Как найти площадь зная ширину и длину: Как найти площадь зная длину и ширину?

Содержание

Калькулятор расчёта площади комнаты, расчет площади пола и потолка

Приведу пример расчета пола или потолка комнаты (кухни) в квадратных метрах.

Формула расчета простая, S = a*b, где S — площадь, а и b — соответственно, длина и ширина комнаты.

В нашем примере (рисунка с обмерами) вместо маленьких букв длина — А и ширина — Б., и противоположенных стен — Г и В.

Чтобы рассчитать площадь комнаты по полу:

— если у нас длина комнаты 5 метра, а ширина 3 метров, тогда нам надо ( 5*3 = 15 кв.м.), в итоге получаем 15 кв.м. по полу

 

 

 

 

Воспользуйтесь нашим Калькулятором, чтобы расчитать площадь пола или потолка

Если вы не хотите в ручную рассчитывать площадь пола или вы, что то не поняли при описание расчетов, то вы можете воспользоваться нашим калькулятором и рассчитать площадь пола или потолка автоматически.

Для расчёта необходимо измерить в метрах длину, ширину комнаты и внести данные по порядку заполнив форму и вы автоматически получите расчет площади пола или потолка в квадратных метрах.

 

Калькулятор расчёта площади пола

 

 

Примечание:

Обращаем ваше внимание, что измерения необходимо проводить в метрах. Т.е. если вы получили длину комнаты 964 сантиметров, то в поля формы необходимо ввести значение 9.64. Обратите внимание, что дробные числа нужно вводить с точкой, а не с запятой!

Т.е. 2,6 — неправильно2.6 — правильно

Калькулятор рассчитывает не только площадь пола или потолка, данный калькулятор можно также использовать для расчёта площади любых других прямоугольных объектов у которых есть длина и ширина. В этом случае вместо ширины и длины комнаты вам необходимо подставить значения ширины и длины этих самых объектов (окна, двери и т. д.,) к примеру таких как площадь окон и дверей.

К примеру как можно проверить и расчитать в ручную площадь окон и дверей.:

— если у нас размеры окна ширина 1,6 метров, а высота 1,5 метров.

— а двери ширина 0,8 метров, а высота 2,05 метров.

Окно: (1,6*1,5)= 2,4 кв.м., в итоге окно получаем 2,4 кв.м.,

Двери: (0,8*2,05)= 1,64 кв.м, в итоге двери получаем 1,64 кв.м.,

 

 

Чтобы рассчитать площадь комнаты по стенам: воспользуйтесь нашим Калькулятором, чтобы расчитать площадь стен

 

Источник: remont-otdelka-m.ru

Периметр, площадь и объем

Данный материал содержит геометрические фигуры с измерениями. Приведённые измерения являются приблизительными и могут не совпадать с измерениями в реальной жизни.

Периметр геометрической фигуры

Периметр геометрической фигуры — это сумма всех её сторон. Чтобы вычислить периметр, нужно измерить каждую сторону и сложить результаты измерений.

Вычислим периметр следующей фигуры:

Это прямоугольник. Детальнее мы поговорим об этой фигуре позже. Сейчас просто вычислим периметр этого прямоугольника. Длина его равна 9 см, а ширина 4 см.

У прямоугольника противоположные стороны равны. Это видно на рисунке. Если длина равна 9 см, а ширина равна 4 см, то противоположные стороны будут равны 9 см и 4 см соответственно:

Найдём периметр. Для этого сложим все стороны. Складывать их можно в любом порядке, поскольку от перестановки мест слагаемых сумма не меняется. Периметр часто обозначается заглавной латинской буквой P (англ. perimeters). Тогда получим:

P = 9 см + 4 см + 9 см + 4 см = 26 см.

Поскольку у прямоугольника противоположные стороны равны, нахождение периметра записывают короче — складывают длину и ширину, и умножают её на 2, что будет означать «повторить длину и ширину два раза»

P = 2 × (9 + 4) = 18 + 8 = 26 см.

Квадрат это тот же прямоугольник, но у которого все стороны равны. Например, найдём периметр квадрата со стороной 5 см. Фразу «со стороной 5 см» нужно понимать как «длина каждой стороны квадрата равна 5 см»

Чтобы вычислить периметр, сложим все стороны:

P = 5 см + 5 см + 5 см + 5 см = 20 см

Но поскольку все стороны равны, вычисление периметра можно записать в виде произведения. Сторона квадрата равна 5 см, и таких сторон 4. Тогда эту сторону, равную 5 см нужно повторить 4 раза

P = 5 см × 4 = 20 см


Площадь геометрической фигуры

Площадь геометрической фигуры — это число, которое характеризует размер данной фигуры.

Следует уточнить, что речь в данном случае идёт о площади на плоскости. Плоскостью в геометрии называют любую плоскую поверхность, например: лист бумаги, земельный участок, поверхность стола.

Площадь измеряется в квадратных единицах. Под квадратными единицами подразумевают квадраты, стороны которых равны единице. Например, 1 квадратный сантиметр, 1 квадратный метр или 1 квадратный километр.

Измерить площадь какой-нибудь фигуры означает выяснить сколько квадратных единиц содержится в данной фигуре.

Например, площадь следующего прямоугольника равна трём квадратным сантиметрам:

Это потому что в данном прямоугольнике содержится три квадрата, каждый из которых имеет сторону, равную одному сантиметру:

Справа представлен квадрат со стороной 1 см (он в данном случае является квадратной единицей). Если посмотреть сколько раз этот квадрат входит в прямоугольник, представленный слева, то обнаружим, что он входит в него три раза.

Следующий прямоугольник имеет площадь, равную шести квадратным сантиметрам:

Это потому что в данном прямоугольнике содержится шесть квадратов, каждый из которых имеет сторону, равную одному сантиметру:

Допустим, потребовалось измерить площадь следующей комнаты:

Определимся в каких квадратах будем измерять площадь. В данном случае площадь удобно измерить в квадратных метрах:

Итак, наша задача состоит в том, чтобы определить сколько таких квадратов со стороной 1 м содержится в исходной комнате. Заполним этим квадратом всю комнату:

Видим, что квадратный метр содержится в комнате 12 раз. Значит, площадь комнаты составляет 12 квадратных метров.


Площадь прямоугольника

В предыдущем примере мы вычислили площадь комнаты, последовательно проверив сколько раз в ней содержится квадрат, сторона которого равна одному метру. Площадь составила 12 квадратных метров.

Комната представляла собой прямоугольник. Площадь прямоугольника можно вычислить перемножив его длину и ширину.

Чтобы вычислить площадь прямоугольника, нужно перемножить его длину и ширину.

Вернёмся к предыдущему примеру. Допустим, мы измерили длину комнаты рулеткой и оказалось, что длина составила 4 метра:

Теперь измерим ширину. Пусть она составила 3 метра:

Умножим длину (4 м) на ширину (3 м).

4 × 3 = 12

Как и в прошлый раз получаем двенадцать квадратных метров. Это объясняется тем, что измерив длину, мы тем самым узнаём сколько раз можно уложить в эту длину квадрат со стороной, равной одному метру. Уложим четыре квадрата в эту длину:

Затем мы определяем сколько раз можно повторить эту длину с уложенными квадратами. Это мы узнаём, измерив ширину прямоугольника:


Площадь квадрата

Квадрат это тот же прямоугольник, но у которого все стороны равны. Например, на следующем рисунке представлен квадрат со стороной 3 см. Фраза «квадрат со стороной 3 см» означает, что все стороны равны 3 см

Площадь квадрата вычисляется таким же образом, как и площадь прямоугольника — длину умножают на ширину.

Вычислим площадь квадрата со стороной 3 см. Умножим длину 3 см на ширину 3 см

3 × 3 = 9

В данном случае требовалось узнать сколько квадратов со стороной 1 см содержится в исходном квадрате. В исходном квадрате содержится девять квадратов со стороной 1 см. Действительно, так оно и есть. Квадрат со стороной 1 см, входит в исходный квадрат девять раз:

Умножив длину на ширину, мы получили выражение 3 × 3, а это есть произведение двух одинаковых множителей, каждый из которых равен 3. Иными словами выражение 3 × 3 представляет собой вторую степень числа 3. А значит процесс вычисления площади квадрата можно записать в виде степени 32.

Поэтому вторую степень числа называют квадратом числа. При вычислении второй степени числа a, человек тем самым находит площадь квадрата со стороной a. Операцию возведения числа во вторую степень по другому называют возведением в квадрат.


Обозначения

Площадь обозначается заглавной латинской буквой S (англ. Square — квадрат). Тогда площадь квадрата со стороной a см будет вычисляться по следующему правилу

S = a2

где a — длина стороны квадрата. Вторая степень указывает на то, что происходит перемножение двух одинаковых сомножителей, а именно длины и ширины. Ранее было сказано, что у квадрата все стороны равны, а значит равны длина и ширина квадрата, выраженные через букву a.

Если задача состоит в том, чтобы определить сколько квадратов стороной 1 см содержится в исходном квадрате, то в качестве единиц измерения площади нужно указывать см2. Это обозначение заменяет словосочетание «квадратный сантиметр».

Например, вычислим площадь квадрат со стороной 2 см.

Значит, квадрат со стороной 2 см, имеет площадь, равную четырём квадратным сантиметрам:

Если задача состоит в том, чтобы определить сколько квадратов со стороной 1 м содержится в исходном квадрате, то в качестве единиц измерения нужно указывать м2. Это обозначение заменяет словосочетание «квадратный метр».

Вычислим площадь квадрата со стороной 3 метра

Значит, квадрат со стороной 3 м, имеет площадь равную девяти квадратным метрам:

Аналогичные обозначения используются при вычислении площади прямоугольника. Но длина и ширина прямоугольника могут быть разными, поэтому они обозначаются через разные буквы, например a и b. Тогда площадь прямоугольника, длиной a и шириной b вычисляется по следующему правилу:

S = a × b

Как и в случае с квадратом, единицами измерения площади прямоугольника могут быть см2, м2, км2. Эти обозначения заменяют словосочетания «квадратный сантиметр», «квадратный метр», «квадратный километр» соответственно.

Например, вычислим площадь прямоугольника, длиной 6 см и шириной 3 см

Значит, прямоугольник длиной 6 см и шириной 3 см имеет площадь, равную восемнадцати квадратным сантиметрам:

В качестве единицы измерения допускается использовать словосочетание «квадратных единиц». Например, запись S = 3 кв.ед означает, что площадь квадрата или прямоугольника равна трём квадратам, каждый из которых имеет единичную сторону (1 см, 1 м или 1 км).


Перевод единиц измерения площади

Единицы измерения площади можно переводить из одной единицы измерения в другую. Рассмотрим несколько примеров:

Пример 1. Выразить 1 квадратный метр в квадратных сантиметрах.

1 квадратный метр это квадрат со стороной 1 м. То есть все четыре стороны имеют длину, равную одному метру.

Но 1 м = 100 см. Тогда все четыре стороны тоже имеют длину, равную 100 см

Вычислим новую площадь этого квадрата. Умножим длину 100 см на ширину 100 см или возведём в квадрат число 100

S = 1002 = 10 000 см2

Получается, что на один квадратный метр приходится десять тысяч квадратных сантиметров.

1 м = 10 000 см2

Это позволяет в будущем умножить любое количество квадратных метров на 10 000 и получить площадь, выраженную в квадратных сантиметрах.

Чтобы перевести квадратные метры в квадратные сантиметры, нужно количество квадратных метров умножить на 10 000.

А чтобы перевести квадратные сантиметры в квадратные метры, нужно наоборот количество квадратных сантиметров разделить на 10 000.

Например, переведём 100 000 см2 в квадратные метры. Рассуждать в этом случае можно так: «если 10 000 см2 это один квадратный метр, то сколько раз 100 000 см2 будут содержать по 10 000 см2»

100 000 см2 : 10 000 см2 = 10 м2

Другие единицы измерения можно переводить таким же образом. Например, переведём 2 км2 в квадратные метры.

Один квадратный километр это квадрат со стороной 1 км. То есть все четыре стороны имеют длину, равную одному километру. Но 1 км = 1000 м. Значит, все четыре стороны квадрата также равны 1000 м. Найдём новую площадь квадрата, выраженную в квадратных метрах. Для этого умножим длину 1000 м на ширину 1000 м или возведём в квадрат число 1000

S = 10002 = 1 000 000 м2

Получается, что на один квадратный километр приходится один миллион квадратных метров:

1 км = 1 000 000 м2

Это позволяет в будущем умножить любое количество квадратных километров на 1 000 000 и получить площадь, выраженную в квадратных метрах.

