрузок при перекрытии теоретических круговых углублений в грунте, которые, как предполагается, образуются под плотом.

Конструкция стальных шпунтовых свай

Этот расчет для проектирования стальных шпунтовых свай Еврокод и США проверяет устойчивость консольной или подпертой / связанной стены из стальных шпунтовых свай. Он определяет требуемую минимальную длину заделки, а затем вычисляет минимальный требуемый модуль упругости пластического сечения на метр длины стены. При необходимости расчет определит усилие на стяжке / стойке.

Получите БЕСПЛАТНУЮ 45-дневную полную пробную версию здесь

ФУНДАМЕНТ

Выбор типа фундамента

Выбор подходящего
тип фундамента определяется некоторыми важными факторами, такими как

  1. Характер конструкции
  2. Нагрузки от
    структура
  3. Характеристики недр
  4. Выделенная стоимость
    фундамент

Поэтому принять решение о
тип фундамента, необходимо проведение геологоразведочных работ.Тогда почва
характеристики в зоне поражения под зданием должны быть
тщательно оценен. Допустимая несущая способность пораженного грунта
затем следует оценить слои.

После этого исследования можно было
затем решите, следует ли использовать фундамент неглубокий или глубокий.

Фундаменты мелкого заложения, такие как
опоры и плоты дешевле и проще в исполнении. Их можно было бы использовать, если бы
выполняются следующие два условия;

  1. Наложенное напряжение (Dp)
    вызванная зданием, находится в пределах допустимой несущей способности
    различных слоев почвы, как показано на рис.1.

Это условие выполнено
когда на рисунке 1 меньше и меньше, меньше и меньше и так далее.

  1. Здание выдержало
    расчетная расчетная осадка для данного типа фундамента

Если один или оба из этих двух
условия не могут быть выполнены использование глубоких фундаментов должно быть
считается.

Глубокие фундаменты используются, когда
верхние слои почвы мягкие и имеется хороший несущий слой на
разумная глубина.Толщина грунта, лежащего под несущим слоем, должна быть
достаточная прочность, чтобы противостоять наложенным напряжениям (Dp)
из-за нагрузок, передаваемых на опорный слой, как показано на рисунке 2.

Глубокие фундаменты обычно
сваи или опоры, которые передают нагрузку здания на хорошую опору
страта. Обычно они стоят дороже и требуют хорошо обученных инженеров для
выполнять.

Если исследуемые слои почвы
мягкий на значительной глубине, и при разумных пределах не обнаруживается несущего пласта.
глубины, можно использовать плавучие фундаменты.

построить
плавающий фундамент, масса грунта, примерно равная весу
Предлагаемое здание будет демонтировано и заменено зданием. В
в этом случае несущее напряжение под зданием будет равно весу
удаленной земли
(γD)

что меньше

(q a = γD + 2C)

а также
Дп
будет равно нулю.Это означает, что несущая способность под
здания меньше, чем (q a ), и ожидаемое поселение теоретически равно
нуль.

Наконец, инженер должен
подготовить смету стоимости наиболее перспективного типа фундамента
что представляет собой наиболее приемлемый компромисс между производительностью и
Стоимость.

Фундамент мелкого заложения

Фундаменты неглубокие — это те
выполняется у поверхности земли или на небольшой глубине.Как упоминалось ранее
в предыдущей главе фундаменты мелкого заложения использовались при грунтовых
геологоразведочные работы доказывают, что все слои почвы, затронутые зданием, могут
противостоять наложенным напряжениям (Dp)
не вызывая чрезмерных заселений.

Фундаменты мелкого заложения либо
опоры или плоты.

Опоры

Фундамент является одним из
старейший и самый популярный вид фундаментов мелкого заложения.Опора — это
увеличение основания колонны или стены с целью распределения
нагрузка на поддерживающий грунт при давлении, соответствующем его свойствам.

Типы опор

Существуют разные виды
опоры, соответствующие характеру конструкции. Подножки можно классифицировать
на три основных класса

Настенный или ленточный фундамент

Он проходит под стеной мимо
его полная длина, как показано на рис.3. обычно используется в несущей стене
типовые конструкции.

Изолированный фундамент колонны

Он действует как основание для колонны.
Обычно применяется для железобетонных зданий типа Скелтон. Может
принимать любую форму, например квадратную, прямоугольную или круглую, как показано на рисунке 4.


Инжир.4 Типовые раздвижные опоры

Комбинированная опора колонны

Это
комбинированное основание для внешней и внутренней колонн здания, рис.5.
Он также используется
когда две соседние колонны здания расположены близко друг к другу другой, который
их опоры перекрывают друг друга

Распределение напряжений под опорами

Распределение напряжений под опорами
считается линейным, хотя на самом деле это не так. Ошибка
участие в этом предположении невелико, и на него можно не обращать внимания.

Загрузить сборники

Нагрузки, влияющие на обычные типы
строений:

  1. Постоянная нагрузка (D.L)
  2. Живая нагрузка (L.L)
  3. Ветровая нагрузка (W.L)
  4. Землетрясение (E.L)

Статическая нагрузка

Полная статическая нагрузка, действующая на элементы
конструкции следует учитывать при проектировании.

Живая нагрузка

Маловероятно, что полная интенсивность
динамической нагрузки будет действовать одновременно на всех этажах
многоэтажный дом.Следовательно, своды правил допускают определенные
снижение интенсивности динамической нагрузки. Согласно египетскому кодексу
на практике допускается следующее снижение временной нагрузки:

или .
перекрытий Снижение временной нагрузки%

Земля
нулевой этаж%

1 ул
нулевой этаж%

2 nd
этаж 10.0%

3 рд
этаж 20,0%

4 чт
этаж 30,0%

5 -й этаж и
более 40,0%

Временная нагрузка не должна снижаться в течение
склады и общественные здания, такие как школы, кинотеатры и больницы.

Ветровые и землетрясения нагрузки

Когда здания высокие и узкие,
Необходимо учитывать ветровое давление и землетрясение.


Допущение, использованное при проектировании спреда
Опоры

Теория анализа эластичности указывает на
что распределение напряжений под симметрично нагруженными фундаментами не является
униформа. Фактическое распределение напряжений зависит от типа материала.
под опорой и жесткостью опоры. Для опор на рыхлых
не связный материал, зерна почвы имеют тенденцию смещаться вбок на
края из-под груза, тогда как в центре почва относительно
ограничен.Это приводит к диаграмме давления, примерно такой, как показано на рисунке 6.
Для общего случая жестких оснований на связных и несвязных
материалов, Рис.6 показывает вероятное теоретическое распределение давления.
Высокое краевое давление можно объяснить тем, что краевой сдвиг должен
иметь место до урегулирования.

Потому что давление
интенсивность под опорой зависит от жесткости опоры,
тип почвы и состояние почвы, проблема в основном
неопределенный.Обычно используется линейное распределение давления.
под фундаментом, и в этом тексте будет следовать этой процедуре. В
в любом случае небольшая разница в результатах проектирования при использовании линейного давления
распределение

Допустимые опорные напряжения под опорами

Коэффициент запаса прочности при расчете
допустимая несущая способность под фундаментом должна быть не менее 3
если учитываемые при расчете нагрузки равны статической нагрузке +
пониженная живая нагрузка.Коэффициент запаса прочности не должен быть меньше 2, когда
рассматривается наиболее тяжелое состояние нагрузки, а именно: статическая нагрузка + полный рабочий ток.
нагрузка + ветровая нагрузка или землетрясения.

Нагрузки на надстройку обычно
рассчитывается на уровне земли. Если указано допустимое допустимое давление на опору, оно должно быть уменьшено на объем бетона.
под землей на единицу площади основания, умноженную на
разница между удельным весом бетона и грунта.Если принять равной среднюю плотность грунта и бетона рис.7,
тогда следует уменьшить на

Конструктивное исполнение раздвижных опор

Для опоры на ноги
следующие позиции следует рассматривать как

1 ножницы

Напряжения сдвига съедали обычно
контролировать глубину расставленных опор.Критическое сечение для широкой балки
сдвиг показан на рис.8-а. Находится на расстоянии d от колонны или стены.
лицо. Значения касательных напряжений приведены в таблице 1.
разрез для продавливания сдвига (двусторонний диагональный сдвиг) показан на рис. 8-б.
Он находится на расстоянии d / 2 от лицевой стороны колонны. Это предположение
в соответствии с Кодексом Американского института бетона (A.CI).


Таблица 1):
допустимые напряжения в бетоне и арматуре: —


Виды напряжений


символ


Допустимые напряжения в кг / см 2

Куб прочности

f у.е.

180

200

250

300

Осевой комп.

f co

45

50

60

70

Простые изгибающие и эксцентрические усилия с большим эксцентриситетом

ж в

70

80

95

105

Напряжения сдвига

Плиты и опоры без армирования.

Другие участники

Элементы с армированием

в 1

в 1

в 2

7

5

15

8

6

17

9

7

19

9

7

21

Пробивные ножницы

q cp

7

8

9

10

Армирование

Низкоуглеродистая сталь 240/350

Сталь 280/450

Сталь 360/520

Сталь 400/600

f с

1400

1600

2000

2200

1400

1600

2000

2200

1400

1600

2000

2200

1400

1600

2000

2200

Пробивные ножницы обычно
контролировать глубину разложенных опор.Из принципов статики Рис. 8-б
, сила на критическом участке сдвига равна силе на
опора за пределами секции сдвига, вызванная чистым давлением грунта f n .

где q p
= допустимое напряжение сдвига при штамповке

= 8 кг / см 2 (для куба
сила = 160)

f n = чистое давление на грунт

b = Сторона колонны

d = глубина продавливания

Можно предположить, что
критический участок для продавливания сдвига находится на торце колонны, и в этом случае
допустимое напряжение сдвига при штамповке можно принять равным 10.0 кг / см 2
(для прочности куба = 160).

Фундамент обычно проектируется
чтобы гарантировать, что глубина будет достаточно большой, чтобы противостоять сдвигу бетона
без армирования полотном ..

2- Облигация

Напряжение связи рассчитывается как

.

