Гидрострелка для твердотопливного котла: Гидрострелка – когда нужно устанавливать гидроразделитель

Содержание

Гидрострелка – когда нужно устанавливать гидроразделитель

Гидравлический разделитель чаще называют — гидрострелка. Он настолько прост, что с его применением не должно возникнуть никаких вопросов. Ответить, — зачем нужно такое устройство, — можно просто взглянув на него.

Гидрострелка представляет из себя не длинную трубу относительно большого диаметра, с отводами меньшего диаметра, она похожа на вытянутый бочонок.

Очевидно, гидроразделитель нужен для выравнивания давления во всех подключенных к нему трубопроводах. Действительно, если подключить к этому куску толстой трубы трубопроводы подачи и обратки, то давление в них сразу выровняется, ведь само гидравлическое сопротивление устройства не значительное, специалисты называют его «нулевым».

Но какая в этом практическая польза? В каких случаях нам понадобится выравнивать давление между подачей и обраткой?

Рассмотрим подробней, как применяется гидрострелка, и что нужно учесть в системе отопления, чтобы решить вопрос о необходимости применении. Но прежде нужно понять и другое – откуда вокруг такого простого устройства столько толкований и рекомендаций по его установке? А ноги растут из у.е., т.е. из $.

Откуда берутся сложности

Сама гидрострелка хоть и проста на вид, но не столь дешева. Не в гаражном, а в фирменном исполнении — 250$. А ее применение еще влечет и ее обвязку (фитинги, сливы, краны), что под 100$. А с установкой все это вместе уже целых 400 $. Действительно не дешевый получается кусок трубы в фирменном исполнении.

Но этого мало. Если простую систему, под соусом «установка полезнейшей гидрострелки», преобразовать в сложную, и напичкать автоматикой (примерно как на схеме ниже), т.е. вынести из под насоса котла 3 контура (бойлер, радиаторы, теплые полы) и обеспечить каждый своей насосной группой и подключить это все к фирменному коллектору с этим устройством, и установить контроллер автоматики, то все это вместе может потянуть на целых 2500$. Вот мы и добрались до золотого дна «установщиков радиаторов».

И за что же нужно выкинуть такую сумму? Оказывается, что не за что, так как в подавляющем большинстве случаев гидрострелка в системе отопления не нужна, и никакой особой роли не играет. Необходима она лишь в действительно сложных системах отопления, с множеством контуров отходящих от основной магистрали, обеспеченных собственными насосами.

Чтобы каждый контур не сильно влиял на соседний, параллельный ему, необходимо подровнять давление между магистралями подачи и обратки. Вот тогда и применяют гидростерлку и все необходимые для ее работы аксессуары.

Подробней, зачем нужен гидравлический разделитель и какая его роль рассмотрим на схемах.

Особенности применения гидрострелки

Рассмотрим схему отопления с несколькими насосами и с двумя котлами.

От подачи (красным) ответвляются контур радиаторов, контур теплых полов, контур водяного бойлера (теплоноситель отопления греет воду для бытовых нужд), может быть еще контур для отопления других удаленных помещений – этажей, оранжереи, гаража, сауны, другого дома…

Теперь видно, что насосы на этих контурах нужны разные. Длины этих контуров и их сопротивление разное…. Если включается мощный насос в одном контуре, то он изменит давление на границах параллельного контура, хотим мы этого или не хотим. Он может уменьшить количество проходящего теплоносителя по соседнему контуру, остановить там движение или вообще опрокинуть струю. Из этого положение нужно как то выходить, что и указано на следующей схеме.

Теперь подача и обратка соединены возле котла гидрострелкой. А это значит, что давление в них выровнялось, и влияние насосов в контурах на соседние контуры сошло на нет. Мы получили стабильную систему.

Понятно, что через гидрострелку между подачей и обраткой начнет циркулировать жидкость. Движется она от подачи на обратку, т.е. котел частично замыкается сам на себя. Не вредно ли это? А не может ли теплоноситель поменять направление движения в другую сторону?

Как работает система отопления с гидравлическим разделителем

Режим работы системы отопления с гидрострелкой, когда жидкость не движется между подачей и обраткой через гидрострелку в принципе невозможен. Это из разряда фантастики, так как не бывает абсолютно одинаковых давлений в контурах подачи и обратки.

Режим, когда жидкость движется из обратки в подачу, в принципе, возможен, если почему-то подобран слишком слабомощный котел, или насос контура котла, или если этот насос вышел из строя.

Тогда жидкость под воздействием насосов дополнительных контуров может циркулировать из обратки в подачу через гидрострелку. Это аварийный режим, он будет хорошо заметен по горячему котлу и холодным потребителям и должен быть устранен. Котел с таким режимом будет работать на максимуме температуры, а теплоноситель в контурах будет прохладным.

При этом разница температур между подачей и обраткой на котле будет весьма большой, во всяком случае, больше чем рекомендуют производители – «не более 20 градусов». Этот режим вредный для котла, он будет образовывать конденсат на камере сгорания или даже может привести к поломке теплообменника.

Режим, когда жидкость частично циркулирует через гидрострелку от подачи на обратку является нормальным (небольшое превышение расхода в контуре котла над сумой расходов потребителей).

При этом разница температур между подачей и обраткой на котле уменьшается, что нормально для его работы, и даже полезно во время запуска холодной системы. Важно лишь, чтобы этот нисходящий поток через гидравлический разделитель не оказался бы слишком большим, что возможно при абсолютно неграмотном монтаже системы или при поломке в контурах. Котел, работающий сам на себя, будет останавливаться слишком часто, что тоже нехорошо.

«Особенные свойства»

Гидрострелке приписывают «чудесные» свойства в виде:
— «повышение КПД котла»;
— «оптимизация работы насосов с повышением их долговечности»;
— «очистка системы от мусора»;
— «увеличение моторесурса всей системы»;
— «нормализация работы гидравлического оборудования»;
— «температурная оптимизация коллекторов, при интегральном подключении забора с улучшением всех связующих составляющих системы и встроенных контуров, для оптимального прогрева органики инфракрасным облучением»;
— «снятие порчи с жильцов», — и пр.
Все это являются или рекламной выдумкой, не имеющей ничего общего с реальностью, или тиражированием в свободной интерпретации ранее выдуманной нелепости. Следование некоторым утверждениям может нанести вред системе. Гидравлический разделитель нужен лишь для выравнивания давлений между подачей и обраткой в сложных системах.

Нужно ли устанавливать

Скорее всего, необходимости в установке гидрострелки нет. Ведь система не настолько сложная, чтобы один контур «забивал» другой?

Если есть обычный набор – котел, радиаторы, бойлер, — то разделитель не нужен . Если даже радиаторный контур обеспечен своим отдельным насосом то, когда периодически включается насос бойлера, радиаторный насос отключается автоматикой (приоритет бойлера) и конфликта этих насосов не происходит. А конфликт всего двух насосов (разница давлений и расходов), — полы и радиаторы — легко устраняется и без гидрострелки.