Чтобы перевести квадратные километры в квадратные метры, нужно количество квадратных километров умножить на 1 000 000.

Итак, вернёмся к нашей задаче. Требовалось перевести 2 км2 в квадратные метры. Умножим 2 км2 на 1 000 000

2 км2 × 1 000 000 = 2 000 000 м2

А чтобы перевести квадратные метры в квадратные километры, нужно наоборот количество квадратных метров разделить на 1 000 000.

Например, переведём 3 500 000 м2 в квадратные километры. Рассуждать в этом случае можно так: «если 1 000 000 м2 это один квадратный километр, то сколько раз 3 500 000 м2 будут содержать по 1 000 000 м2»

3 500 000 м2 : 1 000 000 м2 = 3,5 км2


Пример 2. Выразить 7 м2 в квадратных сантиметрах.

Умножим 7 м2 на 10 000

7 м2 = 7 м2 × 10 000 = 70 000 см2


Пример 3. Выразить 5 м2 13 см2 в квадратных сантиметрах.

5 м2 13 см2 = 5 м2 × 10 000 + 13 см2 = 50 013 см2


Пример 4. Выразить 550 000 см2 в квадратных метрах.

Узнаем сколько раз 550 000 см2 содержит по 10 000 см2. Для этого разделим 550 000 см2 на 10 000 см2

550 000 см2 : 10 000 см2 = 55 м2


Пример 5. Выразить 7 км2 в квадратных метрах.

Умножим 7 км2 на 1 000 000

7 км2 × 1 000 000 = 7 000 000 м2


Пример 6. Выразить 8 500 000 м2 в квадратных километрах.

Узнаем сколько раз 8 500 000 м2 содержит по 1 000 000 м2. Для этого разделим 8 500 000 м2 на 1 000 000 м2

8 500 000 м2 × 1 000 000 м2 = 8,5 км2


Единицы измерения площади земельных участков

Площади небольших земельных участков удобно измерять в квадратных метрах.

Площади более крупных земельных участков измеряются в арах и гектарах.

Ар (сокращённо: a) — это площадь равная ста квадратным метрам (100 м2). В виду частого распространения такой площади (100 м2) она стала использоваться, как отдельная единица измерения.

Например, если сказано что площадь какого-нибудь поля составляет 3 а, то нужно понимать, что это три квадрата площадью 100 м2 каждый, то есть:

3 а = 100 м2 × 3 = 300 м2

В народе ар часто называют соткой, поскольку ар равен квадрату, площадью 100 м2. Примеры:

1 сотка = 100 м2

2 сотки = 200 м2

10 соток = 1000 м2

Гектар (сокращенно: га) — это площадь, равная 10 000 м2. Например, если сказано что площадь какого-нибудь леса составляет 20 гектаров, то нужно понимать, что это двадцать квадратов площадью 10 000 м2 каждый, то есть:

20 га = 10 000 м2 × 20 = 200 000 м2


Прямоугольный параллелепипед и куб

Прямоугольный параллелепипед — это геометрическая фигура, состоящая из грáней, рёбер и вершин. На рисунке показан прямоугольный параллелепипед:

Желтым цветом показаны грáни параллелепипеда, чёрным цветом — рёбра, красным — вершины.

Прямоугольный параллелепипед обладает длиной, шириной и высотой. На рисунке показано где длина, ширина и высота:

Параллелепипед, у которого длина, ширина и высота равны между собой, называется кубом. На рисунке показан куб:


Объём геометрической фигуры

Объём геометрической фигуры — это число, которое характеризует вместимость данной фигуры.

Объём измеряется в кубических единицах. Под кубическими единицами подразумевают кубы длиной 1, шириной 1 и высотой 1. Например, 1 кубический сантиметр или 1 кубический метр.

Измерить объём какой-нибудь фигуры означает выяснить сколько  кубических единиц вмещается в данную фигуру.

Например, объём следующего прямоугольного параллелепипеда равен двенадцати кубическим сантиметрам:

Это потому что в данный параллелепипед вмещается двенадцать кубов длиной 1 см, шириной 1 см и высотой 1 см:

Объём обозначается заглавной латинской буквой V. Одна из единиц измерения объема это кубический сантиметр (см3). Тогда объём V рассмотренного нами параллелепипеда равен 12 см3

V = 12 см3

Объём любого параллелепипеда вычисляют следующим образом: перемножают его длину, ширину и высоту .

Объём прямоугольного параллелепипеда равен произведению его длины, ширины и высоты.

V = abc

где, a — длина, b — ширина, c — высота

Так, в предыдущем примере мы визуально определили, что объём параллелепипеда равен 12 см3. Но можно измерить длину, ширину и высоту данного параллелепипеда и перемножить результаты измерений. Мы получим тот же результат

Объём куба вычисляется таким же образом, как и объём прямоугольного параллелепипеда — перемножают длину, ширину и высоту.

Например, вычислим объём куба, длина которого 3 см. У куба длина, ширина и высота равны между собой. Если длина равна 3 см, то равны этим же трём сантиметрам ширина и высота куба:

Перемножаем длину, ширину, высоту и получаем объём, равный двадцати семи кубическим сантиметрам:

V = 3 × 3 × 3 = 27 см³

Действительно, в исходный куб вмещается 27 кубиков длиной 1 см

При вычислении объёма данного куба мы перемножили длину, ширину и высоту. Получилось произведение 3 × 3 × 3. Это есть произведение трёх сомножителей, каждый из которых равен 3. Иными словами, произведение 3 × 3 × 3 является третьей степенью числа 3 и может быть записано в виде 33.

V = 33 = 27 см3

Поэтому третью степень числа называют кубом числа. При вычислении третьей степени числа a, человек тем самым находит объём куба, длиной a. Операцию возведения числа в третью степень по другому называют возведением в куб.

Таким образом, объём куба вычисляется по следующему правилу:

V = a3

Где a — длина куба.


Кубический дециметр. Кубический метр

Не все объекты нашего мира удобно измерять в кубических сантиметрах. Например, объём комнаты или дома удобнее измерять в кубических метрах (м3). А объём бака, аквариума или холодильника удобнее измерять в кубических дециметрах (дм3).

Другое название одного кубического дециметра – один литр.

1 дм3 = 1 литр


Перевод единиц измерения объёма

Единицы измерения объёма можно переводить из одной единицы измерения в другую. Рассмотрим несколько примеров:

Пример 1. Выразить 1 кубический метр в кубических сантиметрах.

Один кубический метр это куб со стороной 1 м. Длина, ширина и высота этого куба равны одному метру.

Но 1 м = 100 см. Значит, длина, ширина и высота тоже равны 100 см

Вычислим новый объём куба, выраженный в кубических сантиметрах. Для этого перемножим его длину, ширину и высоту. Либо возведём число 100 в куб:

V = 1003 = 1 000 000 см3

Получается, что на один кубический метр приходится один миллион кубических сантиметров:

1 м = 1 000 000 см3

Это позволяет в будущем умножить любое количество кубических метров на 1 000 000 и получить объём, выраженный в кубических сантиметрах.

Чтобы перевести кубические метры в кубические сантиметры, нужно количество кубических метров умножить на 1 000 000.

А чтобы перевести кубические сантиметры в кубические метры, нужно наоборот количество кубических сантиметров разделить на 1 000 000.

Например, переведём 300 000 000 см3 в кубические метры. Рассуждать в этом случае можно так: «если 1 000 000 см3 это один кубический метр, то сколько раз 300 000 000 см3 будут содержать по 1 000 000 см3»

300 000 000 см3 : 1 000 000 см3 = 300 м3


Пример 2. Выразить 3 м3 в кубических сантиметрах.

Умножим 3 м3 на 1 000 000

3 м3 × 1 000 000 = 3 000 000 см3


Пример 3. Выразить 60 000 000 см3 в кубических метрах.

Узнаем сколько раз 60 000 000 см3 содержит по 1 000 000 см3. Для этого разделим 60 000 000 см3 на 1 000 000 см3

60 000 000 см3 : 1 000 000 см3 = 60 м3


Вместимость бака, банки или канистры измеряют в литрах. Литр это тоже единица измерения объема. Один литр равен одному кубическому дециметру.

1 литр = 1 дм3

Например, если вместимость банки составляет 1 литр, это значит что объём этой банки составляет 1 дм3. При решении некоторых задач может быть полезным умение переводить литры в кубические дециметры и наоборот. Рассмотрим несколько примеров.

Пример 1. Перевести 5 литров в кубические дециметры.

Чтобы перевести 5 литров в кубические дециметры, достаточно умножить 5 на 1

5 л × 1 = 5 дм3


Пример 2. Перевести 6000 литров в кубические метры.

Шесть тысяч литров это шесть тысяч кубических дециметров:

6000 л × 1 = 6000 дм3

Теперь переведём эти 6000 дм3 в кубические метры.

Длина, ширина и высота одного кубического метра равны 10 дм

Если вычислить объём этого куба в дециметрах, то получим 1000 дм3

V = 103= 1000 дм3

Получается, что одна тысяча кубических дециметров соответствует одному кубическому метру. А чтобы определить сколько кубических метров соответствуют шести тысячамл кубических дециметров, нужно узнать сколько раз 6 000 дм3 содержит по 1 000 дм3

6 000 дм3 : 1 000 дм3 = 6 м3

Значит, 6000 л = 6 м3.


Таблица квадратов

В жизни часто приходиться находить площади различных квадратов. Для этого каждый раз требуется возводить исходное число во вторую степень.

Квадраты первых 99 натуральных чисел уже вычислены и занесены в специальную таблицу, называемую таблицей квадратов.

Первая строка данной таблицы (цифры от 0 до 9) это единицы исходного числа, а первый столбец (цифры от 1 до 9) это десятки исходного числа.

Например, найдём квадрат числа 24 по данной таблице. Число 24 состоит из цифр 2 и 4. Точнее, число 24 состоит из двух десятков и четырёх единиц.

Итак, выбираем цифру 2 в первом столбце таблицы (столбце десятков), а цифру 4 выбираем в первой строке (строке единиц). Затем, двигаясь вправо от цифры 2 и вниз от цифры 4, найдём точку пересечения. В результате окажемся на позиции, где располагается число 576. Значит, квадрат числа 24 есть число 576

242 = 576


Таблица кубов

Как и в ситуации с квадратами, кубы первых 99 натуральных чисел уже вычислены и занесены в таблицу, называемую таблицей кубов.

Куб числа по таблице определяется таким же образом, как и квадрат числа. Например, найдём куб числа 35. Это число состоит из цифр 3 и 5. Выбираем цифру 3 в первом столбце таблицы (столбце десятков), а цифру 5 выбираем в первой строке (строке единиц). Двигаясь вправо от цифры 3 и вниз от цифры 5, найдём точку пересечения. В результате окажемся на позиции, где располагается число 42875. Значит, куб числа 35 есть число 42875.

353 = 42875


Задания для самостоятельного решения

Задача 1. Длина прямоугольника составляет 6 см, а ширина 2 см. Найдите периметр.

Решение

P = 2(a + b)

a = 6, b = 2
P = 2(6 + 2) = 12 + 4 = 16 см

Ответ: периметр прямоугольника равен 16 см.

Задача 2. Длина прямоугольника составляет 6 см, а ширина 2 см. Найдите площадь.

Решение

S = ab
a = 6, b = 2
S = 6 × 2 = 12 см2

Ответ: площадь равна 12 см2.

Задача 3. Площадь прямоугольника составляет 12 см2. Длина составляет 6 см. Найдите ширину прямоугольника.

Решение

S = ab
S = 12, a = 6, b = x
12 = 6 × x
x = 2

Ответ: ширина прямоугольника составляет 2 см.

Задача 4. Вычислите площадь квадрата со стороной 8 см

Решение

S = a2
a = 8
S = 82 = 64 см2
Ответ: площадь квадрата со стороной 8 см равна 64 см2

Задача 5. Вычислите объем прямоугольного параллелепипеда, длина которого 6 см, ширина 4 см, высота 3 см.

Решение

V = abc
a = 6, b = 4, c = 3
V = 6 × 4 × 3 = 72 см3.