где поперечная сила Q равна
взятые в том же критическом сечении для изгибающего момента или при изменении
бетонное сечение или стальная арматура.Для опор
постоянное сечение, сечение для склеивания находится на лицевой стороне колонны или стены. В
арматурный стержень должен иметь достаточную длину
д г
, Рис.9, чтобы избежать выдергивания (разрыва соединения) или
раскалывание бетона. Значение
d d вычисляется следующим образом:

Для первого расчета возьмем
f s
равно допустимой рабочей
стресс.Если рассчитанный
d d есть
больше имеющихся d d

затем пересчитайте d d
взяв
f с
равно действительному напряжению стали.

Допустимая стоимость облигации
напряжение q b
следующие

3- Изгибающий момент

Критические разделы для
изгибающий момент определяется по рис.10 следующим образом:

Для бетонной стены и колонны,
это сечение берется на лицевой стороне стены или колонны рис.10-а.

Для кладки стены этот участок
берется посередине между серединой и краем стены Рис.10-б.

Для стальной колонны этот раздел
расположен на полпути между краем опорной плиты и лицевой стороной
столбец Рис.(10-с).

Глубина, необходимая для сопротивления
изгибающий момент

4- Опора на опору

Когда железобетон
колонна передает свою нагрузку на опору, сталь колонны, которая
несущий часть груза, не может быть остановлен на опоре, так как
это может привести к чрезмерной нагрузке на бетон в зоне контакта колонны.Следовательно, это
необходимо для передачи части нагрузки, переносимой стальной колонной, на
напряжение сцепления с основанием за счет удлинения стальной колонны или
дюбеля. Из Рис.11:

где

f s — фактическое напряжение стали

5- Обычная бетонная опора под R.C. Опора

Распространенной практикой является размещение
простой бетонный слой под железобетонным основанием. Этот слой
около 20 см. до 40 см. Проекция C плоского бетонного слоя
зависит от его толщины t. Ссылаясь на Рис.12, максимальный изгибающий момент
на единицу длины в сечении a-a равно

Где
f n

= чистое давление почвы.

Максимальное растягивающее напряжение
внизу раздела а-а
это:

ДИЗАЙН R.C. СТЕНА:

Основание стены представляет собой полосу из
железобетон шире стены. На Рис.13 показаны различные типы
стеновые опоры. Тип, показанный на Рис. 13-а, используется для опор, несущих легкие.
нагрузки и размещены на однородном грунте с хорошей несущей способностью.Тип, показанный в
Рис. 13-б используется, когда грунт под фундаментом неоднородный и
разная несущая способность. Используется тип, показанный на рисунках 13-c и 13-d.
для тяжелых нагрузок.

Процедура проектирования:

Рассмотрим 1.0 метров в длину
стена.

1.
Найдите P на уровне земли.

2.
Найти, если дано, то оно сокращается или вычисляется P T .

3.
Вычислить площадь опоры

Если напряжение связи небезопасно,
либо увеличиваем за счет использования стальных прутков меньшего диаметра, либо
увеличивать

О
глубина d.Сгибая вверх
стальная арматура по краям фундамента помогает противостоять сцеплению
стрессы. Диаметр основной стальной арматуры не должен быть меньше
более 12 мм. Для предотвращения растрескивания из-за неравномерного оседания под стеной
Само по себе дополнительное армирование используется, как показано на рис. 13-c и d. это
принимается как 1,0% от поперечного сечения бетона под стеной и распределяется
одинаково сверху и снизу.

19.Проверить анкерный залог

Конструкция одностоечной опоры

одноколонный фундамент обычно квадратный в плане, прямоугольный фундамент —
используется, если есть ограничение в одном направлении или если поддерживаемые столбцы
слишком удлиненный.прямоугольное сечение. В простейшем виде они
состоят из единой плиты ФИг.15-а. На рис. 15-б изображена колонна на пьедестале.
опора, пьедестал обеспечивает глубину для более благоприятной передачи нагрузки
и во многих случаях

требуется
чтобы обеспечить необходимую длину для дюбелей. Наклонные опоры, такие как
те, что на Рис. 15-c

Методика расчета опор квадратной колонны

Американец
Кодексы практики
равно
момент около критического сечения y-y чистого напряжения, действующего на
вылупился.area abcd Рис. 16-a. Согласно континентальным кодексам практики M max .
равно любому; момент действия чистых напряжений
на заштрихованной области abgh, показанной на рис. 16-b, около критического сечения y-y
или 0,85 момент результирующих напряжений, действующих на площадь abcd на рис. 16-а.
о г-у.

8.Определите необходимую глубину сопротивления пробивке d p .

9.

Рассчитайте d м , глубину сопротивления

b =
B, сторона опоры в соответствии с Американскими нормами практики

.

b = (b c + 20) см
где b c — сторона колонны согласно Continental
Кодексы практики.

Следует отметить, что d м
вычисленное континентальным методом, больше, чем вычисленное американским кодом.
Большая глубина уменьшит количество стальной арматуры и обычно
соответствует глубине, необходимой для штамповки. Американский код дает меньший d м
с более высоким значением стальной арматуры, но с использованием высокопрочной стали,
площадь стальной арматуры может быть уменьшена. В этом тексте
изгибающий момент рассчитывается в соответствии с Американскими нормами, а b равно
принимается либо равным b c + 20, когда используется обычная сталь, либо
равно B при использовании стали с высоким пределом прочности.

Глубина основания d может быть
принимает любое значение между двумя значениями, вычисленными двумя вышеуказанными методами. Это
Следует отметить, что при одном и том же изгибающем моменте большая глубина будет
требуется меньшая площадь арматурной стали, которая может не удовлетворять требованиям
минимальный процент стали. Также небольшая глубина потребует большой площади стали.
особенно при использовании обычной низкоуглеродистой стали.

10. Выберите большее из d m или d p

11.Проверить d d , глубину установки дюбеля колонны.

Методика расчета прямоугольной опоры

Процедура такая же, как и
квадратный фундамент. Глубина обычно контролируется пробивными ножницами, кроме случаев, когда
отношение длины к ширине велико, сдвиг широкой балки может контролировать
глубина. Критические участки для сдвига находятся на расстоянии d по обе стороны от
столбец Рис.17-а. Изгибающий момент рассчитывается для обоих направлений, вокруг оси 1-1 и вокруг оси b-b, как показано на рис. 17.b и c.

Армирование в длинном
направление (сторона L) рассчитывается по изгибающему моменту и равномерно распределяется по ширине B.
армирование в коротком направлении (сторона B) рассчитывается по изгибу
момент
М 11 .При размещении стержней в коротком направлении один
необходимо учитывать, что опора, обеспечиваемая опорой колонны, является
сосредоточены около середины, следовательно, зона опоры, прилегающая к
колонна более эффективна в сопротивлении изгибу. По этой причине
произведена регулировка стали в коротком направлении. Эта регулировка помещает
процент стали в зоне с центром в колонне шириной, равной
к длине короткого направления опоры.Остальная часть
Арматура должна быть равномерно распределена в двух концевых зонах, рис.18.
По данным Американского института бетона, процент стали в
центральная зона выдается по:

где S = отношение длинной стороны к короткой
сторона, L / B.

SEMELLES

Одиночные опоры должны быть связаны
вместе пучками, известными как semelles, как показано на рис.19.a. Их функция
нести стены первого этажа и переносить их нагрузки на опоры.
Семелла могут предотвратить относительное оседание, если они имеют очень жесткое сечение.
и сильно усиленный.

Семелле спроектирован как неразрезная железобетонная прямоугольная балка.
несущий вес стены. Ширина семели равна
ширина стены плюс 5 см и не должна быть меньше 25 см. Должно
сопротивляться усилиям сдвига и изгибающим моментам, которым он подвергается,
semelles должен

быть усиленным сверху и снизу
для противодействия дифференциальным расчетам.равным усилением A s .

Верх
уровень семелы должен быть на 20 см ниже уровня платформы.
окружающие здание. Если уровень первого этажа выше, чем
уровень платформы, уровень внутренней полумельки можно принять 20 см.
ниже уровня первого этажа

Опоры, подверженные воздействию момента

Введение

Многие основы сопротивляются, в
в дополнение к концентрической вертикальной нагрузке, момент вокруг одной или обеих осей
основания.Момент может возникнуть из-за нагрузки, приложенной не к центру
основание. Примеры основ, которые должны противостоять моменту, — это основания для
подпорные стены, опоры, опоры мостов и колонны
фундаменты высотных зданий, где давление ветра вызывает заметный прогиб
моменты у основания колонн.

Результирующее давление на почву
под внецентренно нагруженным основанием считается совпадающим с осевым
нагрузка P, но не с центром тяжести фундамента, что приводит к линейному
неравномерное распределение давления.Максимальное давление не должно превышать
максимально допустимое давление на почву. Наклон опоры из-за
возможна более высокая интенсивность давления почвы на пятку. Это может
быть уменьшенным за счет использования большого запаса прочности при расчете допустимого грунта
давление. Глава 1, раздел «Опоры с эксцентрическими или наклонными нагрузками»
обеспечивают снижение допустимого давления на грунт для внецентренно нагруженных
опоры.

Опоры с моментами или эксцентриситетом относительно
Одна ось

где P =
вертикальная нагрузка или равнодействующая сила

е =
Эксцентриситет вертикальной нагрузки или равнодействующей силы

q =
интенсивность давления грунта (+ = сжатие)

и не должно быть больше допустимого

давление почвы q a

c-Нагрузка P за пределами средней

Когда
нагрузка P находится за пределами средней трети, то есть
е
>
L / 6,
Уравнение7 указывает на то, что под опорой возникнет напряжение. Однако нет
между почвой и основанием может возникнуть напряжение, поэтому напряжение
напряжения не принимаются во внимание, а площадь основания, которая находится в

натяжение не считается эффективным при несении нагрузки. Следовательно
диаграмма давления на почву должна всегда находиться в сжатом состоянии, как показано на

Рис.21-.c. Для

в
эксцентриситет е

>
L / 6
с участием
относительно только одной оси, можно управлять уравнениями для максимальной почвы
давление q 1 , найдя диаграмму давления сжатия,
результирующая должна быть одинаковой и на одной линии действия нагрузки P.Этот
диаграмма примет форму треугольника со стороной = q 1 и основанием
=

Опоры с моментами или эксцентриситетом относительно
обе оси

Для опор с моментами или
эксцентриситет относительно обеих осей Рис. 22, давление может быть вычислено с помощью
следующее уравнение

a- Нейтральная ось за пределами базы:

Если нейтральная ось находится снаружи
основание, то все давление q находится в сжатом состоянии, и уравнение (9) имеет вид
действительный.Расположение максимального и минимального давления на почву может быть
определяется быстро, наблюдая направления моментов. Максимум
давление q 1 находится в точке (1)

Рис.22-а и минимальный
давление q 2 находится в точке (3). Давление q 1 и q 2
определяются из уравнения (9).