Как правило, подравнивать давление нужно если параллельно подключен более чем один котел (резервный не учитывается), или в системе имеются 4 и более насосов. Т.е. контуров много – 1 этаж, 2-й этаж, 3-й этаж, беседка, зимний сад, мастерская, сауна…., то с такой сложной системой придется раскошелится и на гидрострелку и связанное с ней оборудование.

В других случаях надобность в гидравлическом разделителе отсутствует. А подогрев обратки с целью оптимизации работы котла (разница не больше 20 градусов), особенно во время разогрева холодной системы, может выполнить и маленький байпас с краником между подачей и обраткой для возможности регулировки вручную, что составит «копейки» по сравнению с нагромождением не нужной гидрострелки….

Зачем нужна гидрострелка? Назначение и принцип работы.

Оборудование котельной – это отдельная обширная тема, которую мы уже как-то затрагивали. Один из элементов котельной, который постоянно на слуху – это гидравлический разделитель. Затронем в этой статье принцип работы гидростелки, для чего она нужна и ее основное назначение.

Нужна ли Вам гидрострелка?

В погоне за дополнительной выгодой многие продавцы, менеджеры и даже производственники готовы рассказывать все, что угодно, если это поможет продать товар. Вот и появляются различные чудо шланги, невероятно надежные котлы и так далее.

Но настоящий простор для деятельности аферистов – это товары, про которые потребитель знает мало. Слышал что-то о его пользе, но не знает, в чем она заключается.

Один из таких приборов, овеянный массой легенд и слухов – это гидрострелка. Устройство нужное, но для совершенно определенной задачи, все остальное – маркетинг и профанация.

Устройство гидрострелки

Это просто небольшая труба с сечением в виде круга или прямоугольника, в которой есть четыре патрубка, через которые идет тепло к потребителю в одну сторону и обратка в котел в другую.

Назначение гидрострелки – это разделение контур котла и контура потребителя.

Расположить гидроразделитель можно как вертикально, так и в горизонтальной плоскости, все зависит от особенностей помещения. Чаще всего ставят вертикально, так как в этом положении проще установить сверху воздухоотводчик, а внизу – кран для удаления ненужных веществ.

Принцип работы гидрострелки таков, что она не может работать независимо, нужен комплекс. Вся система включает в себя такие компоненты:

  • Сама гидрострелка
  • Главный коллектор
  • Насосные группы (одни прямая и две смесительные)
  • Обвязка
  • Контроллер управления

Принцип работы гидрострелки

Производители и ушлые маркетологи заявляют о трех возможных режимах работы гидрострелки. В то время, как эксперты утверждают, что способ использовать данное устройство есть только один.

Когда котел дает больше энергии, чем нужно всей теплосистеме потребителя, в таком случае излишки тепла возвращаются по стрелке в сам котел.

Это защищает наш котел от обратки, которая при пониженных тепловых значениях может нанести ущерб всей системе и дает дополнительный нагрев.

Главный принцип работы гидрострелки – не манипуляции с перераспределением тепла между основной подачей и обраткой, а обеспечение возможности работы насосов всех контуров системы отопления.

Поясним: если один мощный насос дает повышенное давление на один из контуров, то второй насос, более слабый по своим характеристикам, перестает выполнять свою задачу и не забирает ровным счетом ничего, из-за чего возникают перебои, перепады температурные и другие неприятности.

Гидравлический разделитель создает область нулевого сопротивления. Благодаря чему удается распределить нагрузку по всем контурам и насосам равномерно, и таких проблем не будет никогда. Равномерность позволяет также повысить устойчивость и надежность всей системы в целом, так как ни один из участков больше не подвергается критическим нагрузкам.

Альтернативные режимы работы гидрострелки

Несмотря на то, что правильным принципом работы гидрострелки является только способ, описанный выше, нужно учитывать, что существует техническая возможность использовать и альтернативу.

Одна из них – это когда котел работает уравновешенно, отдает тепла столько же, сколько идет на обратку. Но это условие подобно сферическому коню в вакууме, так как полная тождественность значений Q1(контур котла) и Q2 (контур потребителя) достигается крайне редко и на очень небольшие сроки. Так что всерьез строить работу на этом режиме нельзя.

Второй режим работы гидрострелки несет в себе угрозу и его следует всячески избегать.

Он строится на том, что котел отдает тепла меньше, чем требуется потребителю, и в этом случае часть тепла из обратки по гидроразделителю уходит обратно в контур потребления, что не идет на пользу ни системе, ни потребителям.

Минусы очевидны – обратка в котел идет с пониженными температурными значениями, то есть котел фактически остужается при получении обратного теплоносителя, что запрещено по всем стандартам, ГОСТам и даже здравому смыслу, так как итоговая мощность, отдаваемая в контур потребления, становится меньше и желаемый результат не достигается.

Дополнительные возможности и мифы

Есть мнение, что конструкция гидрострелки позволяет также выполнять такие задачи:

  • Защита котла от теплового удара
  • Увеличение долговечности системы отопления
  • Повышает коэффициент полезного действия (КПД) котла

Однако независимые специалисты утверждают, что это только сказки для увеличения продаж.

При этом дополнительные опции все-таки есть, это дополнительная защита от грязи, воздухоотведение, защита котла от обратки с пониженной температурой.

Но эти функции можно обеспечить гораздо более дешевыми устройствами.

 

Когда и при каких условиях нужно ставить гидрострелку?

Граница необходимости включения в систему отопления, в котельную такого устройства, как гидрострелка, рассматривается индивидуально и зависит от ряда условий – мощности насосов, их взаимодействия, общая мощность системы, наличие дополнительных котлов, использующихся в связке в основным.ф

Профессиональные инженеры рекомендуют включать гидрострелку в систему отопления тогда, когда количество котлов больше одного и количество насосов больше трех. В противном случае необходимости в ней нет. Повредить она не повредит, но и пользы от усложнения всей конструкции не будет.

Таким образом данное устройство подходит только для большой разветвленной системы, например, в многоквартирных домах или крупных дачах с большим количеством пристроек, в противном случае. Особенно когда насоса всего один или два, это является просто пустой тратой денег и нерациональным использованием средств.

Читайте так же:

для чего нужна в системе отопления? Ответ на WINTERM.UA / Советы по выбору / Винтерм

Что такое гидрострелка

Сперва разберёмся, что такое гидрострелка и для чего она нужна. 