Ответ: объем прямоугольного параллелепипеда, длина которого 6 см, ширина 4 см, высота 3 см равен 72 см3

Задача 6. Объем прямоугольного параллелепипеда составляет 200 см3. Найдите высоту параллелепипеда, если его длина равна 10 см, а ширина 5 см

Решение

V = abc
V = 200, a = 10, b = 5, c = x
200 = 10 × 5 × x
200 = 50x
x = 4

Ответ: высота прямоугольного параллелепипеда равна 4 см.

Задача 7. Площади земельного участка, засеянные пшеницей и льном, пропорциональны числам 4 и 5. На какой площади засеяна пшеница, если под льном засеяно 15 га

Решение

Число 4 отражает площадь, засеянную пшеницей. А число 5 отражает площадь, засеянную льном.
Сказано что площади, засеянные пшеницей и льном пропорциональны этим числам.

Проще говоря, во сколько раз изменяются числа 4 или 5, во сколько же раз изменится и площадь, которая засеяна пшеницей или льном. Льном засеяно 15 га. То есть число 5, которое отражает площадь, засеянную льном, изменилось в 3 раза.

Тогда число 4, которое отражает площадь засеянную пшеницей, нужно увеличить в три раза

4 × 3 = 12 га

Ответ: пшеницей засеяно 12 га.

Задача 8. Длина зернохранилища 42 м, ширина составляет длины, а высота – 0,1 длины. Определите сколько тонн зерна вмещает зернохранилище, если 1 м3 его весит 740 кг.

Решение

a — длина
b — ширина
c — высота

a = 42 м
b = м
c = 42 × 0,1 = 4,2 м

Определим объем зернохранилища:

V = abc = 42 × 30 × 4,2 = 5292 м3

Определите сколько тонн зерна вмещает зернохранилище:

5292 × 740 = 3916080 кг

Переведём килограммы в тонны:

Ответ: зернохранилище вмещает 3916,08 тонн зерна.

Задача 9. 12. Бассейн имеет форму прямоугольного параллелепипеда, длина которого равна 5,8 м, а ширина – 3,5 м. Две трубы наполняют его водой в течение 13 ч 32 мин., причём через одну из них вливается 25 л/мин, а через вторую – 0,75 этого количества. Определите высоту (глубину) бассейна.

Решение

Определим сколько литров в минуту вливается через вторую трубу:

25 л/мин × 0,75 = 18,75 л/мин

Определим сколько литров в минуту вливается в бассейн через обе трубы:

25 л/мин + 18,75 л/мин = 43,75 л/мин

Определим сколько литров воды будет залито в бассейн за 13 ч 32 мин

43,75 × 13 ч 32 мин = 43,75 × 812 мин = 35 525 л

1 л = 1 дм3

35 525 л = 35 525 дм3

Переведём кубические дециметры в кубические метры. Это позволит вычислит объем бассейна:

35 525 дм3 : 1000 дм3 = 35,525 м3

Зная объём бассейна можно вычислить высоту бассейна. Подставим в буквенное уравнение V=abc имеющиеся у нас значения. Тогда получим:

V = 35,525
a = 5.8
b = 3.5
c = x

35,525 = 5,8 × 3,5 × x
35,525 = 20,3 × x
x = 1,75 м

с = 1,75

Ответ: высота (глубина) бассейна составляет 1,75 м.


Понравился урок?
Вступай в нашу новую группу Вконтакте и начни получать уведомления о новых уроках



Возникло желание поддержать проект?
Используй кнопку ниже

Навигация по записям

Как посчитать длину стен, зная площадь комнаты

Статья будет полезна тем, кто столкнулся с необходимостью рассчитать планировку комнат в новостройке. Имеющийся на руках план всегда содержит информацию о площадях помещений квартиры, но не всегда в нем есть информация о длинах стен, перегородок, дверных и оконных проемов и т. д. Мы расскажем о том, как восполнить этот недостаток, воспользовавшись незатейливыми математическими расчетами, которые будут понятны даже семикласснику.

Предположим, у нас есть план квартиры, такой как показан на рисунке ниже. Этот план нам потребуется в электронном виде – в виде картинки, которую мы сможем открыть графическим редактором (например, в формате .jpeg или .png).

Если у Вас план только на бумаге, то можно его ровно без перекосов сфотографировать и сохранить в компьютер или загрузить с сайта застройщика, если такая возможность имеется.

В нем нам нужно выбрать любую комнату строго прямоугольной формы (или квадратной). В нашем примере выберем кухню, площадь которой нам известна, и составляет 15,13 квадратных метров.

Условно обозначим длину одной стороны прямоугольника буквой «a», длину другой «b», как принято в школьном курсе геометрии.

Площадь прямоугольника, как мы помним определяется произведением его сторон:

С помощью встроенного графического редактора Paint или другого, например, PickPick открываем наше изображение с планом квартиры. Затем с помощью инструмента «Выделение» вычисляем длину и ширину нашего прямоугольника в пикселях, как показано на рисунке ниже.

Полученные значения запишем, обозначив их, например, как «a» со штрихом и «b» со штрихом, для длины и ширины комнаты соответственно.

Более точной единицей измерения для полученных значений будет не «пиксель», а скорее сторона пикселя, поскольку пиксель представляет собой квадрат определенной площади и для измерения длин не очень подходит.

Подсчитаем площадь комнаты в пикселях:

 Далее, введем коэффициент, который будет показывать насколько отличается длина стороны пикселя нашего изображения от длины квадратного метра. Обозначим этот коэффициент буквой «k».

Искомые значения длины и ширины комнаты, будут найдены по формуле:

Остается выяснить чему равен коэффициент. Для этого составим простое уравнение, из которого элементарно находим значение коэффициента, как корень из соотношения площадей в пикселях и в квадратных метрах.

Подставляем значение найденного коэффициента в формулы для нахождения длины и ширины комнаты и получаем искомые величины.

Зная коэффициент, мы можем получить длину в метрах для любого объекта в имеющемся плане. Нужно только узнать длину этого объекта в пикселях и умножить полученное значение на коэффициент.

Обращаю внимание, что значение вычисленного коэффициента подходит только для данного конкретного изображения, из которого этот коэффициент вычислялся. Если возьмете другое изображение, то коэффициент придется считать заново.

На этом все, если остались вопросы, оставляйте их в комментариях к статье.

Как узнать площадь комнаты в квадратных метрах

Moжнo пocтyпить eщe пpoщe и пpocтo вce cтopoны пoмeщeния пepeмнoжить: пoтoлoк, пoл, cтeны.

Пepeвoд квaдpaтныx caнтимeтpoв в квaдpaтныe мeтpы

Пepeд тeм, кaк yзнaть cкoлькo в кoмнaтe квaдpaтныx мeтpoв, oчeнь вaжнo paзoбpaтьcя в caмиx знaчeнияx, вeдь кoгдa идeт pacчeт c coтнями caнтимeтpoв, иx в любoм cлyчae нeoбxoдимo пepeвoдить в мeтpы. Дeлaeтcя этo пo cлeдyющeй фopмyлe, yжe нa извecтнoм пpимepe: 160 cм * 100 cм – paзницa вeличин (в oднoм мeтpe – 100 caнтимeтpoв), в итoгe пoлyчaeтcя 16000 cм2, кoтopыe нyжнo paздeлить нa 10000 и пoлyчим = 1.60 м2.

Taкими цифpaми нaмнoгo пpoщe oпepиpoвaть и зaпoминaть. Teм бoлee, чтo «квaдpaтypy» пoмeщeния вceгдa измepяют имeннo в мeтpax. Для пepeвoдa нeoбxoдимo пoдcтaвлять cлeдyющиe фopмyлы:

  • 8000 cм² / 10000 = 0,8 м²;
  • 34000 cм² / 10000 = 3,4 м²;
  • 2400 cм²/ 10000 = 0,24 м².

Bce дocтaтoчнo пpocтo и нe cocтaвит тpyдa cocтaвить тaкиe нecлoжныe apифмeтичecкиe вычиcлeния, дaжe шкoльникy. Oчeнь вaжнo пepeд тeм, кaк yзнaть квaдpaтypy кoмнaты, пpoвecти мaкcимaльнo тoчныe измepeния, пocлe чeгo пpиcтyпить к pacчeтaм.

Кaк пocчитaть плoщaдь кoмнaты в квaдpaтныx мeтpax

Нeoбxoдимocть в pacчeтe плoщaди вoзникaeт зaчacтyю тoлькo вo вpeмя peмoнтныx paбoт, cтpoитeльcтвa или пpи cмeнe мeбeли. Пpaктичecки вce cтpoитeльныe мaтepиaлы (нaпpимep нaпoльнoe пoкpытиe) иcчиcляeтcя в квaдpaтныx мeтpax. Для пpaвильнoгo pacчeтa кoличecтвa мaтepиaлa, вaжнo знaть плoщaдь пoлa. 3нaя шиpинy и длинy кoмнaты, нaйти плoщaдь нe вызoвeт никaкиx cлoжнocтeй.

Измepeния

Пepeд тeм кaк измepить кoмнaтy в квaдpaтныx мeтpax, нeoбxoдим минимaльный нaбop пpeдмeтoв:

  • кaлькyлятop;
  • pyлeткa;
  • кapaндaш;
  • лиcт бyмaги.

Нa бyмaгe нeoбxoдимo cдeлaть пoдpoбный плaн пoмeщeния. Кaждaя cтeнa дoлжнa быть измepeнa c иcпoльзoвaниeм pyлeтки.

Bнимaниe! Oчeнь вaжнo дeлaть измepeния нa ypoвнe пoлa, вeдь бывaют cлyчaи (ocoбeннo в cтapыx дoмax), кoгдa cтeны нeмнoгo зaвaлeны в oднy из cтopoн. Taк кaк пpoиcxoдит измepeниe пoлa, нeoбxoдимo измepять c мaкcимaльным пpилeгaниeм к cтeнaм.

Bтopым этaпoм являeтcя пpocтaвлeниe пoлyчeнныx измepeний нa плaнe. Лyчшe вceгo cpaзy дeлaть этo в мeтpax, нo тoчнocть кaждoгo зaмepa дoлжнa быть дo 1 caнтимeтpa. Этo нeoбxoдимo для тoгo, чтoбы пpи выбope нeoбxoдимoгo кoличecтвa мaтepиaлoв, yдaлocь мaкcимaльнo тoчнo пoдoбpaть мeтpaж тpeбyeмoгo мaтepиaлa. Pyлoнныe нaпoльныe пoкpытия пpoдaютcя в пoгoнныx мeтpax.

Oкpyглять мoжнo тoлькo в cлyчae нeбoльшoгo yвeличeния, чтoбы в cлyчae нeпpeдвидeнныx oбcтoятeльcтвo, былo дocтaтoчнoe кoличecтвo мaтepиaлa.

Кaк выcчитaть квaдpaтypy кoмнaты

Чтoбы пoнять, кaк yзнaть oбщyю плoщaдь кoмнaты, нeoбxoдимo вocпoльзoвaтьcя пpocтoй фopмyлoй и пepeмнoжить пoкaзaния длины нa шиpинy. Кaк пoкaзaнo нa pиcyнкe длиннaя cтeнa имeeт длинy в 7 мeтpoв a пpoтивoпoлoжнaя тoлькo 4. Bыxoдит плoщaдь пoлa бyдeт paвнa 28 м2. Имeннo тaким oбpaзoм и нaxoдят квaдpaтypy. Oбязaтeльнo тpeбyeтcя пoмнить o нeбoльшoм зaпace, кoтopый пoтpeбyeтcя для пoдгoнки и пoдpeзки, пpичeм чeм cлoжнee бyдeт вapиaнт yклaдки, тeм бoльшe пoтpeбyeтcя бpaть зaпac.

3aчacтyю кoмнaты нe имeют poвнoй квaдpaтнoй или пpямoyгoльнoй фopмы.Пoэтoмy, пepeд тeм кaк yзнaть плoщaдь кoмнaты в квaдpaтныx мeтpax, нeoбxoдимo пpocтo paзбить кoмнaтy нa нecкoлькo пpocтыx фигyp (квaдpaты и пpямoyгoльники) и пocлe cчитaют oбщyю квaдpaтypy. Taк нaпpимep для кoмнaты y кoтopoй фopмa бyквы Г, дocтaтoчнo paзбить ee нa 2 пpямoyгoльникa, oтдeльнo пocчитaть плoщaдь, a пoтoм cлoжить.