б- Нейтральная ось режет основание

Если нейтральная ось режет
основание, то некоторый участок основания подвергается растяжению Рис.22. Как
почва вряд ли захватит опору, чтобы удерживать ее на месте, поэтому
диаграмму, показанную на рис. 22-б, и уравнение (9) использовать нельзя. Расчет
Максимальное давление на почву должно зависеть от площади, фактически находящейся на сжатии.
Диаграмма сжатия должна быть найдена таким образом, чтобы ее результирующая
должны быть равны и на одной линии действия силы P. Простейший
способ получить эту диаграмму — методом проб и ошибок следующим образом:

1-
Находить
давление почвы во всех углах, применяя уравнение.(9).

2-

Определите положение нейтральной оси N-A (линия нулевого давления).
Это не прямая линия, но предполагается, что это так.
Поэтому необходимо найти только две точки, по одной на каждой соседней стороне.
основания.

3-
Выбрать другой
нейтральная ось (N’-A ‘) параллельна (N-A), но несколько ближе к месту
результирующей нагрузки P, действующей на опору.

4-
Вычислить
момент инерции сжатой области по отношению к N’-A ‘. В
Самая простая процедура — нарисовать опору в масштабе и разделить площадь на
прямоугольники и треугольники

4.4 КОНСТРУКЦИЯ ПРЕДНАЗНАЧЕННЫХ ФУНТОВ
К МОМЕНТУ

Основная проблема в
конструкция эксцентрично нагруженных опор — это определение
распределение давления под опорами. Как только они будут определены,
процедура проектирования будет аналогична концентрически нагруженным опорам,
выбраны критические сечения и произведены расчеты напряжений из-за
момент и сдвиг сделаны.

Где
изгибающие моменты на колонну поступают с любого направления, например от
ветровые нагрузки, квадратный фундамент; предпочтительнее, если не хватает места
диктуют выбор прямоугольной опоры. Если изгибающие моменты действуют всегда
в том же направлении, что и в колоннах, поддерживающих жесткие каркасные конструкции,
опору можно удлинить в направлении эксцентриситета

Размеры фундамента B
и L пропорциональны таким образом, чтобы максимальное давление на носке
не превышает допустимого давления почвы.

Если
колонна несет постоянный изгибающий момент, например, кронштейн, несущий
длительной нагрузке, может оказаться преимуществом смещение колонны от центра на
опоры так, чтобы эксцентриситет результирующей нагрузки был равен нулю.
В этом случае распределение давления на основание будет равномерным. Долго
носок опоры должен быть спроектирован как консоль вокруг
сечение лицевой стороны колонны, Расчет глубины сопротивления
пробивные ножницы и ножницы для широкой балки такие же, как при опоре фундаментов
концентрические нагрузки

Поскольку изгибающий момент на
основание колонны, вероятно, будет большим для этого типа фундамента,
арматура колонны должна быть правильно привязана к фундаменту.,
Детали армирования для этого типа фундаментов показаны на Рис.24.

Для квадратного фундамента это
как правило, удобнее всего поддерживать одинаковый диаметр стержня и расстояние между ними
направления во избежание путаницы при креплении стали.

Комбинированные опоры

Введение

В предыдущем разделе были представлены элементы оформления разворота и стены.
опоры.В этом разделе рассматриваются некоторые из наиболее сложных
проблемы с мелким фундаментом. Среди них опоры, поддерживающие более
один столбец в ряд (комбинированные опоры), который может быть прямоугольным или
трапециевидной формы, или две накладки, соединенные балкой, как ремешок
опора. Эксцентрично нагруженные опоры и опоры несимметричной формы
тоже будет рассмотрено.

Прямоугольные комбинированные опоры

Когда
линии собственности, расположение оборудования, расстояние между колоннами или другие соображения
ограничить расстояние от фундамента в местах расположения колонн, возможное решение:
использование фундамента прямоугольной формы.Этот тип фундамента может поддерживать
два столбца, как показано на рисунках 25 и 26, или более двух столбцов с
только небольшое изменение процедуры расчета. Эти опоры
обычно проектируется, предполагая линейное распределение напряжения на дне
основания, и если равнодействующая давления почвы совпадает с
равнодействующая нагрузок (и центр тяжести опоры), грунт
предполагается, что давление равномерно распределено, линейное давление
Распределение подразумевает твердую опору на однородной почве.Настоящий
опора, как правило, не жесткая, и давление под ней неравномерно, но
Было обнаружено, что решения, использующие эту концепцию, являются адекватными. Этот
Концепция также приводит к довольно консервативному дизайну.

Конструкция жесткой прямоугольной опоры заключается в определении
расположение центра тяжести (cg) нагрузок на колонну и использование длины
и такие размеры ширины, чтобы центр тяжести основания и центр
силы тяжести колонны нагрузки совпадают.С размерами опоры
установили, ножницы

можно подготовить диаграмму моментов, выбрать глубину сдвига (опять же
является обычным, чтобы сделать глубину достаточной для сдвига без использования сдвига
армирование, чтобы косвенно удовлетворить требованиям жесткости), и армирование
сталь, выбранная для требований к гибке. Критические секции на сдвиг, оба
диагональное натяжение и широкая балка должны приниматься, как указано в предыдущем
раздел.Максимальные положительные и отрицательные моменты используются при проектировании
армирующей стали, и в результате получится сталь как в нижней, так и в верхней части
луч.

В коротком направлении очевидно, что вся длина не будет
эффективен в сопротивлении изгибу. Эта зона, ближайшая к колонне, будет наиболее
эффективен для изгиба, и рекомендуется использовать этот подход.
Это в основном то, что Кодекс ACI определяет в Ст.15.4.4 для прямоугольного
опоры

Если принять, что зона, в которую входят столбцы, больше всего
эффективная, какой должна быть ширина этой зоны? Конечно, это должно быть что-то
больше ширины столбца. Наверное, не должно быть больше
ширина столбца плюс d до 1,5d, в зависимости от расположения столбца на основе
аналитическая работа автора, отсутствие руководства по Кодексу и признание того, что
дополнительная сталь «укрепит» зону и увеличит моменты в этой зоне
и уменьшить момент выхода из зоны.Эффективная ширина при использовании этого метода
проиллюстрирован на рис.27.
Для оставшейся части фундамента в коротком направлении Кодекс ACI
Должно использоваться требование для минимального процентного содержания стали (ст. 10.5 или 7.13).

При выборе размеров для комбинированного фундамента размер длины равен
несколько критично, если желательно иметь диаграммы сдвига и момента
математически близко как проверка ошибок.Это означает, что если длина
точно вычисленное значение из местоположения cg столбцов,
Эксцентриситет будет внесен в основание, что приведет к нелинейному
диаграмма давления грунта. Однако фактическая длина в заводском состоянии должна быть
округляется до практической длины, скажем, с точностью до 0,25 или 0,5 фута (от 7,5 до 15
см).

Нагрузки на колонну могут быть приняты как сосредоточенные нагрузки для расчета сдвига и
диаграммы моментов.Для расчета значения сдвига и момента на краю (торце)
столбца следует использовать. Результирующая ошибка при использовании этого подхода:
незначительно Рис. (28)

Если основание нагружено более чем двумя колоннами, проблема все еще сохраняется.
статически детерминированный; реакции (нагрузки на колонку) известны также как
распределенная нагрузка, то есть давление грунта.

Методика расчета прямоугольной комбинированной опоры: —

Ссылаясь на Рис.29, этапы проектирования можно резюмировать следующим образом:

1-

Найдите направление применения полученного R. Это исправление L / 2, поскольку y равно
известные и ограниченные. Следует указать, что если длина L не равна
точно рассчитанное значение, эксцентриситет будет введен в
опоры, в результате чего получается нелинейная диаграмма давления грунта.Фактический как построенный
длину, однако, следует округлить до практической длины, например, до
ближайшие 5 см или 10 см.

максимальный + ve момент в точке K, где сила сдвига = ноль

6-

Определите глубину сдвига. Принято делать глубину адекватной
на сдвиг без использования сдвига
армирование. Критическое сечение сдвига находится на расстоянии d от грани.
столбца, имеющего максимум

сдвиг, рис.30

7-Определить
глубина продавливания сдвига для обеих колонн. По данным ACI,
критическое сечение это на d / 2 от грани колонны. Рис.30.

9-д
выбран наибольший из

т = д +
От 5 до 8 см.

11-
Проверьте напряжения сцепления и длину анкеровки d.

12-

Короткое направление:

Нагрузки на колонну распределяются поперечно поперечными балками (скрытыми), одна
под каждым столбцом.Длина балок равна ширине балки.
опоры B. Эффективную ширину поперечной балки можно принять как минимум
из следующего:

а-

Ширина колонны a + 2 d или ширина колонны a + d + проекция фундамента
за столбцом y, рис.31.

б-

Ширина подошвы

Следует отметить, что код ACI считает, что эффективная ширина
поперечная балка равна ширине колонны a + d или ширине колонны a + d / 2 + y.
Поперечный изгибающий момент M T1 в колонне (1) равен

Поперечная арматура должна быть распределена по полезной ширине.
поперечной балки.Для остальной части фундамента минимум
следует использовать процентную сталь. Напряжения связи и длина анкеровки d d ,
следует проверить.

Стойка комбинированная трапециевидная: —

Комбинированная трапециевидная опора для двух колонн, используемая, когда колонна несет
самая большая нагрузка находится рядом с линией собственности, где проекция ограничена или
когда есть ограничение на общую длину опоры.Ссылаясь на
Рис.32

,

Положение результирующей нагрузки на столбцы R определяет положение
центриод трапеции. Длина L определяется, а площадь A равна
вычислено из:

Процедура проектирования такая же, как и для прямоугольного комбинированного фундамента, за исключением того, что
диаграмма сдвига будет кривой второй степени, а изгибающий момент —
кривая третьей степени.