Гидрострелка, как следует из её названия, используется для гидравлического разделения потоков в контурах отопления. Она обеспечивает канал между контурами, что делает их динамически независимыми. Проще говоря, она балансирует работу системы с несколькими контурами. Это позволяет не только создавать сложные системы отопления, но включать и отключать их без негативных последствий для работы в целом. В системе где установлена гидрострелка любое изменение расхода теплоносителя каждого из контуров в отдельности не влияет на контур котла. Это оборудование относится к системам быстрого монтажа, то есть поставляется в виде сборного узла готового к установке.

Когда нужна гидрострелка?

  • Если в системе предполагается использовать несколько циркуляционных насосов.
  • Если система предполагает работу нескольких котлов в каскаде.
  • Если система предполагает использование основного и вспомогательного котла (имеется в виду не только резервное использование «вместо», но ).
  • Если в гибридной системе отопления есть несколько источников тепла в виде котла, солнечных коллекторов, тепловых насосов.
  • Если система отопления служит для обеспечения теплом нескольких потребителей.
  • Многие производители требуют установки гидрострелки для котлов мощностью 35-40 кВт и выше.

Под эти пункты попадает достаточно большое количество современных систем отопления для коттеджей и коммерческой недвижимости, в меньшей мере это относится к квартирам.

Помимо этого гидрострелка может выполнять функции:

  • Удаления воздуха из отопительного контура.
  • Удаление шлама из отопительного контура.
  • Защита теплообменника котла от перегрева.

В качестве опции, на них можно устанавливать магнитный фильтр для воды, термометры, краны.

Зачем нужна гидрострелка?

И всё-же периодически нашим специалистам задают вопрос, а можно ли её не использовать. Обойтись без гидрострелки, сэкономив на оборудовании. Мы ответим на этот вопрос перечнем негативных факторов, возникающих в системах без гидрострелки.

Могут возникать перегрузки для циркуляционных насосов из-за явления «передавливания», возникающего из-за взаимного влияния насосов в системе. Это грозит их преждевременным выходом из строя.

Из-за разности температур может происходить коррозия теплообменника котла. Она возникает из-за конденсата, ведь в обратную линию будет идти слишком холодная вода (разница 20 В режиме минимальной мощности котла.

Нужна ли гидрострелка для конденсационного котла?

Поскольку конденсационные котлы предназначены для работы в низкотемпературном режиме, а их теплообменники устойчивы к коррозии, то для простой системы с одним бытовым котлом малой мощности — нет. Впрочем, это не отменяет того факта, что если ваша система попадает под перечень систем где

Нужна ли гидрострелка для напольного котла?

Если речь идёт о твердотопливном котле, особенно о котле с чугунным теплообменником — обязательно. Это сохранит в целостности теплообменник, исключив риск его повреждения от попадания холодной воды. В противном случае от теплового удара теплообменник пойдёт трещинами. На вопрос «нужна-ли гидрострелка для твердотопливного котла» — ответ «Да».

Если речь идёт о газовом котле, то тоже нужна. Поскольку напольные газовые котлы, как правило, относятся к котлам высокой мощности (более 50 кВт).

Нужна ли гидрострелка для настенного котла?

Если это одно или двухконтурный котёл, единственный в системе с радиаторным отоплением — нет. В системе отопления с одним насосом просто нечего балансировать. Риск разрушения теплообменника от теплового удара исключён из-за малой мощности, её модуляции, системы встроенной автоматики и полного прекращения нагрева даже в случае отключения насоса.

Касательно электрических котлов — у них просто нет теплообменника в привычном смысле, там используются блоки ТЭНов. Электрические котлы наиболее часто устанавливаются в современных многоквартирных домах, где система отопления в силу своих размеров не может быть достаточно усложнена.

Данный материал не является исчерпывающим и не может учитывать все ньюансы для каждого отдельного случая. Если у вас возник вопрос по монтажу гидрострелки применительно к планируемой вами системе отопления обращайтесь по телефону 067 246 7407. Специалисты компании Винтерм помогут с грамотным инженерным решением, подбором оборудования, проектом и монтажом систем отопления и водоснабжения.

Гидрострелка для отопления из полипропилена своими руками, расчет, устройство, схема, обвязка гидрострелки с котлом

О гидравлических разделителях для отопления на просторах интернета в буквальном смысле ходят легенды. Им приписывают множество «чудодейственных» свойств и функций. Но цель данной статьи – не развенчание мифов, а пояснение истинного назначения этого отопительного элемента и принципа его работы. Также любителям систем из ППР мы расскажем, как рассчитывается и устанавливается гидрострелка из полипропилена и можно ли ее сделать своими руками.

Для чего нужна гидрострелка

Если у вас в доме планируется монтаж простой системы отопления закрытого типа, где задействовано не более 2 циркуляционных насосов, то гидравлический разделитель вам точно не понадобится.

Когда контуров и насосов – три, при этом один из них предназначен для работы с бойлером косвенного нагрева, то и здесь можно обойтись без гидрострелки. Задуматься о разделении отопительных контуров надо в ситуации, когда схема выглядит следующим образом:

Примечание. Здесь показаны 2 котла, работающих в каскаде. Но это не принципиально, котел может быть и один.

В представленной схеме гидрострелки нет, но без ее монтажа тут явно не обойтись. Есть 4 контура, в которых действует столько же насосов разной производительности. Самый мощный из них создаст в подающем коллекторе разрежение, а в обратном – повышенное давление. При одновременной работе насосу меньшей производительности просто не хватит сил на преодоление этого разрежения и он не сможет отобрать теплоноситель на свой контур. По итогу ветвь не будет функционировать, поскольку насосы мешают друг другу.

Важно. Даже если паспортная производительность насосных агрегатов одинакова, то гидравлическое сопротивление ветвей всегда будет разным. Соответственно, реальный расход теплоносителя в каждом контуре все равно отличается, идеально выверить систему невозможно.

Чтобы устранить перепад давления ΔР, возникающий между коллекторами и дать возможность всем насосам спокойно отбирать нужное количество теплоносителя, в схему включается гидрострелка. Она представляет собой полую трубу расчетного сечения, чьей задачей является создание зоны нулевого давления между теплогенератором и несколькими потребителями. Как действует этот элемент в схеме обвязки котла, описано в следующем разделе.

Схема обвязки с котлом

Чтобы понять, как работает гидрострелка в системе отопления с несколькими контурами, мы предлагаем изучить схему ее обвязки с котлом, представленную ниже:

Теперь оба коллектора связаны между собой перемычкой, уравнивающей давление в подающей и обратной магистрали. Благодаря этому в каждый контур поступит столько теплоносителя, сколько нужно. При этом важно обеспечить такой же расход теплоносителя со стороны теплогенератора, иначе его температура на стороне потребителей может стать недопустимо низкой.

В интернете очень популярна схема гидрострелки (показана выше), изображающая 3 рабочих режима:

  • суммарный расход теплоносителя в контурах потребителей и со стороны котла одинаков;
  • отопительные ветви отбирают большее количество воды, чем ее обращается в котловом контуре;
  • расход в кольце со стороны теплогенератора больше.