Bыглядит этo вce cлeдyющим oбpaзoм:

  • вычиcляeм квaдpaтypy бoльшoгo пpямoyгoльникa: 5 yмнoжaeм нa 4,35 и пoлyчaeм 21,75 квaдpaтныx мeтpoв;
  • тeпepь пo тoмy жe пpинципy втopoй: 2,5 нa 2,65 и пoлyчaeм 6,625 квaдpaтoв;
  • дaлee cyммиpyeм oбщий peзyльтaт 6,625 + 21,75 и пoлyчaeм плoщaдь кoмнaты в paзмepe 28,375 квaдpaтныx мeтpoв.

Имeя нa pyкax пoлyчeнный тoчный peзyльтaт, мoжнo нeмнoгo oкpyглить eгo в бoльшyю cтopoнy и yчитывaть 28,4 квaдpaтныx мeтpa.

B тoм cлyчae, ecли кoмнaтa имeeт yчacтoк co cpeзaннoй cтeнoй, кaк пoкaзaнo нa кapтинкe, тoгдa нeoбxoдимo нapиcoвaть пpямoyгoльник тaким oбpaзoм, чтoбы кocaя дeлилa eгo нa 2 тpeyгoльникa. Toгдa oпять пoлyчaeтcя пoмeщeниe пo фopмe бyквы Г. Дaлee мoжнo вычиcлить плoщaдь, пo вышe пpeдcтaвлeннoмy мeтoдy.

Нeoбxoдимo бyдeт нaйти плoщaдь тpex пpямoyгoльникoв. Нeдocтaющий yчacтoк – пoлoвинa мaлeнькoгo пpямoyгoльникa. Дocтaтoчнo бyдeт пpocтo нaйти eгo плoщaдь и paздeлить нa 2, пocлe чeгo пpибaвить к ocтaльным paзмepaм.

Итaк, для пpимepa мoжнo иcпoльзoвaть cлeдyющиe дaнныe:

  • бoльшoй пpямoyгoльник: 1,75 м *1,93 м = 3,3775 м². Чтoбы былo пpoщe, вoзьмeм 3,38 м²;
  • cpeдний пpямoyгoльник: 1,18 м * 0,57 м = 0,6726 м². Oпять пpoизвeдeм oкpyглeниe дo 0,67 м²;
  • caмый мaлeнький пpямoyгoльник: 0,57 м *0,57 м = 0,3249 м2, дoвoдим дo 0,33 м²;
  • тeпepь ocтaлocь тoлькo cлoжить пoлyчившиecя знaчeния и пpибaвить ½ мaлeнькoгo пpямoyгoльникa: 3,38 + 0,67 +0,33/2 = 3,38 + 0,67 +0,17 = 4,22 м².

Этo нaибoлee yдoбнaя мeтoдикa, кoтopoй мoжeт вocпoльзoвaтьcя любoй жeлaющий. Дocтaтoчнo тoлькo paзбивaть cлoжнyю фигypy нa нecкoлькo пpocтыx. Нecмoтpя нa тo, чтo измepeний бyдeт бoльшe, тaкoй мeтoд нe тpeбyeт бoльшиx ycилий и вpeмeнныx пoтepь, a вce вычиcлeния мoжнo cдeлaть бyквaльнo нa кoлeнкe.

Плoщaдь квapтиpы

Mнoгиe yтвepждaют, чтo peмoнт – пpoцecc, кoтopый пpaктичecки нeвoзмoжнo зaкoнчить, eгo мoжнo тoлькo пpиocтaнoвить. Нecмoтpя нa этo, чтoбы нe пpeвpaтить нeзнaчитeльный peмoнт в глoбaльный, oчeнь вaжнo пpaвильнo paccчитaть вce нeoбxoдимыe цифpы и пpoвecти нyжныe pacчeты, oдним из кoтopыx являeтcя измepeниe квaдpaтypы.

Teпepь вы знaeтe, кaк нaйти плoщaдь кoмнaты знaя длинy и шиpинy и пocлe вcex выпoлнeнныx мaнипyляций, дocтaтoчнo пpocтo cлoжить пoлyчeнныe дaнныe пo кoмнaтaм, тoгдa мoжнo пoлyчить квaдpaтypy вceй квapтиpы.

Taкoй пpoцecc тpeбyeтcя для зaкyпки мaтepиaлoв. Пocлeдним этaпoм бyдeт тoлькo пpopaбoткa плaнa, гдe бyдyт yкaзaны вce длины, шиpинa oкoнныx и двepныx paм и т.д. Этo нeoбxoдимo нaпpимep для yклaдки нaпoльнoй плитки или лaминaтa. Taкaя cxeмa пoтpeбyeтcя пpи yклaдкe тeплoгo пoлa.

Cyщecтвyют и coвpeмeнныe пpилoжeния нa cмapтфoн или cepвиcы в интepнeтe, кoтopыe yпpocтят эти мoмeнты и пoмoгyт нaйти плoщaдь.

Как посчитать квадратуру изделий | Советы Дарьи Гейлер

Учимся правильно измерять площадь изделий для расчета необходимой краски и материалов

Расход материала:

1) краски: 80-100 мл на 1 м2 ( в 1 слой)

2) блокирующий грунт — 70-100 мл на 1 м2 (в 1 слой)

3) адгезионный грунт: 80 м на 1 м2 ( в 1 слой)

4)  лак влагостойкий: 50 мл на 1 м2 ( в 1 слой)

5) воск: 25 мл на 1 м2 ( в 1 слой)

 

 

Дверь межкомнатная

  • замеряем высоту двери (к примеру) = 2,05 м

  • замеряем ширину двери (к примеру) = 0,8 м

  • перемножаем 2,05*0,8= 1,64 кв. м. с одной стороны, 1,64*2 = 3,28 кв. м с 2 сторон дверного полотна

 

Ещё имеется коробка (2 короткие и 4 длинные наличника) у двери:

  • считаем также ширину на длину, но с одной стороны, так как внутреннюю часть коробки не красят.

  • к примеру Наличник длинный (боковой) длина – 2,15 м, ширина 0,06 м (6 см)  = 2,15*0,06= 0,13 кв .м одного наличника, у нас их 4,  0,13*4=0,52 кв .м  это четыре наличника, то же самое делаем и с 2 короткими (верхними) = длина 0,9 * ширину 0,06 = 0,054 * 2 (так как 2 наличника) =  0,1 кв .м оба коротких наличника

Плюс есть ещё торцы на двери, по той же схеме, длину*ширину

Теперь все получившиеся величины складываем: 3,28+0,52+0,1=3,9 кв. м. округляем до 4 кв. м. для удобства просчёта расхода красок.

 

если дверь такого образца то считаем точно так же как и первый вариант, то          есть полностью дверное полотно, а уже потом считаем отдельно вставки

  • ширину и длину одного окошка (в данном случае): 0,2*0,3=0,06*2 (2 сторона) = 0,12 кв. м. одно окошко* 6 окон= 0,72 кв.м занимают все стекла. Ничего страшного что 4 стекла чуток фигурные на общую картину роль не сыграют

  • и теперь из общей квадратуры дверного проёма (возьмем от первой двери) 3,28 – 0,72= 2,56. Округляем до 2,6 кв.м получается дверной проём без стёкол.

 

Не забывайте про коробку и торцы на двери.

 

Шкаф/тумба

Важно: считаем только те плоскости, которые будем красить

Размеры шкафа к примеру высота 2м, 1.8 м ширина, 60см глубина. Считаем по очереди все плоскости.

  • начинаем считать дверки (если таковые имеются) На данном рисунке 2 дверки и между есть стекло, считаем их по отдельности (если дверки прилегают плотно к друг другу тогда считаем их вместе, просто высоту *ширину и * на 2,так как с 2 сторон дверки будут красить)

  • размеры одной дверки высота 1,9 м, ширина 0,5 м = 1,9*0,5*2 = 1,9 кв м (с 2 сторон) * 2 =3,8 кв м обоих дверок со всех сторон

  • далее считаем заднюю стенку = 2 *1,8 =3,6 кв м с одной стороны (внутренняя) заднюю считать не будем так как она прилегает к стенке, по желанию клиента можете открасить и её

  • считаем боковые стенки (их 2) и вертикальную перегородку ( рядом с левой дверкой). Размер 1 боковой стенки выс 2 м, ширина = глубина 0,6 м: 2*0,6=1,2*2 =2,4 кв м *3 (так как их 3) = 7,2 кв м площадь трёх вертикальных перегородок

  •  теперь верхняя крышка и днище, размеры у них одинаковые, получается ширина 1,8 и глубина 0,6= 1,8*0,6= 1,08 кв м * 2 = 2,16 кв это верхняя крышка с 2 сторон + нам нужно посчитать днище но только внутреннюю часть (нижняя которая смотрит в пол красить не обязательно) поэтому 2,16*1,5 = 3,24 кв м площадь врехней крышки с обеих сторон и днища с внутренней стороны.

  • верхняя полка (ближе к правой дверце) ширина = глубине 0,6 м, длина (к примеру) 1,3 м = 1,3*0,6*2 =1,56 кв м — площадь полки с 2 сторон

  • остались 2 нижние полочки (ближе к левой дверце). Ширина=глубине 0,6 м. длина 0,4 м=0,6*0,4*2=0,48 кв м размер одной полки с двух сторон * 2 (так как две полки, их так же может любое количество) = 0,48*2=0,96 кв м площадь 2 полок

Считаем теперь всё вместе: 3,8+3,6+7,2+3,24+1,56+0,96=20,36 кв, округляем до 21 кв. м , так как есть ещё торцы, ножки и + удобнее считать при расходе материала. Все остальные шкафы, тумбочки, комоды с ящиками, подставки под телевизоры открытые стеллажи, кухонные гарнитуры также считаются по аналогии, замеряете все окрашиваемые поверхности, складываете и округляете в большую сторону.

Итог: Если считать все плоскости квадратной прямоугольной формы, то всё очень просто, перемножаем длину на ширину получаем площадь с одной стороны, умножаем на 2 если красим с двух сторон и округляем в большую сторону, так как есть торцы которые тоже прокрашиваются, даже если только с одной стороны, лучше материал чуток пускай останется чем его не хватит. Сюда же относим и детские кроватки.  И еще момент красить лучше начинать с лицевых и видимых глазу сторон, если вам не хватает материала или он с другой партии, то лучше им красить не видимые места.

Стол круглый

Переходим к круглым столам (именно круглым, а не овальным)

  • считаем площадь столешницы, для этого мерим диаметр стола, по простому его длину от края до края, к примеру, будет она 80 см, далее делим пополам 80/2=40 см это радиус, теперь считаем площадь круга по формуле S=π⋅r​2​​ (где π=3,14) = 3.

    14*(0.4*0.4) = 0.51 кв м площадь стола с одной стороны * 2 если красим с 2 сторон (необязательно)

  • бортик под столом (если имеется) считается немножко по-другому, мерим опять же длину стола или от борта до борта к примеру, будет 70 см (на фото бортик идет не вровень стола) и считаем по формуле: 3,14*0,7 =2,2 м это длина бортика, а нам нужна площадь, поэтому мы умножаем на ширину бортика, к примеру 6 см: 2,2*0,06=0,14 кв м площадь бортика с одной стороны, если красим и с внутренней стороны опять же умножаем на 2.
  • считаем ножки (столик слева) снимаем размеры одной ножки, длина -70 см, ширина (если ножки квадратные, то ширина одинакова и равняется 6 см с каждой стороны считаем таким образом 0,7*0,06=0,05*(это площадь одной стороны ножки, у нас стороны 4 поэтому делаем как бы развертку ножки) = 0,05*4 =0,2 кв м площадь одной ножки со всех сторон. И умножаем данное значение на 4 ножки = 0,2*4 = 0,8 кв площадь всех ножек. По аналогии считаются и круглые ножки (не резные) замеряете длину ножки и ширину от края до края круга и делаете развертку.

  • крестовина (столик слева) их четыре, но мы считаем, как 2 (стрелками отметил), так как они по размеру одинаковые. К примеру: Длина каждой 80 см, ширина 3 см. высота 8см. считаем по одной: первые стороны — 0,8*0,03*2=0,05 кв м. вторые стороны-0,8*0,08*2=0,13 кв м, складываем обе стороны = 0,05+0,13=0,18 кв м площадь крестовины со всех сторон
Общая квадратура стола слева: 0,51+0,14+0,8+0,18= 1,63 кв м всего стола без окраски внутренних сторон, я бы накинул ещё 0,2 кв м (в них закладываем все торцы)
Переходим к столику снизу: столешницу и бортик не считаем, аналогично как на примере 1.
  • центральная ножка (резная, фигурная, она же балясина как на перилах) Замеряем длину = 80см, теперь переходим к окружности, выбираем самый толстый переход (ещё называют по-другому кишку), и мерим от края до края, к примеру 12 см, опять же делаем развертку этой ножки, так как 12 см это с одной стороны, то есть 0,12*4 (стороны) = 0,48*0,8 (длина) =0,39 кв м, но так как ножка резная умножаем на коэффициент 1,5 (относится ко всем резным изделиям) = 0,39*1,5 = 0,59 кв м и является площадью данной ножки
  • поддерживающие ножки( справа стол) их 4 штуки, хотя они и фигурные, тут всё просто, умножаем длину на высоту, к примеру длина 35см, высота 8см= 0,35*0,08*2=0,06 кв м площадь одной ножки, умножаем на 4 штуки = 0,06*4 = 0,24 кв м все 4 ножки со всех сторон.