Конструкция ременных или консольных опор

Можно использовать ленточную опору.
где расстояние между колоннами настолько велико, что комбинированная или трапециевидная
опора становится довольно узкой, что приводит к высоким изгибающим моментам, или где, как в предыдущем разделе.

Ремешок
основание состоит из двух опор колонн, соединенных элементом, называемым
ремень, балка или консоль, передающая момент извне
опора.На рис.33 показано ленточное основание. Поскольку ремешок предназначен для

момент, либо это должно быть
образуются вне контакта с почвой или почву следует разрыхлить на
на несколько дюймов ниже ремешка, чтобы ремешок не оказывал давления на грунт
действуя по нему. Для простоты разбора, если ремешок есть. не очень долго,
весом ремешка можно пренебречь.

При проектировании ленточной опоры
сначала необходимо выровнять опоры.Это делается при условии, что
равномерное давление грунта под основаниями; то есть R 1 и R 2
(Рис.33) действуют в центре опоры.

Ремешок должен быть массивным
член, чтобы это решение было действительным. Развитие уравнения 1 подразумевает жесткую
вращение тела; таким образом, если ремешок не может передавать эксцентрик
момент из столбца 1 без вращения, решение недействительно.Избежать
рекомендуется вращение внешней опоры.

I планка / I опора
> 2

Желательно пропорции
обе опоры так, чтобы B и q были как можно более равны для управления
дифференциальные расчеты.

Методика расчета опор ремня

реакция под интерьер
опора будет уменьшена на такое же значение, как показано на Рис.33

1-
Дизайн начинается с пробной стоимости

евро.

6-
Убедитесь, что центр тяжести площадей двух опор
совпадают с равнодействующей нагрузок на колонну.

7-
Рассчитайте моменты и сдвиг в различных частях ремня.
опора.

8-
Дизайн ремешка

Ремешок представляет собой
однопролетная балка, нагруженная вверх нагрузками, передаваемыми ей двумя
опор и поддерживаются нисходящими реакциями по центральным линиям двух
столбцы.Таким образом, нагрузка вверх по длине L равна R 1 / L.
т / м ‘. Местоположение максимального момента получается приравниванием сдвига
сила до нуля. Момент уменьшается к внутренней колонне и равен нулю.
по центральной линии этого столбца. Следовательно, половина армирования ремня составляет
прекращено там, где больше нет необходимости, а вторая половина продолжается до
внутренняя колонна. Проверьте напряжения сдвига и используйте хомуты и изогнутые стержни, если
нужно.

9-
Конструкция наружной опоры

Внешняя опора действует
точно так же, как настенный фундамент длиной, равной L. Хотя колонна
расположен на краю, балансирующее действие ремня таково, что
передают реакцию R 1 равномерно по длине L 1
Таким образом достигается желаемое равномерное давление на почву. Дизайн выполнен
точно так же, как для настенного фундамента.

10-
Дизайн межкомнатной опоры

Внутренняя опора может быть
спроектирован как простой одноколонный фундамент. Основное отличие состоит в том, что
Пробивные ножницы следует проверять по периметру fghj, рис.33.

ФУНДАМЕНТЫ

Введение

Фундамент плота
непрерывное основание, которое покрывает всю площадь под конструкцией и
поддерживает все стены и колонны.Термин мат также используется для обозначения фундамента.
этого типа. Обычно используется на почвах с низкой несущей способностью и там, где
площадь, покрытая расстеленными опорами, составляет более половины площади, покрытой
структура. Плотный фундамент применяется и там, где в грунтовой массе содержится
сжимаемые линзы или почва достаточно неустойчива, так что дифференциал
урегулирование будет трудно контролировать. Плот имеет тенденцию преодолевать мост
неустойчивые отложения и уменьшает дифференциальную осадку.

Несущая способность плотов по песку

Биологическая способность
основания на песке увеличивается по мере увеличения ширины. Благодаря большой ширине
плота по сравнению с шириной обычной опоры, допустимая
вместимость под плотом будет намного больше, чем под опорой.

Было замечено на практике
что при допустимой несущей способности под плотом, равной удвоенной
допустимая несущая способность
определяется для обычной опоры.отдых на том же песке даст
разумная и приемлемая сумма урегулирования.

Если уровень грунтовых вод находится на
глубина равна или больше B, ширина плота, допустимая
Несущая способность, определенная для сухих условий, не должна уменьшаться. Если
есть вероятность, что уровень грунтовых вод поднимается, пока не затопит
площадка, допустимая несущая способность
следует уменьшить на 50%.Если
уровень грунтовых вод находится на промежуточной глубине между B и основанием
плот, следует сделать соответствующее уменьшение от нуля до 50%.

Несущая способность плотов по глине.

В глинах несущая способность
не зависит от ширины фундамента.
вместимость под плотом будет такая же, как и под обычным основанием.

Если предполагаемый дифференциал
осадка под плотом более чем терпима или если вес
здание, разделенное на его площадь, дает несущее напряжение больше, чем
допустимая несущая способность, плавающий или частично плавающий фундамент должен
быть на рассмотрении.

Выполнить плавающий
фундамент, земляные работы должны проводиться до глубины D, на которой
вес выкопанного
Грунт равен весу конструкции, рисунок 2.В этом случае
избыточное наложенное напряжение
Δp на уровне фундамента равна нулю и, следовательно,
здание не пострадает.

Если полный вес
building = Q

и вес удаленной почвы
= W с

и превышение нагрузки при
уровень фундамента = Q e

\ Q e = QW s

В случае плавающего фундамента
;

Q
= W с
и, следовательно, Q e
= Ноль

В случае частично плавающего
фундамент, Q e
имеет определенный
значение, которое при делении на площадь основания дает допустимый подшипник
емкость почвы;

Проектирование плотных фундаментов;

Плоты могут быть жесткими.
конструкции (так называемый традиционный анализ), при которых давление грунта действует
против плиты плота предполагается равномерно распределенным и равным
общий вес постройки, деленный на площадь плота.Это
правильно, если столбцы загружены более или менее одинаково и на равном расстоянии друг от друга,
но на практике выполнить это требование сложно, поэтому допускается
чтобы нагрузки на колонны и расстояния варьировались в пределах 20%. Однако если
нисходящие нагрузки на одних участках намного больше, чем на других, это
желательно разделить плот на разные части и оформить каждую зону на
соответствующее среднее давление. Непрерывность плиты между такими
области обычно предоставляются, хотя для областей с большими различиями в
давление рекомендуется строить вертикальный строительный шов через
плита и надстройка, чтобы учесть дифференциальную осадку.

В гибком плотном фундаменте
дизайн не может быть основан только на требованиях к прочности, но это необходимо
подвергнуться из-за прогнозируемого заселения. Толщина и
количество армирования плота следует подбирать таким образом, чтобы
предотвратить развитие трещин в плите. Поскольку дифференциальный расчет
не учтено в конструктивном дизайне, принято усиливать
плот с вдвое большей теоретической арматурой.Количество
сталь можно принять как 1% площади поперечного сечения, разделенной сверху и
Нижний. Толщина плиты не должна быть больше 0,01 от
радиус кривизны. Толщина может быть увеличена возле колонн до для предотвращения разрушения при сдвиге.

Есть два типа плотных фундаментов:

1-
Плоская плита перекрытия, которая представляет собой перевернутую плоскую плиту Рис.34-а. Если
толщина плиты недостаточна, чтобы противостоять продавливанию под колонны,
пьедесталы могут использоваться над плитой Рис. 34-.b или, ниже плиты, с помощью
утолщение плоской плиты под колоннами, как показано на Рис. 34-c.

2-
Плита и балка на плоту, есть. перевернутый R.C. пол,
состоит из плит и балок, идущих вдоль колонны, рядами в обоих направлениях,
Рис.34-d, он также называется ребристым матом. Если желателен сплошной пол в
цоколь, ребра (балки) могут быть размещены под плитой, рис.34-е.

Конструкция плота плоской перекрытия

Плот, , который
равномерной толщины, делится на полосы колонн и средние полосы как
показано на рис. 35-а. Ширина полосы столбцов равна b + 2d, где b =
сторона колонки. Глубину плота d можно принять примерно равной 1/10
свободный промежуток между столбцами.Также ширину полосы столбца можно принять
равно 3 б.

Планки колонн выполнены в виде
неразрезные балки, нагруженные треугольными нагрузками, как показано на рис. 35-b. Сеть
интенсивность равномерного восходящего давления f n под любой площадью, для
Например, площадь DEFG можно принять равной одной четвертой общей нагрузки.
на столбцах D, E, F и G, разделенных на площадь DEFG.

Суммарные нагрузки, действующие на
планка колонны BDEQ, рис.35-a приняты в виде треугольных диаграмм нагружения, показанных
на рис. 35-б. Общая нагрузка на деталь DE, P DE , принимается равной
чистое давление, действующее на площадь DHEJ.

Конструкция жесткого плота (традиционный метод)

Размер плота
устанавливается равнодействующая всех нагрузок и определяется давление грунта.
вычисляется в различных местах под основанием по формуле.

Плот подразделяется на
ряд непрерывных полос (балок) с центром в рядах колонн, как показано на
Рис.37.

Диаграммы сдвига и момента
могут быть установлены с использованием либо комбинированного анализа фундамента, либо балочного момента
коэффициент Коэффициенты момента балки. Коэффициент момента балки
PI 2 /10
для длинных направлений и
Для коротких направлений может быть принят PI 2 /8.Отрицательный и
положительные моменты будем считать равными. Глубина выбрана так, чтобы удовлетворить
требования к сдвигу без использования хомутов и растягивающей арматуры
выбрано. Глубина обычно будет постоянной, но требования к стали могут
варьироваться от полосы к полосе. Аналогично анализируется и перпендикулярное направление.

Расчет перекрытия и фермы (ребристый мат)

Если столбец загружается и
интервалы равны или изменяются в пределах 20%, чистое восходящее давление f n
действие против плота предполагается равномерным и равным Q / A.