В действительности у гидрострелки режим работы один-единственный, он изображен на схеме под номером 3. Добиться идеального режима (№1) невозможно, так как гидравлическое сопротивление ветвей потребителей все время меняется из-за работы термостатов, да и подобрать так точно насосы нереально. По схеме №2 действовать нельзя, потому что тогда большая часть теплоносителя станет обращаться по кругу со стороны потребителей.

Это приведет к понижению температуры в системе отопления, ведь со стороны котла в гидрострелке будет подмешиваться мало горячей воды. Чтобы поднять эту температуру, придется выводить теплогенератор на максимальный режим, что не способствует стабильной работе системы в целом. Остается вариант №3, при котором в коллекторы идет достаточное количество воды требуемой температуры. А уж понизить ее в контурах – задача трехходовых клапанов.

Функция гидрострелки в системе отопления лишь одна – создание зоны с нулевым давлением, откуда смогут отбирать теплоноситель любое число потребителей. Главное, — обеспечить необходимый расход со стороны источника тепла. Для этого реальная производительность котлового насоса должна быть немного больше суммы расходов на всех ветвях потребителей. Подробнее обо всех нюансах рассказано и показано на видео:

Схема изготовления гидрострелки с коллектором

Прежде чем купить гидрострелку или приступить к ее изготовлению своими руками, не помешает изучить устройство данного элемента. Оно очень простое: полая труба круглого или прямоугольного сечения снабжена несколькими патрубками с разных сторон для присоединения к отопительной сети. Причем патрубки для подключения подачи расположены, как правило, в верхней части трубы, а обратки – в нижней.

Примечание. Указанный способ подключения актуален при вертикальном монтаже гидрострелки. В то же время ее можно устанавливать и в горизонтальном положении.

Чаще всего для отопления применяется гидравлический разделитель, чье устройство предусматривает установку коллектора. Они даже продаются одним комплектом, а изготавливаются из таких материалов:

  • низкоуглеродистая сталь;
  • нержавеющая сталь;
  • из полипропилена.

Существуют и более сложные модели, оборудованные не только воздухоотводчиком и сливным штуцером, но и гильзами для присоединения контрольных приборов и датчиков, а также различными сеточками и пластинами. Они служат для очистки теплоносителя и разделения потоков. Подобная гидрострелка, чье устройство изображено на чертеже, имеет приличную стоимость и требует периодического обслуживания:

Среди домашних мастеров принято делать гидрострелку из металлической трубы, но в силу немалой популярности и дешевизны полипропилена эта тенденция меняется. Ведь даже изготовленный из ППР элемент вместе с коллектором стоит немалых денег. Поэтому все чаще люди предпочитают сделать разделитель из полипропилена в домашних условиях, чем покупать его в магазине. Для этого нужна ППР труба соответствующего диаметра, тройники по числу будущих патрубков и 2 заглушки.

Поскольку диаметр трубы для изготовления гидрострелки довольно велик, то потребуется приобрести к сварочному аппарату соответствующую насадку, а при пайке выдержать достаточный промежуток времени. В принципе, сложного ничего нет, тройники соединяются между собой отрезками труб, а с торцов ставятся заглушки. Другое дело, что подобный разделитель может выглядеть не очень эстетично, да и не во всякой системе его можно эксплуатировать.

Дело в том, что теплогенераторы на твердом топливе часто могут выходить на максимальный режим работы, при котором температура воды близка к 90—95 °С. Конечно, полипропилен ее выдержит, но в нештатной ситуации (например, когда отключат электричество) температура на подаче может резко подскочить и до 130 °С. Это случается из-за инертности твердотопливных котлов, поэтому вся обвязка к ним, включая гидрострелку, должны быть металлическими. Иначе вас ждут плачевные последствия, как на фото:

Расчет гидрострелки

Разделитель для любой отопительной системы подбирается либо изготавливается по 2 параметрам:

  • число патрубков для подключения всех контуров;
  • диаметр либо площадь поперечного сечения корпуса.

Если количество патрубков подсчитать нетрудно, то для определения диаметра необходимо произвести расчет гидрострелки. Он производится через вычисление площади поперечного сечения по следующей формуле:

S = G / 3600 ʋ, где:

  • S – площадь сечения трубы, м2;
  • G – расход теплоносителя, м3/ч;
  • ʋ — скорость потока, принимается равной 0.1 м/с.

Для справки. Столь невысокая скорость течения воды внутри гидравлического разделителя обусловлена необходимостью обеспечить зону пpaктически нулевого давления. Если скорость увеличить, то возрастет и давление.

Значение расхода теплоносителя определяется ранее, исходя из потребной тепловой мощности отопительной системы. Если вы решили подобрать или купить элемент круглого сечения, то произвести расчет диаметра гидрострелки по площади сечения достаточно просто. Берем школьную формулу площади круга и определяем размер трубы:

D = √ 4S/π

Выполняя сборку самодельной гидрострелки, надо расположить патрубки на определенном расстоянии друг от друга, а не как попало. Ориентируясь на диаметр подключаемых труб, вычисляют расстояние между врезками, пользуясь одной из схем:

Заключение

Планируя установить гидравлический разделитель, важно понимать, когда он нужен, а когда нет. Ведь подобное оборудование значительно повысит стоимость монтажа вашей системы. Что касается идеи поставить либо сделать гидрострелку из полипропилена, надо уяснить, что ее совместное использование с твердотопливным котлом невозможно. Спаять же ее из трубы и тройников ППР для специалиста не составит труда.

Гидрострелка для отопления. Нужно ли устанавливать?

Гидравлический разделитель (гидрострелка) — необходимость или навязанное излишество?

Чаще всего гидрострелка – это именно излишество, попадающее в систему обвязки котельной по
причинам, не связанным с необходимостью ее применения. Иными словами, в большинстве
случаев, с точки зрения гидравлики котельной, гидрострелка не нужна.

Тем не менее ее применяют очень часто. От чего это происходит? Основных причин две:

А) монтажник малоквалифицирован и слепо копирует схему котельной, по образцу, найденному в
интернете. А схем с гидрострелкой в сети можно найти в достаточном количестве, гораздо
большем, чем схем без применения этого устройства.

Б) монтажник преследует свой экономический интерес и навязывает дорогостоящее
оборудование, увеличивая свой доход за счет заказчика, который не может сам разобраться в
том, что ему надо, а без чего можно обойтись.

Широкому применению схем с гидравлическим разделением способствует и распространение
ложных сведений о массе положительных свойств гидрострелки. На самом деле, гидрострелка это
очень простое устройство и назначение у нее только одно – уравнять разницу в давлении между
подающим и обратным коллекторами в многонасосной системе. Большая часть сведений,
которую можно найти о применении гидравлического разделителя – это бравурно поданная
ошибочная информация, распространяемая малоподготовленными, заинтересованными
ораторами. Именно благодаря мифам, окружающим гидрострелку, она широко представлена в
наших бытовых котельных, обеспечивающих работу всего двух, трех контуров с двумя, тремя
насосами.