Общая площадь стола снизу: 0,51+0,14+0,59+0,24= 1,48 кв м +0,2 кв м (в них закладываем все торцы)

 

Рама овальная

  • зеркало снизу наш вариант. Можно просчитать разными путями, либо обвести ниточкой вокруг зеркала, замет измерить длину нитки, можно ленточной рулеткой замерить. Что тоже неудобно) Делаем проще, замеряем длину и ширину от начала до конца.  К примеру высота 90 см. ширина зеркала 40см= 0,9+0,4/2= 0,65*3,14=2,05 м длина рамы по кругу, но нам нужна площадь, поэтому замеряем ширину самой рамы = 7см, далее длину рамы умножаем на ширину рамы= 2,05*0,07=0,15 кв м площадь рамы с лицевой стороны. Но так как рама не является ровной плоскостью, а резной и фактурной поэтому умножаем на коэф 1,5 = 0,15*1,5= 0,23 кв м окончательная площадь рамы) Уффффффффф

 

Декоративная решетка/перегородка комнатная/ширма

По данным изделиям всё просто, замеряете длину на высоту, перемножаете их умножаете на коэф 1,5, так как просчитать все дырочки не реально, да и красить кисточкой это очень долго и кропотливо (если красите с обоих сторон умножаете на 2 дополнительно).  

 

Лестницы

  • балясины считаем также как и ножку у черного стола, сначала площадь одной, потом умножаем на количество. Будем считать что одна балясина 0,15 кв и их примерно 27 штук= 0,15*27=4,05 кв м площадь всех балясин

  • перила, меряем длину всего перила, ширину и высоту. К примеру длина 4,5м, ширина 8 см, высота 4 см. Далее по отдельности умножаем=4,5*0,08*2(обе стороны) =0,72 кв м; 4,5*0,04*2=0,36 кв м, складываем 0,72+0,36=1,08 кв м площадь перила с 4 сторон

  • ступени: длина *ширину, к примеру длина 60 см. ширина 25 см= 0,6*0,25= 0,15 кв м одна ступень *1,5 коэф= 0,15*1,5=0,23 кв м (с краями) так как ступень больше подступенька (на фото он белый) и снизу нужно будет тоже прокрасить так как если вы будете смотреть на лестницу снизу-вверх, все огрехи будут видны и не эстетично это. Площадь умножаем на количество ступенек = 0,23*14(на фото их столько) = 3,22 кв м площадь всех ступенек.

  • подступеньки тоже считаем длина 60см. высота 20см= 0,6*0,2=0,12 кв м и умножаем на количество подступенек 14 (посчитал все белые и нижний коричневый) = 0,12*14= 1,68 кв м площадь всех подступенек

 

Общая площадь: 10,03 кв м. всей лестницы. Не забываем если торцы открыты (на фото их не видно но они слева) их тоже нужно будет считать.

Автор совета: Егор Москалу @drovosek.dg

Читайте советы от Дарьи Гейлер

Как найти площадь фигуры? Ответ на webmath.ru

Содержание:

Определения

Площадь является одним из основных математических понятий. Она характеризует как плоские, так и поверхностные геометрические объекты.

Определение

Площадью плоской замкнутой фигуры называется величина части плоскости, которая находится внутри указанной фигуры.

Единицей измерения площади плоской фигуры является квадрат со стороной, равной единице. Число, соответствующее
площади некоторой фигуры, состоящей из частей, равно сумме чисел, соответствующих площадям этих частей. Измерение
площадей треугольников и многоугольников основано на возможности построения равновеликих им прямоугольников.

Площадь произвольной ограниченной плоской фигуры определяется как общий предел площадей описанных и
вписанных в нее многоугольников, наибольшие стороны которых по длине стремятся к нулю.

Если фигура имеет площадь, то она называется квадрируемой.

Формулы площади основных геометрических фигур

Площадь треугольника

Чтобы найти площадь треугольника, надо найти полупроизведение двух его сторон на синус угла между ними.
То есть если известны длины двух сторон треугольника $ABC$, которые равны
$a$ и $b$, а также угол
$\alpha$ между этими сторонами, то искомая площадь:

$$\mathrm{S}_{\Delta A B C}=\frac{1}{2} a b \sin \alpha$$

Читать дальше: формулы площади треугольника и примеры решений →

Площадь круга

Чтобы найти площадь круга, надо найти произведение числа
$\pi$ на квадрат радиуса этого круга, то есть

$$\mathrm{S}_{\kappa p}=\pi R^{2}$$

Читать дальше: формула площади круга и примеры решений →

Площадь квадрата

Чтобы найти площадь квадрата, надо длину его стороны возвести в квадрат, то есть

Читать дальше: формула площади квадрата и примеры решений →

Площадь прямоугольника

Чтобы найти площадь прямоугольника, надо его длину умножить на ширину, то есть

Читать дальше: формула площади прямоугольника и примеры решений →

Площадь параллелограмма

Чтобы найти площадь параллелограмма, нужно найти произведение стороны
$a$ параллелограмма на высоту
, проведенную к этой стороне, то есть

Читать дальше: формулы площади параллелограмма и примеры решений →

Площадь трапеции

Чтобы найти площадь трапеции, нужно длину средней линии
умножить на длину высоты
, опущенной к основанию:

Читать дальше: формулы площади трапеции и примеры решений →

Площадь ромба

Чтобы найти площадь ромба, надо длину стороны умножить на длину высоты, проведенной к этой стороне:

Читать дальше: формулы площади ромба и примеры решений →

Площадь эллипса

Чтобы найти площадь эллипса, нужно найти произведение длин большой и малой полуосей этого эллипса на число
$\pi$, то есть

Читать дальше: формула площади эллипса и примеры решений →

формулы для обычной, круглой, треугольной комнаты

Перед продажей квартиры нам необходимо определить ее характеристики: узнать квадратуру комнат, записать высоту потолков, оценить другие параметры. Высчитать площадь комнаты в квадратных метрах будет полезно и при покупке новостройки: станет проще оценивать представленное на рынке жилье, т. к. вы сможете сравнить его со своим. Но как это сделать? Рассказывают наши эксперты.


Интересно, что метр квадратный официально обозначается как м² или как m² (международная система написания единиц измерения). Записывать его как м2 — ошибка. Если вы не можете поставить надстрочный знак, используйте сокращение «кв. м».

Формулы для расчета квадратуры комнаты

В зависимости от особенностей помещения рекомендации о том, как сосчитать площадь комнаты в квадратных метрах, будут различаться. Мы представили ниже подборку формул, которые используются для определения квадратуры помещения.

Базовая формула

Если вы разбираетесь, как посчитать площадь комнаты в квадратных метрах, и помещение у вас квадратное или прямоугольное, вам повезло. Необходимые арифметические вычисления будут совсем несложными. Площадь комнаты в квадратных метрах можно получить, перемножив ее длину и ширину. Это значит, что если у вас длина комнаты 10 метров, а ширина — 9, то расчет будет следующим:

100 х 90 = 90

Однако, измеряя комнату, мы обычно получаем значение в сантиметрах, а не в метрах, например, длина будет 1112 см, а ширина — 961. Для корректного ответа нужно перевести в метры или изначальные величины, или уже готовый результат.

1. Переводим в метры изначальные величины

Так как в 1 метре 100 сантиметров, нужно поделить сантиметры на 100, чтобы получить метры.

1112 / 100 = 11,12 м

961 / 100 = 9,61 м

11,12 х 9,61 = 106,9 м²

2. Переводим в метры результат

Так как в 1 квадратном метре 10000 квадратных сантиметров, конечный результат нужно поделить на 10000.

1112 х 961 = 1068632 см²

1068632 / 10000 = 106,9 м²


Обратите внимание! В обоих случаях результат получался с большим количеством знаков после запятой (106,8632 и т. д.). Мы округлили его по правилам округления, согласно которому цифра, записанная в выбранном разряде (у нас это десятые), не меняется, если за ней следует 0, 1, 2, 3 или 4 и увеличивается на один, если за ней следует 5,6,7,8 или 9. У нас за десятыми следует 6 сотых, поэтому мы увеличиваем цифру на 1, получая 106,9 вместо 106,8.

Расчет площади круглой комнаты

Не всегда удается выделить на плане исключительно прямоугольники. Сегодня все чаще строится жилье нестандартной конфигурации — с полукруглыми нишами и другими овальными элементами. Если у вас обнаружился элемент в виде круга, используйте формулу:

S комнаты = πR², где R – радиус. Число «Пи» в этом случае берется как 3,14.

Не забудьте, что круглая ниша у вас обрезана, поэтому результат нужно поделить на два, если у вас полукруг и т. д.

Арки считаются по двум формулам: круга и квадрата. Сначала на плане разделяете арку на полукруг и прямоугольный сегмент, потом рассчитываете обе площади и складываете их между собой.

Площадь треугольника

Как рассчитать площадь комнаты в м², если она треугольная? Для таких случаев используется формула Герона. Она выглядит так:

Площадь комнаты = √ (P(P — A) х (Р — В) х (Р — С))

В А, В и С в данном расчете — это длины сторон треугольника, площадь которого нужно определить. А Р является его полупериметром. Его нужно рассчитать заранее, сложив длину всех сторон и поделив ее на два. Формула выглядит так: Р = (А + В + С) / 2.

Как проходит расчет

Даже зная, как найти площадь комнаты в квадратных метрах, многие сомневаются, с чего начать в собственной квартире. В первую очередь вооружитесь калькулятором, рулеткой, карандашом и листом бумаги. Вам потребуется составить план помещения. Этот пункт можно пропустить, если у вас есть документы на квартиру, к которым обычно план приложен. В них, кстати, можно посмотреть общий метраж принадлежащего вам жилья.

Наше жилье редко бывает идеально квадратным или идеально прямоугольным. Обычно в помещении имеются ниши, выступы, вентиляционные конструкции или сантехнические элементы. Если вы пытаетесь понять, как посчитать квадратуру комнаты с нишами, то придется нарисовать их на плане.

Далее на получившемся рисунке поделите пространство на прямоугольники, треугольники, круги и замерьте их стороны. Не забывайте, что для покупки или продажи помещения площадь комнаты в квадратных метрах считается по полу. Если же вы планируете сделать ремонт и повесить натяжные потолки, расчет необходимо делать по потолку. Результаты могут незначительно отличаться из-за наличия труб, воздуховодов и др.

Когда все измерения записаны, подсчитайте площадь каждой из фигур отдельно и сложите все результаты. Если площадь считалась для себя, ее можно немного округлить.

Мы разобрали базовые формулы и постарались объяснить, как вычислить площадь комнаты в квадратных метрах. Надеемся, нам удалось вам помочь. Если же вы все еще не можете оценить размер квартиры, которую хотите продать или купить, обратитесь к нашим экспертам. Они помогут разобраться!

Как найти длину и ширину прямоугольника с учетом площади

Обновлено 3 ноября 2020 г.

Крис Дезиел

Если вы знаете длину и ширину прямоугольника, вы можете определить его площадь. Однако эти две величины независимы, поэтому вы не можете произвести обратный расчет и определить их обе, если вам известна только площадь. Вы можете вычислить одно, если знаете другое, и вы можете найти их обоих в особом случае, когда они равны, что делает форму квадрата.Если вы также знаете периметр прямоугольника, вы можете использовать эту информацию, чтобы найти два возможных значения длины и ширины.