где

Q = вес здания при
на уровне земли, и

A = площадь плота (по
за пределами внешних колонн).

Если это давление больше
чем чистое допустимое давление на грунт, площадь плота должна быть
увеличена до площади, достаточно большой, чтобы снизить равномерное давление на сетку
допустимое значение. Этого можно добиться, выполнив выступ плиты за пределы
внешняя грань внешних колонн.

Ссылаясь на Рис. 38,
различные элементы плота могут иметь следующую конструкцию:

Конструкция плиты:

1-Расчет поперечных балок B 1 и B 2

Равномерно распределенная нагрузка / м ‘
на

Пусть R 1 и R 2
быть центральной реакцией лучей B 1 и B 2 на
центральная балка дальнего света B 3 соответственно.Концевые балки B 1
несет только часть нагрузки, которую несет балка B 2 и, следовательно,
центральная реакция R 1 принимается равной

KR 2 где K —
коэффициент, основанный на сравнительной области, то

Также предполагается, что сумма
центральных реакций от поперечных балок B 1 и B 2
равно суммарным нагрузкам от центральных колонн, таким образом,

2R 1 + 8R 2
= 2-пол. 1 + 2-пол. 2
(2)

Решение уравнений.(1) и (2), R 1
и R 2 могут быть определены.

Изгибающий момент и сдвиг
силовые диаграммы можно нарисовать, как показано на рис.39. Реакции R 1
и R 2 можно определить, приравняв сумму вертикальных сил
до нуля. Центральное сечение балок при положительном изгибающем моменте может быть
выполнен в виде Т-образной балки, так как плита находится на стороне сжатия. Разделы
балки под центральной балкой B 3 должны иметь прямоугольную форму.
раздел.

2- Конструкция центральной главной балки B 3

Нагрузка, усилие сдвига,
диаграммы и диаграммы изгибающего момента показаны на рис. 40-а. Раздел может быть
выполнен в виде Т-образной балки.

3-
Конструкция центральной главной балки B 4

Нагрузка, усилие сдвига,
и диаграммы изгибающего момента показаны на рис.40-б Разрез может быть
спроектирован как тавровая балка

The Ultimate Building Foundation Guide

Что такое фундамент здания?

Фундамент здания — один из самых важных элементов любого проекта, даже если он не виден, когда дом или строение построено.

Фундаментом называется нижняя часть конструкции, которая предназначена для равномерного распределения веса нового здания и обеспечения прочной опоры. Крайне важно выбрать правильный тип фундамента и бетон — для типа почвы и области применения — поскольку ошибки могут иметь серьезные последствия и даже привести к сносу завершенного проекта. Ознакомьтесь с нашим руководством по типам бетона и, если сомневаетесь, всегда обращайтесь за советом к эксперту, например, инспектору строительства или инженеру-строителю.

Строительные нормы и правила

Правильная установка фундамента вашего здания или пристройки с первого раза жизненно важна для вашего успешного результата. Это относится не только к типу фундамента, который вы используете, но и к ряду других факторов, таких как расстояние до границ, тип почвы, прилегающие конструкции, деревья, водостоки и коллекторы.

Как и в случае с любым другим проектом, получите совет и поддержку экспертов на раннем этапе, чтобы убедиться, что ваш проект соответствует всем применимым нормам и у вас не будет никаких неприятных потрясений в будущем.

Типы фундаментов в строительстве

Перед тем, как вы решите, какой тип фундамента вам нужен, стоит провести исследование почвы, поскольку грунтовые условия играют важную роль. Обычно это делается путем рытья ям в различных точках участка и использования результатов для предположения условий повсюду.

Фундаменты обычно делятся на две категории: мелкие и глубокие. Неглубокие фундаменты — наиболее распространенный тип, используемый для небольших зданий и жилых домов.Их глубина обычно меньше их ширины, и они обычно используются для фундаментов пристройки дома.

Более высокие коммерческие или жилые здания или здания, построенные на очень слабом грунте, потребуют глубокого фундамента, который переносит нагрузку конструкции через слабый грунт на более прочный грунт или скалу под ним. Предлагаем бетоны, подходящие для всех типов фундаментов.

Типы фундаментов неглубокого заложения
Индивидуальные или изолированные фундаменты

Этот тип фундамента, также известный как фундамент с широким фундаментом или подушечным фундаментом, используется для поддержки одной колонны и имеет квадратную, прямоугольную или круглую форму.Они имеют одинаковую толщину и предназначены для несения и распределения сосредоточенных нагрузок. Размер рассчитан на нагрузку и грунтовые условия.

Комбинированная опора

Эти бетонные опоры обычно имеют прямоугольную форму и поддерживают две или более колонны, которые расположены так близко друг к другу, что их отдельные опоры могут перекрывать друг друга.

Ленточный фундамент

Ленточный фундамент используется для несущих стен, в том числе фундаментов пристроек и зимних садов, а также фундаментов домов.Они также используются для размещения ряда близко расположенных столбцов. Более широкое основание этого типа фундамента распределяет вес по большей площади и обеспечивает лучшую устойчивость.

Плотный или матовый фундамент

Плотный или матовый фундамент — это большая плита, поддерживающая несколько колонн и стен. Этот тип фундамента распространяется по всей площади здания и используется, когда давление грунта низкое или когда колонны и стены расположены так близко, что отдельные опоры не подходят или не рентабельны.

Типы глубоких фундаментов
Свайные фундаменты

Свайные фундаменты используются, когда грунтовые условия вблизи поверхности не подходят для тяжелых нагрузок. Сваи забиваются в землю с помощью специального оборудования и заполняются бетоном перед добавлением грунтовой балки, чтобы обеспечить поверхность для строительства.

Просверленные валы или кессоны

Просверленные валы, также известные как кессоны, представляют собой фундаменты, отлитые на месте. Колонна просверливается на необходимую глубину перед тем, как в отверстие опускается арматурная сталь, а затем заливается бетоном.

Строительство фундаментов: пошаговое руководство по созданию бетонных оснований

Качество вашей готовой конструкции зависит от качества фундамента, на котором она построена, поэтому, если вы сомневаетесь, какой тип фундамента использовать, получить квалифицированную консультацию у строительного инспектора или инженера-строителя. После того, как вы приняли решение, убедитесь, что у вас есть бетонное основание, следуя нашему пошаговому руководству:

Подготовьте землю

Неважно, насколько велика или мала ваша бетонная заливка, первый шаг — раз все соответствующие разрешения есть — это подготовить почву.Используйте деревянные колышки и веревку, чтобы разметить область, где будет заливаться бетон, оставив дополнительные 75 мм для размещения опалубки, которая будет удерживать влажный бетон на месте при его высыхании.

Затем выкопайте фундамент на необходимую глубину: для ленточных фундаментов это, как правило, ненарушенный твердый грунт, а для отдельных опор и плит перекрытия необходимо предусмотреть достаточную глубину для основания основания (100 мм) и гидроизоляционной мембраны ( dpm), а также сам бетон.Это намного быстрее и проще с небольшим механическим экскаватором — если есть доступ. Убедитесь, что весь мусор, камни и растительный материал удалены, прежде чем выравнивать и уплотнять почву, чтобы создать ровное основание.

Затем добавьте основание и снова уплотните. Для большинства бытовых бетонных оснований, таких как приставные фундаменты, достаточно 100 мм основного заполнителя. Затем положите dpm, убедившись, что края загнуты вверх, чтобы образовался лоток, а все стыки перекрывались и заклеивались скотчем. Это защитит нижнюю часть бетона от подъема влаги и любых химических веществ, которые грунтовые воды могут ввести в контакт с бетоном, а также поможет предотвратить его слишком быстрое высыхание из-за попадания воды в основание, что улучшит окончательный результат. прочность и уменьшить вероятность его растрескивания.

Следующим шагом является создание опалубки, которая обычно изготавливается из деревянных досок толщиной 25 мм с хорошей опорой, чтобы бетон оставался на месте до тех пор, пока он не схватился. Опалубка должна быть такой же глубиной, как бетонная плита.

Крайне важно использовать лазерный или спиртовой уровень для проверки ровности опалубки, поскольку это определяет конечный уровень бетона.

Заказ бетона

Когда площадка подготовлена, можно приступать к укладке бетона.Помимо типа фундамента, важно также знать, какой тип бетона использовать. Например, почвы, содержащие сульфаты, могут со временем разрушить бетон и вызвать реакцию расширения. Этого можно избежать, используя расчетные химические классы (DC), которые помогают обеспечить долговечность. Если вы не уверены, ознакомьтесь с нашими рекомендациями и / или обратитесь за советом к инженеру-строителю.

Вы также можете использовать калькулятор бетона, чтобы решить, сколько бетона нужно заказывать.Он запросит основную форму области — квадрат / прямоугольник, прямоугольный треугольник, части круга — и размеры (длину, ширину и глубину), чтобы предоставить вам приблизительный объем, который вам нужен. Если вам нужно оценить сложную область, вы можете построить вычисления, сложив вместе разные формы. Необходимая вам глубина бетона будет зависеть от использования: например, опоры для пристроек должны быть толщиной не менее 200 мм, а глубина около 100 мм должна быть достаточной для основания сарая.

Также нужно учесть необходимость заказа бетононасоса. Использование насоса идеально, когда вы имеете дело с большими объемами бетона или когда время ограничено, и у вас нет рабочей силы для использования тачки (вы можете перекачивать около 1 м3 бетона в минуту). Вам также потребуется использовать насос, если автобетоносмеситель не может подойти достаточно близко к зоне заливки или доступ к вашему объекту ограничен, под землей, внутри существующего здания или на высоте.

Заливка бетона

Время не на вашей стороне, поскольку бетон обычно начинает уходить в течение двух часов после смешивания.Фактическое время будет зависеть от типа бетона и температуры окружающей среды: в холодную погоду бетон может затвердеть в два раза дольше; в жаркую погоду время схватывания можно сократить до 30 минут.