Необходимость применения гидравлического разделения возникает, когда в системе есть много
насосов, много разнонагруженных контуров. Когда перепад давление между подающим и
обратным коллекторами начинает превышать производительность самого
малопроизводительного контура. Но такое бывает далеко не всегда.

Как определить, в первом приближении, нужна вам, как заказчику и пользователю, гидрострелка
или нет? Есть очень простой критерий – у вас в котельной два и более котлов, работающих
одновременно (резервный котел не считается) и количество контуров не менее четырех. Для
такого состава котельной гидрострелка уже может понадобится.

Если у вас один котел и три, четыре контура… без гидрострелки вы замечательно обойдетесь.

Более подробно о работе и назначении гидрострелки вы можете посмотреть здесь:




Нужна ли вам гидрострелка?

    Здравствуйте! Сегодня мы раскажем вам о гидрострелке. Существует не соответствие между простотой устройства гидрострелки и теми не былицами, которые о ней  рассказывают в интернете. Ей приписывают слишком много положительных качеств, которых на самом деле у неё нет. Зачем это делают? Тут все элементарно, гидрострелка- это товар, а для того, чтоб его продать его нужно хорошо описать. И это описание не всегда соответствует действительности. Так вот прочитав о том какие замечательные свойства имеет гидрострелка, конечный потребитель обязательно просит монтажников поставить гидрострелку в котельную. С уверенностью, что без гидрострелки его система работать не будет. Монтажник, как правило не против, ведь установка гидрострелки, это работа которая увеличит его заработок. И о том, что гидрострелка побольшей части обычном потребителю нужна, никто, никогда, нигде не обмолвиться. А конечный потребитель сам не в состоянии разобраться, что ему нужно. По этому он получает гидрострелку, совершенно ненужные устройства и в итоге переплачивает деньги. 

   Сейчас мы расскажем, что такое гидрострелка? Какими свойствами она на самом деле обладает? Какие выполняет функции? Как она устроена? Куда она ставится? Когда ее необходимо ставить? И вы в итоге сможете сделать для себя вывод нужна она вам или нет или что более важно кому она нужна. Потому что у нас все посходили с ума и пихают их без надобности. 

    Давайте разберемся, где она нужна. Прежде всего устройство гидрострелки, устройство чрезвычайно простое- это кусок трубы круглого или прямоугольного сечения. Расположите его можно горизонтально, можно и вертикально, об этом тоже спорят часто. На самом деле значения не имеет. в основном распалагают вертикально, потому что так удобнее. В верхней части установить автоматический воздухоотводчик, в нижней дренажный кран для удаления шлама который там скапливается. Ещё там есть четыре патрубка для циркуляции теплоносителя два со стороны котлового контура и два со стороны контра потребителей. Иногда производитель устанавливает внутри сеточки на верхней по задумке должен сепарироваться воздух на нижней должен отделяться шлам. Сеточки со временем забиваются достаточно быстро и пристают работать. Поэтому чаще всего гидрострелка внутри пустая, это просто отрезок трубы. Устанавливается гидрострелка между контуром котла и потребителем, на подачу или на обратку. Причем если бы её там не было, то там были бы просто участки магистралей и всё. Что у нас происходит с гидравликой системы, когда мы установили гидрострелку? Мы раздели котловой контур и контуры потребителей. Правильное название гидрострелки «гидравлический разделитель». После того как мы это разделение выполнили, у нас  появляется возможность работы системы в разных режимах. В интернете вы легко найдете вот такие три картинки, которые рассказывают о трёх различных режимах работы гидрострелки.

    

 

     Вы радуетесь, как замечательно, какая необыкновенная гибкость проявляется в работе моей системы. А вот не тут то было, режим работы гидрострелки всегда один. Объясним почему, что такое вообще режим работы? Он связан соотношением расходов через котловой контур Q1 и через контуры потребителей Q2. Соотношение возможно какое, может быть равенство, расход через котел может быть меньше, может быть больше.

    Смотрим первый рисунок, когда такой режим может иметь место, никогда. Потому что даже если мы подберем сопротивление контуров, производительность насоса таким образом что мы расходы эти уровняем, то как только где-то закроется термоголовка или включится насос бойлера или в любой другой насос, это равенство исчезнет. Его не может быть не теоретически, не практически. Поэтому этот режим не существует, его нет!

    Второй режим. Этот режим нельзя допускать не в коем случае. Почему? В интернете есть такие цифры предполагается, что котел может выдавать 40 л теплоносителя в минуту, а системе в это время требуется 120. Что будет в такой ситуации? Из подачи котлового контура будет поступать 40 л теплоносителя нагретого допустим до 60 градусов. В это время подача потребительского контура будет забирать 120 л. От куда она их берет? 40 литров система заберет из котлового контура и 80 л из обратки которую сама в гидрострелку и подает. Но обратка возвращается уже не 60 градусная,  а 40 градусная. Поэтому 1/3 60 градусного и 2/3 40 градусного теплоносителя дадут нам в подачу потребительского контура уже не 60 градусов, а всего 47. Нам не хватает, что мы делаем мы в котле поднимаем температуру до 80. Тогда у нас в подачу потребительского контура попадает не 80, а около 70. В итоге в системе мы каким образом достигли нужного результата. Но что происходит в нижней части? Из обратки системы теплоноситель возвращается приблизительно на 20-25 градусов холоднее. Получается, что обратка в котел возвращается около 50 градусов. Это приведет к тому, что мы заставим котел работать конденсационном режиме. Холодной обраткой мы его слишком сильно остужаем, а требование большинству котлов разница между температурой подачи и обратки должна составлять 20 градусов, не больше. Есть такие котлы, которые декларируют 45 градусов, но не у каждого есть такой котел. Для обычного котла этот режим чрезмерный, он может работать или образовывая конденсат на стенках камеры сгорания изнутри, а может и сразу лопнуть. Это первый минус, а второй то, что мы гоняем котел на повышенных температурах, а в систему мы не можем отправить теплоноситель тот, который отдаёт котел потому, что он рармешивается теплоносителем из обратки. Исходя из этого, этого режима допускать нельзя.

     Остается последний третий режим, когда расход в котловом контуре превышает расход в потребителях и эта лишняя часть теплоносителя из котла возвращается обратно в котел подогревая холодную обратку из системы отопления, от всех остальных потребителей. Нужно это для того, чтоб когда у нас система работает в переходных режимах включился гостевой домик, включился бассейн, включился бойлер. Для того, чтобы холодный теплоноситель не нанес вред котлу, мы его подогреваем теплоносителем из котла. Только этот один режим возможен для работы гидрострелки.