Определение длины или ширины, когда вы знаете другое

Площадь прямоугольника ( A ) связана с длиной ( L ) и шириной ( W ) его сторон следующим соотношением:

A = L × W

Если вы знаете ширину, легко найти длину, переставив это уравнение, чтобы получить

L = \ frac {A} {W}

Если вы знаете длину и ширину, переставьте так, чтобы получить

W = \ frac {A} {L}

Пример: площадь прямоугольника составляет 20 квадратных метров, а его ширина — 3 метра.2} {3 \ text {m}} = 6.67 \ text {m}

Квадрат, особый случай

Поскольку у квадрата четыре стороны равной длины, площадь определяется как A = Л 2 . Если вы знаете площадь, вы можете сразу определить длину каждой стороны, потому что это квадратный корень из площади.

Пример: Какова длина сторон квадрата площадью 20 м 2 ?
Длина каждой стороны квадрата равна квадратному корню из 20, который равен 4.47 метров.

Определение длины и ширины, если вы знаете площадь и периметр

Если вам известно расстояние вокруг прямоугольника, то есть его периметр, вы можете решить пару уравнений для L и W. Первое уравнение — это уравнение для площадь,

A = L × W

, а вторая — для периметра,

P = 2L + 2W

Чтобы найти одну из переменных, скажем, W , вам нужно исключить другую. 2 — 8A}} {2}

Знание периметра может не дать вам однозначного ответа, но два ответа лучше, чем ничего.

Площадь прямоугольников — пояснения и примеры

По определению, площадь прямоугольника — это область, охватываемая прямоугольником в двухмерной плоскости . Прямоугольник — это двумерный многоугольник с четырьмя сторонами, четырьмя углами и четырьмя вершинами.

Прямоугольник состоит из двух сторон: длины (L) и ширины (W). Длина прямоугольника — самая длинная сторона, а ширина — самая короткая. Ширина прямоугольника иногда обозначается как ширина (b).

Как найти площадь прямоугольника?

Площадь прямоугольника можно рассчитать, подсчитав количество маленьких полных квадратов размером 1 * 1 кв. Единиц, необходимых для покрытия прямоугольника.

Например, если количество подсчитанных полных квадратов равно 20, это означает, что площадь прямоугольника равна 20 единицам квадратов.

Недостатком метода является то, что метод не дает точных значений площади, а также метод неприменим для определения площади больших плоскостей.

Площадь прямоугольника Формула

Площадь прямоугольника равна произведению ширины и длины прямоугольника.

Следовательно, формула площади прямоугольника утверждает, что:

Площадь прямоугольника = Длина x Ширина

A = L * W, где A — площадь, L — длина, W — ширина или ширина. .

ПРИМЕЧАНИЕ: При умножении длины на ширину всегда проверяйте, что вы работаете в одной и той же единице длины. Если они даны в разных единицах, замените их на одну и ту же единицу.

Давайте решим несколько примеров задач о площади прямоугольника.

Пример 1

Найдите площадь прямоугольника, если его длина 25 м, а ширина 10 м.

Раствор

A = l x w

Заменить 25 на l и 10 на w.

= (25 x 10) м 2

= 250 м 2

Итак, площадь прямоугольника 250 м 2 .

Пример 2

Найдите площадь прямоугольника, длина и ширина которого составляют 10 см и 3 см соответственно.

Раствор

Дано,
Длина (l) = 10 см.
Ширина (б) = 3 см.
Площадь прямоугольника = длина × ширина

= 10 × 3 см 2 .

= 30 см 2 .

Пример 3

Если периметр прямоугольника составляет 60 см, а его длина в 5 раз больше ширины, найдите площадь прямоугольника.

Решение

Пусть ширина будет x.

Длина в 5 раз больше ширины, длина = 5x.

Но периметр прямоугольника = 2 (l + w) = 60 см

Замените 5x вместо l и x вместо w.

60 = 2 (5x + x)

60 = 12x

Разделите обе стороны на 12, чтобы получить.

x = 5

Теперь подставьте x = 5 в уравнение длины и ширины.

Следовательно, ширина = 5 см, а длина = 25 см.

Но площадь прямоугольника = lxw

= (25 x 5) см 2

= 125 см 2

Пример 4

Найдите площадь прямоугольника длиной 12 см и диагональ 13 см.

Решение

Здесь ширина не указана, поэтому мы используем теорему Пифагора для определения ширины.

c 2 = a 2 + b 2

13 2 = a 2 + 12 2

169 = a 2 + 144.

Вычесть 144 с обеих сторон .

169 — 144 = a 2 + 144 — 144

25 = a 2

Найдя квадратный корень из обеих частей, мы получим.

a = 5

Следовательно, ширина прямоугольника 5 см.

Теперь посчитайте площадь.

A = Д x Ш

= (12 x 5) см 2

Пример 5

Если цена цементирования пола составляет 12,40 долл. США за квадратный метр, найдите стоимость цементирования прямоугольного пола. длиной 20 м и шириной 10 м.

Раствор

Чтобы найти общую стоимость цементирования пола, умножьте площадь пола на норму цементирования.

Площадь = Д x Ш

= (20 x 10) м 2

= 200 м 2

Стоимость цементирования = площадь x скорость цементирования

= 200 м 2 x 12,40 долл. США / м 2

= 2480 долларов США

Пример 6

Длина и ширина находятся в соотношении 11: 7, а его площадь составляет 693 квадратных фута. Найдите его длину и ширину.

Решение

Пусть общее соотношение длины и ширины = x

Следовательно, длина = 11x

Ширина = 7x

Площадь прямоугольника = L x W

693 кв.футов = (11x) (7x)

693 кв. ft = 77x 2

Разделим обе стороны на 77.

x 2 = 9

Найдите квадрат обеих сторон, чтобы получить;

x = 3.

Заменитель.

Длина = 11x = 11 * 3 = 33

Ширина = 7x = 7 * 3 = 21

Следовательно, длина прямоугольника составляет 33 фута, а его ширина — 21 фут.

Пример 7

Длина прямоугольника 0,7 м, ширина 50 см.Какова площадь прямоугольника в метрах?

Solution

Длина = 0,7 м

Ширина = 50 см.

Преобразуйте 50 см в метры, разделив 50 на 100. Итак, 50 см = 0,5 м

Площадь = Д x Ш

= (0,7 x 0,5) м 2

= 0,35 м 2

Пример 8

Размер прямоугольной стены 75 м на 32 м. Узнайте стоимость покраски стены, если ставка покраски 5 рупий за кв.м.

Решение

Площадь = Д x Ш

= (75 x 32) м 2

= 2400 м 2

Чтобы получить стоимость покраски стены, умножаем площадь стены по скорости покраски.

Стоимость = 2400 м 2 x 5 рупий за кв. М

= 12000 рупий

Пример 9

Прямоугольный пол двора размером 50 м на 40 м покрыт прямоугольной плиткой из размеры, 1 м на 2 м.Найдите общее количество плиток, необходимых для полного покрытия пола двора.

Решение

Сначала вычислите площадь пола двора и плитки.

Площадь пола двора = (50 x 40) м 2

= 2000 м 2

Площадь плитки = (1 x 2) м 2

= 2 м 2

Чтобы найти количество плиток, необходимое для покрытия пола двора, мы делим пол двора на площадь плитки.

Количество плиток = 2000 м 2 /2 м 2

= 1000

Следовательно, для покрытия пола необходимо 1000 плиток.

Предыдущий урок | Главная страница | Следующий урок

Как найти площадь прямоугольника

Если вы считаете, что контент, доступный через Веб-сайт (как определено в наших Условиях обслуживания), нарушает
или другие ваши авторские права, сообщите нам, отправив письменное уведомление («Уведомление о нарушении»), содержащее
в
информацию, описанную ниже, назначенному ниже агенту.Если репетиторы университета предпримут действия в ответ на
ан
Уведомление о нарушении, оно предпримет добросовестную попытку связаться со стороной, которая предоставила такой контент
средствами самого последнего адреса электронной почты, если таковой имеется, предоставленного такой стороной Varsity Tutors.

Ваше Уведомление о нарушении прав может быть отправлено стороне, предоставившей доступ к контенту, или третьим лицам, таким как
в виде
ChillingEffects.org.

Обратите внимание, что вы будете нести ответственность за ущерб (включая расходы и гонорары адвокатов), если вы существенно
искажать информацию о том, что продукт или действие нарушает ваши авторские права.Таким образом, если вы не уверены, что контент находится
на Веб-сайте или по ссылке с него нарушает ваши авторские права, вам следует сначала обратиться к юристу.

Чтобы отправить уведомление, выполните следующие действия:

Вы должны включить следующее:

Физическая или электронная подпись правообладателя или лица, уполномоченного действовать от их имени;
Идентификация авторских прав, которые, как утверждается, были нарушены;
Описание характера и точного местонахождения контента, который, по вашему мнению, нарушает ваши авторские права, в \
достаточно подробностей, чтобы позволить репетиторам университетских школ найти и точно идентифицировать этот контент; например нам требуется
а
ссылка на конкретный вопрос (а не только на название вопроса), который содержит содержание и описание
к какой конкретной части вопроса — изображению, ссылке, тексту и т. д. — относится ваша жалоба;
Ваше имя, адрес, номер телефона и адрес электронной почты; а также
Ваше заявление: (а) вы добросовестно считаете, что использование контента, который, по вашему мнению, нарушает
ваши авторские права не разрешены законом, владельцем авторских прав или его агентом; (б) что все
информация, содержащаяся в вашем Уведомлении о нарушении, является точной, и (c) под страхом наказания за лжесвидетельство, что вы
либо владелец авторских прав, либо лицо, уполномоченное действовать от их имени.

Отправьте жалобу нашему уполномоченному агенту по адресу:

Чарльз Кон
Varsity Tutors LLC
101 S. Hanley Rd, Suite 300
St. Louis, MO 63105

Или заполните форму ниже:

Как рассчитать площадь | Помощь с математикой

Расчетная зона

Площадь измеряется в квадратах (или квадратных единицах).

Сколько квадратов в этом прямоугольнике?

Мы можем считать квадраты или взять длину и ширину и использовать умножение.Прямоугольник выше имеет площадь 15 квадратных единиц.

Площадь прямоугольника = длина x ширина

Примеры расчета площади прямоугольника

Единицы измерения площади

Измеряем площадь квадратами. Мы используем квадраты разного размера в зависимости от того, насколько велика или мала площадь.

Пример Длина стороны квадратов Установка
Размер ногтя на большом пальце Миллиметр мм 2
Размер листка Сантиметр см 2
Размер комнаты Метр м 2
Размер города Километр км 2
Не забывайте крошечный 2
Мы пишем размеры квадрата с помощью маленького 2 рядом с единицей.
Мы пишем mm 2 , cm 2 , m 2 , km 2 , cm 2
Мы можем сказать «63 миллиметра в квадрате» или «63 квадратных миллиметра»

Мы могли бы использовать маленькие квадраты для измерения больших площадей. Единственная проблема заключается в том, что нам придется использовать очень большие числа. Например, поле может быть измерено в 5 000 000 000 квадратных миллиметров, тогда как 5 000 квадратных метров было бы гораздо проще сказать, написать и визуализировать.

Вероятно, вы услышите больше единиц измерения площади; квадратные дюймы, квадратные футы, квадратные ярды, квадратные мили, акры, гектары — все это единицы, используемые для измерения площади.

Еще примеры расчета площади

Площадь квадрата

Длина и ширина квадрата одинаковы, поэтому нам просто нужно умножить длину на длину.

Площадь = длина x длина
Площадь = 6 см x 6 см = 36 см 2

Площадь круга

Площадь круга = πr 2
, где r — радиус круга, а π — отношение длины окружности к ее диаметру.

π (произносится как «пирог» и часто пишется как «пи») — бесконечная десятичная дробь с общим приближением 3,14159. Вы можете узнать больше о Pi здесь

Пример расчета площади круга

Площадь = πr 2
Площадь = 3,14159 x (4 см) 2
Площадь = 3,14159 x 16 см 2
Площадь = 50,27 см 2
Ответ округлен до 2 десятичных знаков

Объяснение формулы площади круга

Возьмите круг, разделите его на сектора равного размера и расположите их, как показано ниже.Обратите внимание, как по мере уменьшения размеров секторов форма становится больше похожей на прямоугольник. Примечание. Нет предела тому, насколько маленькими могут быть эти секторы и насколько они могут напоминать прямоугольник при расположении.

Предполагая, что мы знаем, что длина окружности равна 2πr, мы можем добавить размеры к «прямоугольнику», как показано ниже. Используя формулу площади прямоугольника, площадь = ширина x высота, мы можем увидеть, как можно показать, что наш круг, переконфигурированный как прямоугольник, имеет площадь, которая приблизительно равна πr x r или πr 2

Перестановка секторов круга

Перестановка секторов круга — начинает выглядеть как прямоугольник

Площадь составных форм

Во многих случаях для вычисления общей площади требуется вычисление нескольких площадей с последующим сложением, вычитанием или какой-либо другой комбинацией операций для поиска требуемой площади.