В результате бетон необходимо будет выгрузить и выровнять как можно быстрее, поэтому убедитесь, что у вас есть все необходимые инструменты под рукой, включая грабли / лопату для перемещения бетона и его грубого выравнивания, а также прямое брус для утрамбовки бетона и устранения воздушных карманов.Бетон обычно достаточно влажный, чтобы его можно было протянуть вокруг траншеи с помощью граблей (мы бы рекомендовали консистенцию S4 для заполнения траншеи), прежде чем поверхность будет выровнена и утрамбована для удаления любого захваченного воздуха. Наиболее эффективно это достигается с помощью вибрационной кочерги подходящего размера. Когда поверхность утрамбована до размеченного уровня, ее можно разгладить и выровнять обычной ручной теркой.

Важно убедиться, что на территории достаточно места для грузовика: им около 9.5 метров в длину, три метра в ширину и четыре метра в высоту с диаметром поворота около 17,5 метров и весом до 32 тонн. Автобетоносмесители имеют надставные пандусы, которые могут достигать примерно трех или четырех метров, поэтому, если бетон не может быть выгружен в различных точках на участке, вам может потребоваться бетононасос.

Если вы используете тачки, убедитесь, что у вас есть рабочая сила для ускорения работы, так как 1 м3 бетона заполнит около 30-40 тачек! Дорожки к заливке должны быть расчищены и уложены доски, чтобы справиться с любыми склонами или неровностями земли.

Не рекомендуется укладывать бетон при любых неблагоприятных погодных условиях, но, если это неизбежно, следует учесть несколько моментов. Минимальная температура воздуха для заливки бетона составляет 3 ° C, чтобы предотвратить образование льда внутри смеси, что может снизить прочность бетона. Вы также никогда не должны заливать лед или иней, поэтому, если это кажется вероятным, защитите основание изолирующими одеялами или разморозьте его с помощью обогревателей перед заливкой, или спросите о нашем ассортименте бетона Fast Track.

Можно заливать бетон под дождем, если земля хорошо дренируется и нет бассейнов с дождевой водой. После заливки накройте брезентом или пленкой, пока она застынет. Сильный дождь повредит поверхность бетона, поэтому, если внешний вид важен, убедитесь, что есть укрытие, защищающее от дождя, пока вы не будете готовы нанести окончательную отделку.

Бетон будет достаточно влажным при заливке, поэтому можно использовать лопату или грабли, чтобы примерно выровнять бетон. Затем кусок дерева с прямыми краями можно использовать для утрамбовки бетона, устраняя любые воздушные карманы.Повторная утрамбовка позволит получить достаточно гладкую поверхность, но можно использовать стальной шпатель, поскольку бетон начинает затвердевать для более тонкой отделки. Стоит отметить, что гладкий бетон может быть довольно скользким, поэтому часто предпочтительнее «грубая» утрамбовка или обработка щеткой.

Отверждение бетона

Важно, чтобы бетон не высыхал слишком быстро, поскольку он затвердевает, поскольку это может привести к образованию слабой / пыльной поверхности. Самый простой способ добиться этого — сохранить плиту влажной, накрыв ее пластиковой пленкой, убедившись, что края герметичны, чтобы предотвратить эффект аэродинамической трубы.Это особенно важно при температуре выше 20 ° C или при сильном ветре, который может высушить поверхность. Кроме того, если температура может упасть ниже 4 ° C, следует использовать морозное покрывало или аналогичный материал для изоляции плиты и защиты поверхности от мороза. Более подробную информацию о бетоне для холодных погодных условий можно найти здесь.

Последующие работы должны быть возможны в течение 48 часов, хотя стоит проконсультироваться с вашим поставщиком бетона, и лучше всего оставить опалубку на 72 часа, чтобы избежать любого возможного повреждения краев бетона.Строительный инспектор может также настоять на проверке бетонного фундамента перед укладкой любых кирпичей или блоков, поэтому убедитесь, что вы проверили это, прежде чем начинать следующий этап. Бетон набирает полную прочность за 28 дней.

Что нужно знать о ленточном железобетонном фундаменте :: EPLAN.HOUSE

Монолитный ленточный фундамент — самый распространенный тип фундамента в жилищном строительстве. Разобьем его на кости.

В результате расчета получаем ширину фундамента — т.е.е., ширина основания фундамента. Это основная ценность, обеспечивающая надежность нашего фонда. Ширина подошвы может быть разной. Предположим, что она будет максимальной под несущей средней стеной (поскольку плита перекрытия опирается на обе стороны, нагрузка наибольшая), а под торцевыми самонесущими стенами она будет минимальной (плита перекрытия не будет упираться на них вообще).

В этой статье я не буду рассматривать расчет фундамента. Допустим, мы провели анализ и получили данные размеров и армирования.Но мы рассмотрим результаты расчета, чтобы понять, что получено и что нужно учесть при проектировании фундамента.

Ширина фундамента — это основная и самая важная величина. Если вы думаете о земле как о водной поверхности и о фундаменте как о путях жизни, легко представить, как все зависит от ширины этих «поплавков». Чем больше площадь поплавка, тем меньше у него шансов затонуть. Стены по-разному нагружены: одни стены поддерживают крышу, другие — пол, а третьи — почти ничего, но сама стена имеет вес.

Ширина фундамента — это основная и самая важная величина.

И если под ними будет такая же и даже узкая опора «поплавков», то дом утонет, предварительно разрушившись, потому что более тяжелые стены начнут «уходить под воду» раньше более легких. Это создаст перекосы, и стены потрескаются — зданию не избежать обрушения. Если все не так плохо, и наш дом не уйдет под воду из-за более широкой опоры, а сделан опять же не расчетом, а на глаз, то есть риск более медленного разрушения.

Разработчики часто допускают такую ​​ошибку: фундамент шире по периметру дома, а средняя стена (я не понимаю их логику) ставится на более узкую основу. Однако максимальное количество плит ложится на центральную стену дома. В результате площади фундамента «плывет» под средней стеной не хватает, и он начинает постепенно «уходить под воду». Одновременно внешние стены с большей уверенностью держатся за свои более широкие полосы, но самый слабый элемент цепи начинает тянуть их вниз.В результате — снова трещины, потому что нагрузка даже от одной «тонущей» стены не малая — это просто невыносимая многотонная нагрузка для соседних стен и фундаментов.

Другой пример.

По результатам расчетов опоры бывают очень разные (по ширине) из-за очень разных нагрузок. И трудолюбивый дизайнер решил сделать фундамент одинаковой ширины для всего дома. Что будет в этом случае? Скажу одно: трещины появятся гораздо позже, чем в здании со слабым фундаментом, но вероятность их появления все же есть.А причина здесь в других осадках.

Независимо от того, какой у вас фундамент, почва под ним со временем будет проседать. Это нормально. Я видел старые вековые дома, которые провалились в землю до подоконников. В общем, факт просадки есть у всех фундаментов. И это зависит от двух вещей: нагрузки и ширины опоры. Если нагрузка одинаковая, то опора должна быть одинаковой ширины. Если давление под стенами другое, ширина опоры должна быть меньше или больше.Что произойдет, если ширина основания будет такой же при других нагрузках? В месте с большей нагрузкой фундамент будет больше прогибаться. Напротив, в зоне меньшей нагрузки он будет меньше провисать. Если осадка фундамента небольшая, конструкции выдержат. Но с годами накапливаются осадки, и в какой-то момент в самых слабых местах (например, возле окон) это может привести к диагональным трещинам, которые отрывают провисшую часть дома от не провисающей части. Они могут, правда, и не возникнуть, но зачем нам эта лотерея?

Таким образом, используя простую аналогию, мы представили, как фундамент работает на земле.

Вывод: делаем ширину подошвы по расчету и спим спокойно.

Толщина подошвы.

Он меньше влияет на судьбу дома, но его стоимость также важна.

Если фундамент будет слишком тонким, фундамент рухнет. Если он будет слишком толстым — мы получим от застройщика перерасход материалов и денег.
В среднем толщина фундамента составляет 250-300 мм. Это наиболее распространенное значение для жилых домов.Откуда это взялось?

По результатам расчета ширины основания мы имеем значение ширины основания и реакцию грунта под основанием. Что это? Стена давит на нижнюю сторону с определенной силой N. В то же время земля создает противодавление R, которое удерживает наш фундамент «на плаву». Но сама основа зажата между двумя силами N и R, и ее основная задача — не разрушиться, как показано на рисунке.

Трещина в основании

Для этого в процессе расчета проектировщик выбирает толщину основания и его арматуру.В противном случае (как видно из рисунка) мы получим гораздо более узкую основу и два бесполезных, закопанных в землю фрагмента фундамента. И как мы уже проанализировали, более узкий подвал быстрее «уйдет на дно», то есть результат: снова трещины. Поэтому тем, кто хочет сэкономить и сделать цоколь тоньше, необходимо произвести расчет (по двум предельным состояниям и обязательно — по раскрытию трещины) и выбрать толщину цоколя и арматуры.

3. Армирование фундамента. На самом деле это неприхотливо, но следует учесть несколько моментов.

Во-первых, армирование неразрывно связано с толщиной основания — чем больше толщина, тем меньше арматуры и наоборот.

В основном армирование камбаловидной мышцы представляет собой сетку, уложенную вдоль дна. Иногда стержни в этой сетке имеют одинаковый диаметр. Иногда стержни в этой сетке бывают одного диаметра (причем небольшого), иногда разного.И есть случаи, когда больший диаметр укладывается в продольном направлении (вдоль стены), а есть случаи, когда он укладывается в поперечном направлении. А теперь разберемся.

— Если грунты хорошие, фундамент узкий, нагрузки небольшие, то фундамент фундамента укрепляют конструкционной арматурой. Обычно это №3 или №4 с шагом 200-300 мм в двух направлениях.

— Если полоса широкая, арматура в ней устанавливается по расчету и может быть значительных диаметров.В этом случае рабочая арматура в полосе поперечная, большего диаметра. Это армирование поглощает нагрузку противодавления почвы, о которой мы говорили выше. Если полоса достаточно широкая и нагрузки на фундамент достаточно велики, диаметр арматуры может быть № 5 или № 6 — расчет покажет.