    И ещё поговорим о невозможности и ненужности тех режимов, которые мы только что смотрели. С первым режимом всё просто его невозможно достичь на практике. 

    Второй мы определили как вредный, но одновременно с этим он также недостижим. Почему, потому что ситуация когда котел может выдавать 40 литров теплоносителя в минуту в то время, когда системе требуется 120 л, возможна только в одном случае, если совершили ошибку и поставили вам котел в три раза меньше мощности, чем требуется. Но эта ошибка из разряда очень заметных и она должна быть быстро устранена. Потому, что вы сразу обратите внимание на то, что ваша система не справляется со своими задачами. 

    Остаётся только третий режим который мы определили, как правильный. Этот режим характеризуется небольшим превышением расхода в контуре котла, на суммы всех расходов в контурах потребителей. Это превышение приводит к тому, что у нас начинается вертикальное движение в гидрострелке сверху вниз со скоростью 1/10 метров секунду. Это скорость расчётная, с этими расчетами вы можете встретиться в интернете. Небольшая скорость, если умножить эту скорость на площадь поперечного сечения гидрострелки, то мы получим объемный расход который попадает из подачи в обратку и этот расход нам обеспечит подогрев холодной обратки и защиту котла от температурного шока. Никакого гидравлического разделения нам оказывается не нужно. Потому что сколько выдает котел, столько и забирают потребители. А с задачей перемещение теплоносителя из подачи в обратку с целью защиты котла легко справится обычный байпас. Байпас — это трубочка по которой это количество теплоносителя будет перемещаться. Следовательно гидрострелка для разделения контура котла и контуров потребителей не нужна. 

    Так для чего же она тогда нужна? Она нужна для выполнения всего-навсего одной задачи не смотря на то, что ей переписывается множество различных функций. Эта задача обеспечения возможности работы насосов всех контуров в системе отопления. Каким образом это достигается? Представим себе, что у нас гидрострелки нет, есть 2 параллельных коллектора и на этих коллекторах установлены 2 насоса с разной производительностью. Допустим производительность первого насоса превышает производительность второго в 3 раза, что будет происходить при работе первого насоса? При разборе теплоносителя между контурами в коллекторе будет происходить разряжение, которое будет одинаковое для всего коллектора и подавая теплоноситель в коллектор обратки он будет создавать в нем повышенное давление. Получится, что разница между разряжением в коллекторе подачи и давлением в коллекторе обратки будет такая, что второй насос, просто не сможет забрать теплоноситель из коллектора подачи и подать его в коллектор обратки. У нас остановится один контур отопления и нам из этой ситуации нужно каким-то образом выходить. В этом случае мы устанавливаем гидрострелку, участок магистрали с нулевым сопротивлением. На нулевом сопротивлении разница в давлении уравняется и не будет разницы между давлением в коллекторе подачи и коллекторе обратки. И тогда второй насос свободно забирает теплоноситель из коллектора подачи и подает в коллектор обратки. Вот вся задача с которой должна справиться гидрострелка. Иными словами у нее всего одна функция и одна задача, которую она призвана решать. 

    Теперь посмотрим, что ей приписывают помимо этого. Обычный интернет ресурс, который находится в открытом доступе и вот благодаря таким ресурсам молва награждает гидрострелку волшебными свойствами. Посмотрим, что по их мнению гидрострелка делает. Увеличивает энерго эффективности посредством возрастания КПД котла. КПД котла это данность это способность котла переводить в тепло энергию сгоревшего топлива, что после котла установлено уже никакого влияния на КПД котла не оказывает. Дальше они пишут, что это приводит к снижению затрат на топливо. Кстати КПД насосов они здесь тоже указывают, что такое КПД насоса никто не знает, глупость. Обеспечивается устойчивая работа системы. Фраза не о чём, но вы прочитав это подумаете, да у меня устойчиво работать система. Исключение гидродинамического воздействия, это было бы правильно если бы не продолжение — некоторых контуров на совокупный энергетический баланс системы. Звучит солидно, но ничего не отражает. Оптимизация работы и увеличение срока эксплуатации котельного оборудования. Оптимизация работы это задача  пользователя, а не гидрострелки. Увеличение срока эксплуатации котельного оборудования, здесь этого не написано, но на других ресурсах можно встретить мнение о том, что гидрострелка защищает котел от теплового удара, на самом деле это не так. Не может гидрострелка защитить котел от теплового удара. Классическая ситуация горелка в работе, подходит температура к моменту отключения, в этот момент пропадает электричество, все гаснет, горелка гаснет, насосы остановились чугунные стенки котла на греты, поскольку горелка работала набрали уже достаточно много тепла всё остановилось разбора теплоносителя нет и теплообменник котла догревает теплоноситель который внутри котла до 100-110 градусов легко. Котел теплоизолирован и какое-то долгое время эти 110 градусов находится внутри котла. За полчаса котел не остынет, но за полчаса остынут батареи системы отопления до температуры окружающего воздуха до 25 градусов. Через полчаса подали электричество, включился насос и у нас теплоноситель температурой 25 градусов со скоростью 15 или 20 литров в минуту попадает в котел. Дальше он в котле распределяется по нижней части теплообменника, потом вы услышите треск, а это значит, что у вас лопнул теплообменник. Устойчивость системы, фраза не о чём, непонятно. Упрощение подбора насосов, здесь главное не упрощение, а необходимость подбора всё равно остаётся. Даже с гидрострелкой вы не можете упростить подбор насоса, все равно нужно подбирать насосы для каждого контура отдельно. Независимо от того, будет ли стоять гидрострелка или нет на контур бойлера прямой вы не должны ставить насос 25/100, вы поставите 25/40, потому что контур косвенного бойлера это короткий змеевик для которого нужен самый мало производительный насос. Никакого упрощения нет насосы все равно нужно подбирать. Возможность осуществлять контроль за температурным градиентом. Температурный градиент — это понятие, которое показывает изменение температуры от одной точки до другой, направление и скорость этого изменения. Зачем это нужно, тоже никто не знает, но фраза красивая. При необходимости можно изменить температуру в любом из контуров. Замечательно, но причем здесь гидрострелка? Температуру мы можем изменять посредством трёхходовой кранов.  Удобство в использовании. Ни какого особого удобства в ней нет, она просто весит на стене. Высокая экономическая эффективность, вообще не про что. Еще есть информация, что гидрострелка защищает котел и систему от грязи и шлама, поэтому вам не нужен фильтр грязевик. Глупость страшные, кто так делает, сам себя наказывает. По системе гуляет грязь около нулевой плавучести, это ил, нитки возможно которые вымыло с резьбовых соединений, ржавчина которая отшелушилась от внутренней поверхности труб и радиаторов. Ржавчина летит по системе отопления, она в ней плывет потому что её гонит теплоноситель. Попав в гидрострелку она не падает на дно, а пролетает в котел. А вот в котле она как раз будет останавливаться, потому что там происходит резкая остановка теплоносителя при попадании в большой объём там она будет осаждаться. Поэтому обязательно фильтр нужен. Если вы гидрострелку ставите для того, чтобы избавиться от грязи, то вы покупаете очень дорогой фильтр. Гидрострелка удаляет воздух, та же самая история. Слишком дорого удалять воздух гидрострелкой. На подаче из котла должна стоять группа безопасности, до всех запорных устройств. На группе безопасности есть воздухоотводчик который прекрасно справляется с удалением воздуха. На этом и остановимся. Чтобы вы нашли в описании работы гидрострелки кроме того, что она позволяет обеспечить работу всех насосов всё это остальное гидрострелке не присуще. Это всё сказки и сочинения. С технической стороной работы гидрострелки мы закончим, тут все понятно. Устройство примитивное, одна функция, ничего сложного тут нет.