Примечание. В приведенных ниже примерах единицы измерения не показаны, а ответы и значение π (Пи) округлены до ближайшей сотой.

Пример: простые составные формы

Пример вычисления площади ниже относительно прост. Фигуру можно рассматривать как треугольник в сочетании с прямоугольником.

Площадь треугольной части:
½ x основание x высота
½ x 9 x 4 = 18

Площадь прямоугольной части:
ширина x высота
9 x 6 = 54

Общая площадь = 18 + 54 = 72

В приведенном выше примере показано общее требование при работе с составными формами — поиск размеров, которые не показаны.Обучая своих детей, при необходимости помогайте им найти эти «недостающие» измерения. Ниже приведен еще один пример.

Определение размеров

Каковы размеры маленькой прямоугольной детали?
Ширина? 12-7-2 = 3
Высота? 8–6 = 2

Пример: вычитание одной площади из другой

В приведенном ниже примере фигура выглядит как прямоугольник с вырезанным треугольником.

Площадь прямоугольной части:
ширина x высота
5 x 6 = 30

Площадь треугольной части:
½ x основание x высота
½ x 3 x 3 = 4,50

Общая площадь = 30 — 4,50 = 25,50

Пример: частичные области

Пример ниже аналогичен приведенному выше, хотя, поскольку у нас есть полукруг, нам нужно вычислить долю (половину) площади круга. Обратите внимание, что в этом примере показан диаметр, а не радиус.

Площадь треугольной части:
½ x основание x высота
½ x 6 x 6 = 18

Площадь полукруглой части:
½ x ( πr 2 )
½ x (3,14 x 1,5 2 ) = 3,53

Общая площадь = 18 — 3,53 = 14,47

Пример: Решения! Объединить? Вычтем

Обычно используется более одного способа вычисления окончательной площади. В приведенных ниже примерах фигуру можно рассматривать как два объединенных прямоугольника или как один большой прямоугольник с меньшим прямоугольником, «вырезанным» из правого верхнего угла.

Таблицы расчета площади

Распечатайте листы, перечисленные ниже, и используйте их для практики при обучении своих детей.

Здесь вы найдете больше распечатываемых рабочих листов по геометрии.

Как найти длину и ширину прямоугольника, если вы знаете …

У нас есть два подхода для вас. Тот, который использует алгебру:

Привет, Энн.

Это вопрос по алгебре, поэтому ученику должно быть удобно представлять неизвестные значения с помощью переменных.

Пусть w = ширина и h = высота прямоугольника.

Чтобы получить площадь, нужно умножить. Итак, в данном случае w x h = 144.

Чтобы получить периметр, сложите все стороны: w + h + w + h = 48. Если вы
упростите это, вы получите:
2w + 2h = 48.
Если разделить обе части на 2, получится
ш + в = 24.

Итак, мы ищем два числа, которые при умножении дают 144, а при сложении дают 24.На этом этапе вы можете решить, должен ли учащийся угадать, а затем проверить это предположение, подставив ответы в два уравнения, или действовать аналитически. Этот вопрос теперь легко угадать и проверить, но если вы хотите научить своего ребенка более сложным методам, читайте дальше.

Теперь решите одну из переменных (неважно какую):
ш + в = 48
(ш + в) — ч = 24 — ч
ш = 24 — ч

Мы отложим это на мгновение и аналогичным образом решим для w, используя
уравнение площади.
ш x в = 144
ш = 144 / ч

Итак, у нас есть два разных выражения, которые оба равны w. Вы можете сослаться на логику и сказать, что если вещь 1 такая же, как вещь 2, а вещь 3 такая же, как вещь 2, то вещь 1 должна быть такой же, как вещь 3.

Так
24 — ч = 144 / ч

Теперь сделайте левую часть 0 путем вычитания (24 — h) с обеих сторон:
24 — ч — (24 — ч) = 144 / ч — (24 — ч)
0 = 144 / ч — (24 — ч)
и давайте избавимся от этой дроби, умножив обе части на h:
0ч = ч (144 / ч — 24 + ч)
0 = 144 — 24 ч + ч ^ 2
0 = ч ^ 2 — 24 ч + 144

Это называется квадратичным выражением.Самый простой способ вычислить фактическую высоту — это разложить ее на множители. Обратите внимание, что на этом этапе мы снова эффективно используем догадку и проверку: мы пытаемся найти два числа, которые при умножении дают 144 и сложении дают -24.

0 = (ч — 12) (ч — 12)

Это означает, что h — это некоторое значение, которое делает приведенное выше выражение истинным, а это только значение h = 12.

Теперь, когда у нас есть h, мы можем использовать любое из исходных уравнений для решения относительно w.
ш = 144 / ч
ш = 144/12 = 12

Это длинный вопрос с множеством шагов для ученика шестого класса, но продвинутый ученик многому научится, увидев анализ (а затем отработает технику с другими числами, такими как область 56 и периметр 30 или область 150 и периметр 70). .

Стивен Ла Рок.>

Энн,

есть алгебраический способ решить эту проблему, но я бы сказал, что на уровне 6 класса учитель ожидает подхода догадки и проверки.Поскольку площадь является произведением длины сторон, может быть полезно множить 144 и посмотреть, каков может быть периметр, то есть 48? Например, 144 равно 6 x 24, но если бы это была форма прямоугольника, периметр был бы 6 + 6 + 24 + 24 = 60, а не 48. Аналогично 144 = 8 x 18, но это приводит к периметру 8 + 8. + 18 + 18 = 52, а не 48. Что еще можно попробовать?

Пенни.

Калькулятор площади прямоугольника

Как рассчитать площадь прямоугольника

Если вам нужно найти площадь и периметр прямоугольника, этот калькулятор — удобный инструмент.

Просто введя длину и ширину, этот калькулятор почти мгновенно найдет периметр (P) и площадь (A).

Если вас интересуют калькуляторы для множества других фигур, вы можете взглянуть на другие наши удобные калькуляторы. Но вы можете остаться здесь и узнать больше о том, как найти площадь прямоугольника.

Прямоугольник имеет четыре угла по 90 градусов. Если длины сторон одинаковы, то прямоугольник также является квадратом. Длины сторон будут указаны как a или b , или вы можете использовать l и w для «длины» и «ширины».Диагональ, которая идет от одной вершины к противоположной вершине, разделяющей прямоугольник на два квадрата, называется диагональю и обозначается как d .

Вот основные формулы, используемые калькулятором.

Площадь (A) = a (b)

Периметр (расстояние по внешней стороне прямоугольника) = a + a + b + b или 2 a + 2 b и обозначается как (P)

Диагональ: d ² = a ² + b ², что является теоремой Пифагора (см. наш калькулятор теоремы Пифагора).

Пример вычисления площади прямоугольника:

Предположим, что длина a = 6 дюймов и ширина b = 4 дюйма

A = a * b , поэтому A = 6 (4) = 24 дюйма²

Используя те же размеры, мы можем рассчитать периметр.

Периметр равен 2 a + 2 b , поэтому в этом примере периметр

P = 2 (6) + 2 (4) = 20 дюймов

Чтобы найти диагональ, используя те же размеры:

d ² = 6² + 4² = 36 + 16 = 52

Извлеките квадратный корень из обеих сторон и диагональ d будет приблизительно равна 7.2 дюйма

Эти примеры иллюстрируют, как вычислить площадь, периметр и диагональ прямоугольника вручную, но если вы предпочитаете использовать калькулятор для более быстрых результатов или просто для проверки своей работы, тогда не стесняйтесь делать это. Отличной особенностью калькулятора является то, что вы можете определить длину или ширину, если знаете периметр и длину одной из сторон.

Площадь, периметр и диагональ прямоугольника

На этой странице показано, как измерить площадь прямоугольника.Мы рассмотрим следующие темы:

Какова площадь, периметр и диагональ прямоугольника?

Как рассчитать площадь, периметр и диагональ прямоугольника?

Реальное приложение для вычисления площади, периметра и диагонали прямоугольника

Площадь прямоугольника

Представьте себе площадь прямоугольника в виде квадратов внутри прямоугольника. Прямоугольник ниже имеет покрытую площадь 12 «квадратных единиц»

Пространство внутри двумерной формы — это площадь или количество закрытых форм.

На этой диаграмме показаны ширина, длина и площадь прямоугольника:


Расчет площади прямоугольника

Чтобы найти площадь прямоугольника, вам нужно умножить длину и ширину прямоугольника. . Мы можем получить площадь прямоугольника по следующей формуле:

A = L * W

A — площадь, L — длина, а W — ширина.

Пример 1

Вычислите площадь прямоугольника длиной 7 сантиметров и шириной 5 сантиметров.

Формула:

A = L * W

Ответ:

A = 35. Заданная длина ( L ) равна 7, а 3 — ширина ( W ). При умножении вы получите 35 как свою площадь.

Периметр прямоугольника

Посмотрите на изображение ниже, человек ходит вокруг коробки. Путь, по которому он ходит от начальной точки и обратно, — это периметр.Зная длину и ширину прямоугольника, теперь мы можем получить периметр прямоугольника. Обе противоположные стороны прямоугольника совпадают, что означает, что, сложив эти стороны, мы можем рассчитать периметр.


Расчет периметра прямоугольника

Теперь, сложив все стороны прямоугольника, мы можем получить периметр. Вот уравнение для получения периметра прямоугольника:

P = L + W + L + W

Поскольку мы знаем, что обе противоположные стороны прямоугольника идентичны, мы можем упростить уравнение, используя это уравнение :

P = 2L + 2W

Пример 1

Найдите периметр прямоугольника длиной 12 см и шириной 7 см.

Формула:

P = L + W + L + W или

P = 2L + 2W

Ответ:

P = 12 + 7 + 12 + 7 или

P = 2 (12) + 2 (7)

Ответ: P = 38. Добавляя 12 ( L ) + 7 ( W ) + 12 ( L ) + 7 ( W ) , вы получите 38. Умножив длину ( L ) и ширину ( W ) на 2, а затем сложив частные, вы получите тот же ответ.

Диагональ прямоугольника

Если присмотреться, прямоугольник представляет собой комбинацию двух прямых углов. Диагональ — это разделение прямоугольника на два прямоугольных треугольника, идентичных друг другу.


Вычисление диагонали прямоугольника

Мы знаем, что прямоугольник — это комбинация двух прямоугольных треугольников. Диагональ этого прямоугольника — это гипотенуза , гипотенуза двух треугольников, поэтому мы можем применить теорему Пифагора для определения диагонали прямоугольника.{2}} \)
\ (D = \ sqrt {34} \)

D = 5,83

Реальные приложения для определения площади прямоугольника

Молодожены хотят укладывать плитку на пол главная спальня. Комната имеет длину 20 футов и ширину 30 футов. Плитка, которую они выбрали, имеет длину 24 дюйма и ширину 36 дюймов. Определите количество плиток, необходимых для заполнения главной спальни.

Советы:

1. Определите площадь, занимаемую главной спальней.

2. Рассчитайте площадь плитки

3. Выберите единицу измерения. В этом примере будут использоваться ножки.

Решение:

A = Д * Ш

A = 20 футов x 30 футов

A = 600 футов²

Наконечник:

Прежде чем мы получим площадь каждой плитки, преобразуйте футы в дюймы

Пример преобразования:

1 фут = 12 дюймов

2 фута = 24 дюйма

3 фута = 36 дюймов

Площадь 1 плитки = Д × Ш

Площадь 1 плитки = 2 × 3

Площадь 1 плитки = 6 футов²

Это означает, что каждая плитка имеет площадь 6 футов², и он должен покрывать площадь комнаты, составляющей 600 футов².Итак, 6 × 100 = 600.

Количество плиток, необходимых для заполнения главной спальни, составляет 600.

Реальные приложения для определения периметра прямоугольника

Фермер хочет добавить клетку для цыплят. Он хочет добавить новый забор возле своего дома и свободное пространство длиной 30 метров и шириной 16 метров. Найдите периметр свободного места.

Решение:

P = 2L + 2W

Ответ:

Периметр = 2 (длина свободного пространства) + 2 (ширина свободного пространства)

P = 2 (30) + 2 (16)

P = 60 + 32

P = 92

Периметр свободной площади 92 метра.{2}} \)

\ (D = \ sqrt {236} \)

D = 14,42

Чтобы равномерно разделить сэндвич на два равных прямоугольных треугольника, длина диагонали должна быть 14,42 дюйма.