— При просадочных грунтах; неравномерные, существенно меняющиеся нагрузки по полосе; неравномерно сложенные грунты под зданием (например, локальные включения другого грунта или насыпных грунтов) или другие неблагоприятные факторы, которые могут вызвать неравномерную осадку здания, в этом случае рабочая арматура в полосе продольная.В случае деформации грунта под днищем эта арматура защитит фундамент от трещин и разрушения. Рассчитать диаметр и шаг такой арматуры очень сложно, потому что предсказать процессы в грунте в цифрах практически невозможно. Поэтому конструктор закладывает арматуру, исходя из опыта (в пределах разумного, ведь чем больше запас, тем надежнее, но дороже). Я бы порекомендовал в таких неблагоприятных случаях использовать арматуру диаметром не менее №4 с шагом 6-8 дюймов.

Следует отметить, что установка продольной рабочей арматуры не отменяет поперечную — расчетом. И наоборот.

И еще один нюанс: рабочая арматура ставится ближе к краю секции. Его очень просто запомнить, потому что правило легко объясняется. Основное значение при расчете арматуры — это рабочая высота сечения элемента. Чем он больше, тем лучше работает конструкция.

На рисунке показаны два варианта, когда значение hc отличается на диаметр арматуры.Казалось бы, не много — ну а что поделаешь эти 1/2 «? Но в некоторых ситуациях их не хватает, и приходится устанавливать арматуру большего диаметра или увеличивать толщину конструкции. К тому же любой опытный человек, увидевший халатность дизайнера в этом вопросе, может сделать вывод, что он не разбирается в деталях расчета, то есть не имеет достаточного опыта в этом вопросе.

Итак, мы рассмотрели все составляющие ленточного фундамента. Надеюсь, что эта статья поможет вам не ошибиться при выборе между экономичностью и надежностью.Хорошей постройки!

Типы, конструкция и конструкция фундаментов из матов

Фундаменты из матов также известны как фундаменты на плотах. Это толстые бетонные плиты, размещаемые на земле в качестве фундамента конструкции. Фундаменты с матами возводятся в различных случаях, таких как строительство зданий, мостов, башен и т. Д.

Если мы имеем дело с фундаментом мелкого заложения, последний вариант фундамента неглубокого заложения — это фундамент на плоту.

При увеличении осевых нагрузок на конструкцию или из-за плохого состояния грунта площадь опор (изолированных, комбинированных, ленточных фундаментов и т.д.) необходимо увеличить.

Увеличение размеров опор все больше и больше вызывает наложение напряжений друг на друга, что создает слабую зону. На этом фоне подбираем основания плота.

Что такое Mat Foundation?

Матовый фундамент — это всегда не плоская плита, лежащая на земле, в качестве опоры надстройки. Существуют различные конструкции, основанные на приложении нагрузок.

Меньшие нагрузки, приложенные к основанию мата, строим плоскую плиту. Однако с увеличением нагрузок используются различные методы, которые обсуждаются в этой статье, для повышения жесткости плиты.

Кроме того, мы могли бы использовать плотный фундамент для поддержки зданий высотой примерно до 10 этажей.

Кроме того, увеличение осевых нагрузок обеспечивает более высокие затраты на строительные работы. Это могло даже превзойти строительство свайных фундаментов сверх определенного уровня.

Типы основания матов

Классификация оснований матов основана на модификациях, внесенных в плоскую плиту.

Дополнительно к плоту сделана конструкция для повышения жесткости фундамента на изгиб.

Глубина фундамента плота значительно увеличена в местах расположения колонн, чтобы выдерживать высокие изгибающие моменты и поперечные силы.

Следующая категоризация, обсуждаемая в статье Типы фондов , может быть использована для получения более подробной информации о них.

Толстая бетонная плита, отлитая в качестве фундамента на грунт, представляет собой плоский плот.

Нет никаких выступов для придания жесткости фундаменту мата, кроме бетонных стен, работающих на сдвиг.

  • Плоский фундамент с утолщением под колонну

Увеличение осевых нагрузок на колонну приводит к увеличению прочности на изгиб и сдвиг.

Это приводит к удорожанию строительства. Далее, сверх определенного уровня, приходится увеличивать толщину матовой основы.

Если мы увеличим толщину всей основы мата, это не будет экономичным способом обработки.

Таким образом увеличиваем толщину матового основания под колоннами.Поскольку выступ находится под плоской пластиной, строительство может быть затруднено.

Укладка арматуры, гидроизоляции и т. Д. Не могла быть такой простой задачей.

  • Фундамент с плоской пластиной Утолщен над братской в ​​колонне

Выступ над плоской пластиной такой же, как и выступ под пластиной.

Сконструировать выступ плота над его поверхностью очень просто. Однако мы можем сделать это только в том случае, если мы не используем плиту или оставшееся расстояние достаточно для этой цели.

  • Плотно-балочный фундамент

Плоская плита или выступы из плоской плиты не могут нести дальнейшее увеличение осевой нагрузки на колонну. Для придания жесткости фундаменту предусмотрены балки.

Введение балок значительно снижает толщину плиты перекрытия.

  • Фундаменты ячеистого плота

Одноэтапное развитие балочного плота — это фундамент ячеистого плота.В этот тип фундамента кладем и верхнюю плиту.

Еще больше увеличивает жесткость основы мата.

Фундаменты на плитах строятся в многоэтажных зданиях, в тех случаях, когда сваю нельзя вставить в скалу, и когда концевое опоры сваи недостаточно, и т. Д.

Проектирование и строительство фундамента свайного плота является сложным процесс.

Сначала сваи принимает на себя нагрузку, а затем начинает делиться с фундаментом плота.

Как только сваи полностью мобилизованы, плот начинает полностью принимать на себя нагрузку. Наконец, плот принимает на себя всю нагрузку.

На следующем рисунке показана кривая зависимости нагрузки от осадки.

Для получения дополнительной информации можно обратиться к опубликованной статье о фундаменте свайного плота.

На следующем рисунке показаны различные типы фундаментов на плотах, которые можно использовать при проектировании.

Выбор типа матового основания осуществляется в зависимости от приложенной нагрузки на систему фундамента.

Проектирование фундамента из мата

В основном есть два метода проектирования фундамента плота.

  1. Традиционные методы — Использование ручных расчетов и диаграмм
  2. Методы анализа конечных элементов — Использование компьютерного пакета для решения проекта

Проектирование фундаментов из матов традиционным жестким методом

При проектировании фундаментов из матов можно выполнить следующие шаги от обычного жесткого метода.

  • Рассчитайте общую прилагаемую нагрузку к основанию мата
  • Рассчитайте давление под каждой колонной с учетом эксцентриситета нагрузки.Осевое напряжение и изгибающее напряжение из-за эксцентриситета центра нагрузки учитываются для определения давления под каждой колонной.
  • Убедитесь, что допустимое давление нетто больше, чем прикладываемое давление.
  • Затем мат делится на полосы в зависимости от его расположения.
  • Определите изгибающий момент и поперечные силы.
  • Определите эффективную глубину основания. Это может быть сделано на основе диагонального сдвига растяжения возле различных колонн.
  • Сформируйте диаграммы изгибающего момента, рассчитанные выше, определите положительный и отрицательный изгибающие моменты на единицу ширины.
  • Расчет площади армирования на единицу ширины секции

В дополнение к этой процедуре существуют другие методы, такие как приблизительный гибкий метод для анализа и проектирования фундаментов плотов.

Методы конечно-элементного анализа

Метод конечных элементов — это рассмотрение гибкого поведения грунта в структурном анализе. В этом методе почва является модельной, и ее поведение учитывается при анализе и проектировании.

Существуют разные методы моделирования почвы.

Мы можем моделировать грунт под фундаментом с учетом свойств материала. Для этой цели можно использовать такое программное обеспечение, как plaxis. В этом типе анализа очень важно выбрать правильную модель материала для почвы. Если мы не рассматриваем правильную идеализацию, мы получим неправильные ответы.

Кроме того, мы могли бы использовать такое программное обеспечение, как расчет и проектирование фундамента SAFE, чтобы получить изгибающие моменты и силы сдвига.

Почву можно моделировать в виде площадных пружин. Пружины сечения можно рассчитать, как указано в книге «Анализ и проектирование фундаментов недр».

Источником площади является реакция земляного полотна почвы. Существует множество методов расчета реакции земляного полотна. В этой статье мы обсуждаем простейший метод, описанный в книге «Анализ и проектирование основания кишечника».

Площадь Пружина = SF x 40 x BC — для осадки фундамента плота 25 мм

Где SF — коэффициент запаса прочности, учитываемый при расчете допустимой несущей способности, а BC — допустимая несущая способность.

Вышеприведенное уравнение относится к осадке 25 мм в фундаменте плота. Отклонение от этого значения может дать неправильные ответы.

Следовательно, указанное выше уравнение должно быть изменено на основе указанного в отчете инженерно-геологического исследования осадки для определения допустимой несущей способности или на основе расчетной осадки.

Площадь Весна = SF x (1000 / поселение) x BC

После того, как мы вычислили ответвления площади почвы или реакцию земляного полотна, ее можно применить к компьютерной модели, созданной с помощью подходящего программного обеспечения.

После приложения нагрузок в положениях колонн можно выполнить анализ фундамента. Затем мы можем найти изгибающий момент и поперечные силы.

Расчет арматуры должен производиться по результатам анализа.

Специальное примечание по анализу и проектированию фундаментов матов
  • Для анализа и проектирования фундаментов матов рекомендуется использовать вспомогательное компьютерное программное обеспечение.
  • Моделирование и идеализация фактического поведения фундамента должны выполняться очень тщательно и с особой тщательностью.
  • Грунт может быть моделью с площадными пружинами. Это реакция земляного полотна. Мы определяем реакцию земляного полотна в программе и соотносим ее с компьютерной моделью.
  • Реакцию Сусбграта можно оценить с помощью различных доступных методов. Это может быть основано на значении SPT, результатах испытаний, несущей способности почвы или использовании любого метода.
  • Фундамент можно смоделировать вместе с надстройкой, чтобы объединить поведение надстройки и фундамента. Прогиб фундамента может повлиять на надстройку, и поведение надстройки может быть включено в деформации фундамента.
  • Далее, фундамент также может быть моделью без надстройки. Нагрузка на колонну может быть применена к модели напрямую. Стенки сдвига можно рассмотреть для включения в модель.
  • Фундамент из мата должен быть рассчитан на изгиб и сдвиг.
  • Фундамент необходимо проверить на наличие вертикального сдвига и продавливания. Периметр продавливания среза может быть определен согласно соответствующему стандарту, по которому выполняется проектирование. Статья о конструкции пробивных ножниц может быть использована для проектирования и определения периметра сдвига.
  • Особое внимание следует уделять проектированию на сдвиг. Требование к срезным звеньям должно быть проверено, и срезные звенья должны быть предоставлены там, где это необходимо для расчетов.
  • Анализ конструкции свайного плотина — это сложный процесс, который должен выполняться с использованием соответствующей опубликованной литературы.