     Остается вопрос, когда нам гидрострелка нужна и когда мы можем без неё обойтись? Вот тут будут возникать ответы разные от разных людей. Всё зависит от того, что человек знает о гидрострелке, насколько он ангажирован экономический на тот или иной ответ и от того какая у вас всё-таки система. Если рассматривать необходимость гидрострелки точки зрения системы, то мы вот например начинаем задумываться о гидрострелке только с того места, когда у меня в котельной возникает необходимость  установки более 4 насосов и более чем одного котла. Причем котлы должны работать в каскаде, каждый из них должен обеспечить какую-то часть энергетической потребности дома не 100 процентное резервирование. Например если у вас в котельной стоит твердотопливный котел основной и на всякий случай висит на стене электрический резервный это не 2 котла, вам гидрострелка не нужна. Если у вас в доме есть система радиаторного отопления, системы тёплых полов и бойлера косвенного нагрева, вам гидрострелка тоже не нужна. Почему? Потому что устранить конфликт между двумя насосами очень легко. Я имею в виду систему радиаторного отопления, тёплые полы, потому что насос загрузки бойлера, 3 насос, включается периодически и на момент работы насосы тёплых полов и радиаторного отопления по будут отключатся. Это так называемый приоритет бойлера, почти все системы организованы по такому принципу, в случае трех насосов вам гидрострелка не нужна. Если у вас много контуров разно-нагруженных, если у вас есть система отопления первого этажа второго, гостевой домик, домик прислуги, баня что-то из этого или все сразу, вам без гидрострелки не обойтись. Во всех остальных случаях это просто лишняя трата денег.

 

Нужна ли гидрострелка для двухконтурного котла отопления?

Гидрострелка, или гидравлический разделитель – это специальная трубка, предназначенная для выравнивания давления в подключенных к ней трубопроводах. При этом не все владельцы котлов понимают практическую пользу такого решения и нужна ли гидрострелка для двухконтурного котла вообще.

Предлагаем посмотреть, когда есть нужда в гидравлическом разделителе, зачем это устройство вам и какая его реальная практическая польза для системы отопления.

Устройство и принципы работы гидроразделителя

В стандартной комплектации гидрострелка – это округлая (реже – квадратная) труба с четырьмя фланцевыми или резьбовыми патрубками. Они отличаются. С одной стороны расположены патрубки для котлового контура, а с другой – для распределительного коллектора.

Фактически гидрострелка в системе отопления и обвязке – это связующее звено между контурами, что делает их динамически независимыми. Основных назначений у гидрострелки два:

  1. Исключить гидродинамическое влияние, которое возникает при включении и выключении отдельных контуров. К примеру, когда вы используете радиаторное отопление, у вас дома установлен теплый пол, а в системе горячего водоснабжения используется бойлер. В подобных случаях разумно для каждого потока использовать отдельный контур, чтобы исключить их взаимное воздействие.
  2. Получить большую производительность для штучно созданного контура даже при малом расходе теплоносителя. То есть, это позволяет «разогнать» котел, сделав его работу более эффективной, но при этом не заставлять его работать на предельных мощностях.

Применение гидрострелки в отопительной системе позволяет решить еще несколько важных проблем. Например, с ее помощью:

  • снижается взаимовоздействие и влияние друг на друга насосов отдельных контуров и горячего водоснабжения, устраняется так называемое «передавливание»;
  • срок службы котла увеличивается благодаря предотвращению перегрузок во время работы;
  • обеспечивается дополнительная защита от низкотемпературной коррозии;
  • предотвращается взаимное влияние котлового и отопительного контуров;
  • снижается скорость износа горелки и объемы потребляемого газа когда агрегат работает на низких мощностях.

Сегодня многие производители дополнительно расширяют функциональные возможности своих гидрострелок, добавляя в их конструкцию воздухоотводчики, деаэрирующие пластины, термометры, сепараторы шлака и прочее. Это позволяет расширить функциональные возможности конструкции и дополнительно продлить срок службы котла.

Но нужна ли для котла гидрострелка именно вам и именно для вашего котла? Сегодня многие продавцы пытаются «впарить» доверчивому покупателю то, что ему не особенно надо. Гидроразделитель – в числе таких товаров. Продавцы говорят о большом приросте КПД, экономии газа, увеличенном в несколько раз сроке службы и т. д. На самом деле все не совсем так.

Ставить или не ставить гидрострелку именно вам? И как ее выбрать?

Ни одна гидрострелка не обладает «чудодейственными» свойствами. Но если в вашей отопительной системе работает несколько отопительных контуров и в них переменный расход, гидрострелка действительно может быть полезной. Плюс ее рекомендуют ставить, если у вас два и больше циркуляционных насоса. Если их 3-4, то без гидроразделителя нормально настроить и уравновесить их работу просто не получится.

Другой вопрос – требования производителей. Так, многие бренды требуют установку гидрострелки на свои котлы, если их мощность более 35-40 кВт. В противном случае владелец просто не получит гарантию и в случае поломки будет делать ремонт за свой счет. Многие работники сервисов даже не приезжают на вызов, если по телефону узнают, что гидрострелки в котле нет.

Если же у вас всего один котел и в нем 1-2 насоса, смысла покупать и устанавливать гидрострелку просто нет. Вы можете установить ее, она точно не навредит. Но и пользы от нее будет мало. Гидроразделитель будет разумным решением там, где установлена сложная разветвленная система – на больших дачах, многоквартирных домах, крупных коттеджах и т. д.

Цена гидрострелок сегодня стартует от 20 американских долларов, но может быть в разы выше в зависимости от модели. Но учитывайте, что если решите ее устанавливать, придется потратиться еще на коллектор, дополнительные циркуляционные насосы, прочее. Это не всегда обязательно, но часто необходимость в этом есть.