Калькулятор прямоугольников. Найдите площадь и периметр любого прямоугольника

Если вам нужно знать площадь ковра, участка, экрана телевизора, прямоугольного бассейна или окна, этот прямоугольный калькулятор решит вашу проблему в мгновение ока! Все, что вам нужно сделать, это ввести длину и ширину (или диагональ) и позволить вычислению прямоугольника найти значения P (периметр) и A (площадь).Продолжайте читать, если вы хотите понять, что такое прямоугольник, вас интересуют определение прямоугольника, формулы, свойства прямоугольника … Или вы просто хотите узнать, как найти площадь прямоугольника.

Поскольку вы уже здесь, мы полагаем, что другие наши калькуляторы геометрических фигур могут быть вам интересны. Взгляните на наши замечательные инструменты, поиграйте с ними и опробуйте их!

Прямоугольник — это пример четырехугольной формы. Может быть, вы хотите посмотреть другие?

Что такое прямоугольник? Определение прямоугольника

Прямоугольник — это четырехугольник с четырьмя прямыми углами .Его также можно определить по-другому: параллелограмм, содержащий прямой угол — если один угол прямой, остальные должны быть такими же. Более того, каждая сторона прямоугольника имеет ту же длину, что и противоположная ему. Он также имеет неравные смежные стороны, в отличие от квадрата, который является частным случаем прямоугольника.

Если вы немного знаете латынь, название фигуры обычно многое объясняет. Слово прямоугольник происходит от латинского rectangulus . Это комбинация rectus (что означает «прямой, прямой») и angulus (угол), так что это может служить простым базовым определением прямоугольника.

Как найти площадь прямоугольника?

На изображении выше показан типичный прямоугольник. У него четыре стороны и четыре прямых угла. Длины его сторон обозначены как a и b , а длина диагонали обозначена как d .

Если все стороны прямоугольника равны по длине, он называется квадратом .

Площадь прямоугольника — это пространство, ограниченное его сторонами, или, другими словами, в пределах периметра прямоугольника.Чтобы найти площадь прямоугольника, все, что вам нужно сделать, это умножить стороны прямоугольника a и b :

Площадь = a * b

Формулы прямоугольника

В нашем калькуляторе прямоугольников реализованы следующие формулы:

  • Для области прямоугольника :
    А = а * б

  • Для периметра прямоугольника :
    П = 2 * (а + б)

  • Для диагонали прямоугольника :
    d² = a² + b²

Если вас интересует площадь трехмерных тел, а не двумерные формы, воспользуйтесь калькулятором площади поверхности.

Вычисление прямоугольника: найти A (площадь)

Поскольку мы знаем формулу площади прямоугольника A = a * b , давайте на примере покажем, как можно вычислить это свойство:

  1. Выберите длину прямоугольника — например, a = 5 см .
  2. Определитесь с шириной прямоугольника — например, b = 6 см .
  3. Умножьте эти два значения: A = 5 см * 6 см = 30 см² .
  4. Площадь прямоугольника 30 см².

Вычисление прямоугольника: найти P (периметр)

Давайте узнаем, как найти периметр прямоугольника. Как обычно, периметр представляет собой сумму всех сторон фигуры:

P = a + b + a + b

, которое можно записать как:

P = 2 * (a + b)

Возьмем для примера тот же прямоугольник:

  1. Выбираем длину прямоугольника — a = 5 см в нашем случае .
  2. Определитесь с шириной прямоугольника — e.грамм. b = 6 см .
  3. Сложите эти два значения: a + b = 5 + 6 = 11 см .
  4. Умножьте результат на 2: P = 2 * 11 = 22 см .
  5. Поехали! Периметр нашего прямоугольника 22 см.

Вычисление прямоугольника: найти D (диагональ)

Диагональ прямоугольника — это отрезок, соединяющий две противоположные вершины прямоугольника. Рассчитаем длину диагонали примерного прямоугольника:

  1. Выберите длину прямоугольника — например, a = 5 см .
  2. Определитесь с шириной прямоугольника — например, b = 6 см .
  3. Вычислите a в степени двойки: a² = 25 см² .
  4. Вычислите b в степени двойки: b² = 36 см² .
  5. Сложите эти два значения: a² + b² = 25 + 36 = 61 см² .
  6. Наконец, извлеките квадратный корень из результата: d = √ (a² + b²) = √61 ~ 7,81 см .
  7. Длина по диагонали 7,81 см.

Естественно, вместо того, чтобы вычислять все эти значения вручную, вы можете использовать эту область прямоугольного калькулятора. Вы также можете использовать его в обратном порядке — например, чтобы вычислить ширину прямоугольника с известной длиной и периметром.

Золотой прямоугольник

Особый тип прямоугольника, называемый золотым прямоугольником, показан на изображении выше. Такой прямоугольник удовлетворяет следующему условию:

(a + b) / a = a / b = ϕ

, где φ — золотое сечение, равное 1.618.

Как вы, наверное, помните, отношение — это отношение между двумя величинами, часто представляемое в виде дроби.

Знаете ли вы, что золотой треугольник можно построить, используя только линейку и циркуль ? Всего несколько шагов!

  1. Нарисуйте квадрат.
  2. Проведите линию от середины одной стороны квадрата до противоположного угла.
  3. Нарисуйте круг с радиусом, равным этой линии, с центром в средней точке, как на картинке.
  4. Точка, где круг встречается со стороной расширенного квадрата, является следующим углом золотого прямоугольника.
  5. Найдите последнюю вершину и завершите золотой прямоугольник.

Taadaaah! Это было не так уж сложно, правда?

Свойства прямоугольника

Прямоугольники обладают множеством интересных свойств. Прямоугольник:

  • — это циклический — это означает, что все углы лежат на одной окружности.
  • — это равноугольный — все углы его углов равны 90 градусам.
  • — это прямолинейный, — его стороны пересекаются под прямым углом.
  • имеет две линии отражательной симметрии — вертикальную и горизонтальную через центр.
  • имеет две диагонали, которые делят друг друга на пополам. Вы можете найти длину диагонали, используя теорему Пифагора.
  • противоположные стороны прямоугольника параллельны друг другу и имеют одинаковую длину.

Другие менее известные объекты прямоугольной формы:

  • Пересечение диагоналей — это центр описанной окружности. — существует круг, центр которого находится в этой точке, и он проходит через четыре угла.
  • В прямоугольнике с разной длиной стороны (попросту говоря — не квадрате) невозможно нарисовать вписанную окружность.
  • Линии, соединяющие середины сторон прямоугольника, образуют ромб, который составляет половину площади прямоугольника. Стороны фигуры параллельны диагоналям.

Вы можете думать и о своей собственной собственности; например по поводу вращения прямоугольника — по бокам или диагонали, чтобы получился цилиндр или конус соответственно.

Прямоугольник и другие формы. Квадрат — это прямоугольник?

TL; DR:

  1. Квадрат — это прямоугольник? ДА .
  2. Прямоугольник — это параллелограмм? ДА .
  3. Прямоугольник — это ромб? В общем — НЕТ. Только если это квадрат (все углы ромба равны 90 градусам).
  4. Ромб — это прямоугольник? В общем — НЕТ. Только если это квадрат (все стороны прямоугольника равной длины).
  5. Прямоугольник — это четырехугольник? ДА конечно.
  6. Прямоугольник — это трапеция? ДА .

Хотите знать, является ли квадрат прямоугольником или прямоугольником параллелограммом? Взгляните на картинку, и у вас больше не должно возникнуть сомнений относительно соотношения четырехугольников:

Как читать эту диаграмму? Начнем с нашего прямоугольника. Непосредственно к форме соединены три фигуры: квадрат, параллелограмм и равнобедренная трапеция.Итак, если фигура находится над интересующей нас фигурой — например, квадрат или прямоугольник — мы можем сказать, что:

  • Каждый квадрат — это прямоугольник , а квадрат — это частный случай прямоугольника .

Для двух других цифр можно указать аналогично:

  • Каждый прямоугольник — это параллелограмм , а прямоугольник — это частный случай параллелограмма .
  • Каждый прямоугольник — это трапеция , а прямоугольник — это особый случай трапеции .

Странный забавный факт: какая страна самой прямоугольной формы в мире?

Существует множество различных рейтингов, оценивающих страны — по их регионам, населению, уровню образования или лауреатам Нобелевской премии. Но задумывались ли вы когда-нибудь, , кто является победителем конкурса самых прямоугольных кантри? Австралийский геостатист Дэвид Барри рассчитал параметр прямоугольности для всех стран мира и составил рейтинг. Он выяснил, что самой прямоугольной страной является Египет, а титул «наименее прямоугольной страны в мире» достается Мальдивам (однако автор признает, что расчеты для стран, состоящих из множества небольших островов, могут быть ужасно ошибочными).Взгляните на таблицу ниже и выберите первые десять стран, а также страны с наименее прямоугольной формой.

Наивысшие баллы в рейтинге прямоугольности. Индекс 1 — идеальный прямоугольник, 0 — бесконечное количество бесконечно малых островов. Таблица адаптирована с веб-страницы мистера Барри, как изображение мира ниже.

Египет — лидер, но это никого не должно удивлять, проверяя очертания этой страны на карте. США находятся в середине рейтинга, в основном из-за неординарности Аляски и Гавайев.Заблуждение заключается в том, что вторая по величине прямоугольность страны — Ватикан — одновременно является четвертой по округлости страной, а Польша, занимающая 5-е место в классификации округлости, занимает 9-е место в рейтинге прямоугольности.

Как это вообще возможно быть прямоугольным и круглым одновременно ?! Как вы можете догадаться, все дело в определении прямоугольности и округлости, которые могут не подходить для сложных или рассеянных форм — и обычно такими примерами являются границы стран, содержащие острые края, небольшие острова или колонии где-то в другой части. Глобус.Если вас интересует эта тема, вы можете взглянуть на это объяснение и обсуждение результатов. Также в круглом калькуляторе вы найдете специальный абзац о округлости стран с аналогичной таблицей и примерами.

Можно было подумать, что мир было бы легче нарисовать, если бы каждая страна была прямоугольной … Или нет?

Прямоугольник

Форма прямоугольника используется во многих периодических моделях тесселяции. Может использоваться для облицовки стен из кирпича, плитки для пола, тротуара или различной мозаики.Ниже вы найдете несколько популярных паттернов:

  • Стыковка в стопу — это наиболее распространенный и простой способ укладки плитки, так как плитки укладываются прямыми линиями.

  • Спусковое соединение — типично для мостовых и кирпичных связей.

  • Елочка — деревянные полы хорошо смотрятся с таким рисунком.

  • Basketweave — часто используется для коридоров или уличных дорожек.

Конечно, плитка бывает всех форм и размеров — шестиугольная и восьмиугольная с квадратом — довольно популярный выбор. Форма пятиугольника должна быть неправильной, чтобы образовался мозаичный узор.

Прямоугольники в повседневной жизни: прямоугольная форма тела, прямоугольный бассейн, прямоугольная скатерть …

Одной из самых популярных проблем, связанных с прямоугольниками, является тип тела. Если вам интересно, на какую форму ваша фигура больше всего похожа, воспользуйтесь нашим калькулятором формы тела.Все, что вам нужно сделать, это измерить свой бюст, талию, бедра и высокие бедра и ввести значения в инструмент. Тогда вы получите информацию о вашей фигуре. Например, прямоугольная фигура определяется как «мальчишеский» тип телосложения — ваши бедра, талия и грудь примерно одинакового размера. Ваше тело стройно и спортивно. Ознакомьтесь также с нашим калькулятором жировых отложений, который поможет вам оценить процентное содержание жировых отложений в общей массе вашего тела.

Удивительно, но нас окружают прямоугольные предметы.Поэтому наш калькулятор прямоугольников может быть полезен не только на уроках математики, но и в решении повседневных задач. Конечно, вы не найдете идеального прямоугольника в реальности, поскольку он всегда имеет третье измерение; но если он мал по сравнению с двумя другими измерениями, приближение достаточно хорошее.

  • Прямоугольные скатерти — учитывая размер вашего стола, вы можете узнать, какая скатерть вам понадобится, а также сколько кружевной ленты или ленты для подшивки нужно использовать.

Добавить комментарий

Ваш адрес email не будет опубликован.