Строительство фундамента из мата

Строительство фундамента из мата также выполняется с большим вниманием и должным вниманием к контролю качества и обеспечению качества.

Давайте обсудим процесс строительства по порядку.

  • Земляные работы для фундамента циновки

Земляные работы и земляные работы, поддерживающие систему, должны быть решены до начала строительства. В зависимости от характера конструкции и глубины сооружения необходимо выбрать тип опорной системы для земляных работ.

В артикуле земляные работы для фундамента можно найти дополнительную информацию о проектировании и строительных аспектах систем земляных работ.

Кроме того, в качестве примеров работ по земляным подпорным системам можно отнести статьи «Проектирование опорных систем выемки грунта» и подпорная стенка из шпунтовых свай .

В целом все основания мата гидроизолированы. Выполнена гидроизоляция всех фундаментов плотов, так как в большинстве случаев они сооружаются ниже уровня готовой земли.

Использование гидроизоляционной мембраны защищает фундамент от намокания или затухания. Кроме того, движение воды через бетон также не является гидроизоляцией.

Статью о различных типах гидроизоляции деталей, используемых в строительстве, можно назвать знанием устройства гидроизоляционных мембран.

В плотном фундаменте имеются строительные швы, деформационные швы, деформационные швы и т. Д. Они должны быть герметичными, чтобы вода не проходила через стык.

К статьям строительных швов и типов бетонных швов можно обратиться для получения дополнительной информации о деталях швов и методах обработки швов.

Гидрошпонки предусмотрены на строительных и деформационных швах. Тип стыка изменяет тип предусматриваемой остановки воды.

В строительных стыках мы обычно устанавливали гидрошпонку в центре плота. (Типичные детали см. В статье «Гидроизоляция »). Гидрошпонки из низкоуглеродистой стали или ПВХ обычно используются в этих типах соединений.

Гидравлические стержни поверхностного типа предусмотрены в деформационных швах и компенсаторах. (Типичные детали см. В статье Гидроизоляция )

Кроме того, дополнительную информацию можно найти в статье Waterstop .

В основном есть два типа армирования, которые можно наблюдать в плотном фундаменте.

Это арматура для изгиба и арматуры на сдвиг.

Изгибаемая арматура связана как обычно, а поперечная арматура помещается в колонну в основном в соответствии с требованиями к сдвигу. Срезные звенья должны соответствовать проектным требованиям. Распространение поперечных звеньев в любом направлении колонны должно соответствовать проектным требованиям.

В зависимости от характера конструкции и проектных требований Заливка бетона производится в несколько заливок.

Не обязательно иметь несколько заливок, но это может быть бетон в одной поре, если размер основания мата меньше и есть соответствующие ресурсы, такие как человеческие ресурсы и материальные ресурсы.

В фундаменте с большим матом количество заливок определяется в зависимости от возможностей подрядчика по доставке и укладке бетона.

Кроме того, при выборе последовательности заливки бетона учитываются тепловые эффекты. Первоначально последовательность, которая может быть применена к бетону, определяется таким образом, чтобы минимизировать термическое ограничение при повторной заливке.Однако нам не всегда удается избежать этого. Мы должны проектировать для этого.

Кроме того, последовательность отверстий планируется для каждой заливки, чтобы избежать образования холодного стыка с заливкой. В зависимости от времени схватывания бетон необходимо залить до начала схватывания.

Повышение температуры бетона, более высокий температурный градиент и разница температур между сердцевиной и поверхностью являются ключевыми факторами, которые необходимо учитывать при регулировании температуры.

На практике мы поддерживаем максимальное повышение температуры бетона за счет теплоты гидратации до 70 градусов Цельсия, чтобы избежать замедленного образования эттрингита.

Однако добавление летучей золы увеличивает этот запас даже до 80 градусов Цельсия или более. Максимальная температура также сильно зависит от типа цемента.

Поэтому всегда рекомендуется поддерживать температуру около 70 градусов Цельсия или ниже, поскольку мы не можем наблюдать, что происходит внутри бетона.

Испытания на макете проводятся для проверки повышения температуры бетона за счет теплоты гидратации. Кроме того, это дает другие преимущества, такие как выбор толщины и типа материалов, которые будут использоваться в качестве опалубки.

Тот же материал, что и при испытании макета, и если повышение температуры допустимо, также следует использовать в конструкции. Не допускается изменение материала и толщины материала.

Добавление в бетон зольной пыли действует как наполнитель и снижает содержание цемента. Кроме того, он снижает повышение температуры в процессе гидратации.

Рекомендуется поддерживать добавление летучей золы в диапазоне примерно 20-35%.

Кроме того, использование летучей золы в бетоне улучшает удобоукладываемость бетона .

Остальные методы ограничения температуры бетона перечислены ниже.

    • Ограничьте температуру укладки. Обычной практикой является ограничение температуры помещения до 30 градусов по Цельсию. Однако для ограничения повышения температуры потребуется дальнейшее снижение.
    • Добавьте лед или охлажденную воду, чтобы снизить повышение температуры.
    • Залить бетон ночью
    • Добавить летучую золу
    • Соединить заполнители
    • Используйте цемент с низким тепловыделением
    • Соедините бетон с труб, заделанных в бетон.

Подобные методы можно использовать для контроля повышения температуры бетона. При контроле мы могли бы быть выше, чтобы избежать образования отложенного эттрингита из-за повышения теплоты гидратации, термических трещин в бетоне из-за разницы температур и высокотемпературного градиента.

(PDF) Технология строительства арматуры плотного фундамента башни Hongyun Building B

Устойчивость: σ = N / φ A + Mw / W ≤ [f]. По типу: σ- Напряжение сжатия колонны; N-осевое давление

значение

; φ- коэффициент устойчивости осевого сжимающего элемента; Согласно коэффициенту гибкости λ = h / i,

После просмотра таблицы φ = 0,265; A — Площадь поперечного сечения вертикального стержня, A = 8,444 см2; [f] -Проект

значение полной прочности вертикальной опоры, [f] = 206 Н / мм2.

Метод сочетания нагрузок второго шага используется для получения максимальной реакции опоры

силы опорной колонны на опорную балку: Nmax = 0,617q1l + 0,583q2l

Рассчитывается по формуле N = 0,617 × 3,960 × 1,500 + 0,583 × 3,780 × 1,500 = 6,971 кН

σ = 6,971 × 1000 / (0,265 × 8,444 × 100) + 1,886 × 1000 / 16,123 = 148,155 Н / мм2

Проверьте устойчивость вертикальной стойки <[f], чтобы удовлетворить требованиям.

3. Технология строительства арматуры плотного фундамента

3.1. Обработка арматуры

Строительное оборудование, включая станок для резки стальных стержней типа GJ5-40, станок для гибки стальных стержней типа GJ7-40

, станок для правки стержней, станок для гибки хомутов, башенный кран h3514

, башенный кран FO23B .

Сталь и лист проверяются в соответствии со стандартом на сталь. Инспекция включает

марки диаметра резервуара печи периодического действия и сертификат качества и контроль качества внешнего вида

.Чертежи и общий план знакомы. Расположение стального стержня на

основано на различных спецификациях по длине в зависимости от долгого ожидания, на

резка короткого материала для уменьшения короткого напора и уменьшения потерь. Трещина могла иметь усиленную

U-образную форму или явление изгиба. Длина обработки гибки арматурного проката должна быть

точная

с допустимым отклонением + 10мм. Гибка прутка по чертежам бывает двух видов

, включая 90 и 135 градусов, где диаметр гибки стали D не меньше диаметра

стального прутка в 4 раза.Стальной профиль и плоскость не подвержены деформации.

В местах изгиба стали не должно быть трещин. Для стали двух сортов и выше уровень стали

не может сгибаться снова, сгибаясь над двумя. Допускается отклонение изгиба стального стержня

общей длиной 10 мм, изгиб армированного стержня смещения точки изгиба 20 мм,

изгиб арматуры с высотой изгиба 5 мм, длиной хомута 5 мм.

3.2. Стальной бандаж

Номер, диаметр, форма, размер и расстояние стального стержня соответствуют требованиям единой карты материалов

, если ошибка исправляется немедленно и дополняется. Подготовленные

троса и крепежные инструменты (стальные крюки, небольшой лом, крепежная рама и т. Д.) — это

, используемые для троса 20 ~ 22. 22 провода можно использовать только для стальных труб диаметром менее 12 мм. Не —

металлические прокладки, такие как мрамор, используются для контроля защитных покрытий бетона.Толщина амортизирующего блока

равна толщине защитного слоя. Когда амортизирующий блок

используется в вертикальном направлении, можно использовать пластмассовый амортизирующий блок. Стальной арматурный стержень

соединяется с соединением, и положение соединения должно располагаться на минимальном расстоянии

. Длина анкеровки натяжного стального стержня устанавливается в соответствии с конструкциями атласа

03G101.

Линия разнесения фонтана устанавливается по схеме на нижних планках плота.

Крепление. Плот для плиты толщиной от 3,5 м до 4,2 м, чтобы обеспечить точное расположение

верхнего армированного ребра. Диаметр штанги двух верхних рядов — 28 мм. общая арматура

, рассчитанная с использованием кронштейна 63, шаг каналов из 1,5 железобетона

Практика приложенная нагрузка прилагается неустойчиво.Вертикальные стальные колонны

соединяются с монолитным плотом. Вложенное армирование, отношение хомутов хомутов колонны должно составлять

диаметров хомутов колонны для соединения и обхода оси колонны.

Добавить комментарий

Ваш адрес email не будет опубликован.