Как выбрать гидрострелку?

Основной параметр, влияющий на выбор гидрострелки, – мощность котла. Она всегда указывается производителем в инструкции к устройству. Также при выборе учитывается порядок подачи и отвода воды из системы, расположение входящих/исходящих патрубков, емкость. Дополнительно нужно учитывать диаметр гидравлической стрелы, патрубков, максимальный проток воды по гидрострелке, производительность котельного оборудования, разницу температур подаваемого и возвратного теплоносителя.

Если вы все же решите устанавливать гидрострелку, рекомендуем обратиться в «Профтепло». Мы подскажем, нужна ли в вашем случае гидрострелка, какую модель выбрать для вашего котла, какие параметры учесть. Также мы можем сами установить оборудование прямо у вас дома или на другом объекте в удобное заказчику время.

Помните, что гидроразделитель – полезный элемент системы, но не во всех случаях. Перед покупкой и установкой позвоните менеджеру «Профтепло», получите бесплатную консультацию и только после этого, если в установке будет необходимость, мы все сделаем. Работаем на территории Калуги и в регионе. Помогаем подобрать оборудование, выполняем монтаж котлов и отдельных компонентов отопительной системы, ремонтируем и обслуживаем агрегаты всех моделей. Обращайтесь по номеру +7 (4842) 75 02 04 или оставляйте запрос на сайте «Профтепло» через специальную форму.

Гидравлические сепараторы

Правильно организованная система отопления обеспечивает комфорт человека в любом помещении. Гидравлические переключатели и коллекторы используются для оптимизации процесса нагрева. С их помощью появляется возможность оптимально распределить теплоноситель между несколькими потребителями.

Гидравлический пистолет с коллектором — сложное оборудование, позволяющее быстро и легко установить. Эта конструкция герметична благодаря использованию высококачественной стали и испытаниям под давлением. Вы можете купить гидравлическую стрелу и коллектор отопления для подключения к газовым, электрическим или твердотопливным котлам любой мощности.

Конструктивно система представляет собой моноблок с патрубками. Группа патрубков имеет специальную резьбу для подключения к системе отопления.

Гидравлические переключатели и их назначение
Гидравлический пистолет (или гидравлический сепаратор) — это устройство, являющееся незаменимым элементом качественного обогрева. Это дополнительный агрегат, отличающийся особой конструкцией, специфика которой обусловлена ​​количеством контуров и другими характеристиками котла.

Причины установки такого оборудования следующие:

Предотвращение повреждения теплообменников котла, которое может произойти из-за теплового удара (например, при первом запуске системы), проверки оборудования или отключения насосного оборудования.
Возможность стабилизации давления при разнице расхода в контурах котла. Это верно для таких решений, как полы с подогревом, водонагреватели и т. Д.
Функция отстойника. Таким образом, в гидравлической стреле осядет весь мусор, ржавчина и различные загрязнения. Это возможно только при правильном расчете габаритов изделия.
В итоге любое насосное оборудование, датчики будут работать стабильно.
Удаление воздуха. В результате вы сможете предотвратить образование коррозии на различных металлических элементах котла.
Если вы хотите купить водяной пистолет и коллектор отопления, важно учитывать такие характеристики котла как:

Тип котла

;
мощность нагревателя;
количество цепей (от 1 до 5 штук).
Отсутствие гидравлической стрелки может привести к быстрому износу и поломке насоса, в дальнейшем прекращая работу всей системы отопления.

Гидравлические выключатели и коллекторы отопления

Если вы хотите купить водяной пистолет, также важно учитывать следующие технические особенности:

Диаметр

;
высота;
ширина;
межосевое расстояние.
Среди преимуществ гидростатического пистолета можно выделить невысокую цену, возможность продления срока службы дорогостоящего оборудования и высокое качество (изделия испытываются при температуре 110 ° С и давлении 10 бар). . В комплект входят удобные крепления для крепления оборудования к стене.

Гидравлические стрелки позволят создать эффективный и долговечный режим обогрева в любом помещении.

границ | Разработка и производительность многотопливного жилого котла, сжигающего сельскохозяйственные отходы

Введение

Рост населения, истощение и рост цен на ископаемое топливо и климатический кризис во всем мире требуют быстрого развития технологий использования возобновляемых источников энергии с минимальным воздействием на окружающую среду. Топливо из биомассы обладает значительным потенциалом для удовлетворения этих потребностей благодаря своему обилию, низкой стоимости и сокращению выбросов парниковых газов. К 2050 году до 33–50% мирового потребления может быть обеспечено за счет биомассы (McKendry, 2002).

ЕС поставил цель увеличить долю возобновляемых источников энергии в общем потреблении энергии до 27% к 2030 году (ЕС, 2014). Древесное топливо преимущественно использовалось как в крупных, так и в малых системах для производства тепла или электроэнергии. Однако растущая конкуренция за такие виды топлива в секторе отопления, лесопилении и бумажной промышленности, а также рост производства древесных гранул привели к росту цен на древесину и нехватке сырья (Uslo et al., 2010). Таким образом, для достижения цели роста использования биомассы потребуется более широкий ассортимент сырья (Carvalho et al., 2013; Cardozo et al., 2014; Zeng et al., 2018), что создаст дополнительную потребность в топливе. технологии переработки и контроля выбросов.

Для стран Южной Европы, где популярно отопление жилых домов с использованием топлива из биомассы в качестве более дешевой альтернативы, предпочтительным сырьем являются отходы сельского хозяйства и агропромышленности. Они легко доступны в больших количествах и обладают высоким энергетическим потенциалом, уменьшая путем сжигания объем отходов и увеличивая экономическую отдачу для сельских общин.В Греции доступно около 4 миллионов тонн в год, что эквивалентно примерно 50% валового потребления энергии (Vamvuka and Tsoutsos, 2002; Vamvuka, 2009).

Наиболее распространенными типами бытовых топочных устройств являются дровяные печи, дровяные котлы, печи на древесных гранулах и устройства для сжигания древесной щепы. Помимо дровяных печей и обычных котлов с бесконечными винтами, используются котлы смешанного горения с надстройками автоматизации, решениями для хранения и разнообразными механизмами подачи (Vamvuka, 2009; Sutar et al., 2015; Ан и Джанг, 2018). В прошлых исследованиях изучались выбросы дымовых газов, эффективность и проблемы, связанные с золой, при сжигании сельскохозяйственных остатков. Крупномасштабные агрегаты или небольшие пеллетные устройства для домашнего или жилого центрального отопления, некоторые из которых используют верхнюю подачу, вращающиеся или подвижные решетки (Vamvuka, 2009; Carvalho et al., 2013; Rabacal et al., 2013; Garcia-Maraver et al., 2014 ; Pizzi et al., 2018; Zeng et al., 2018; Nizetic et al., 2019). Однако до сих пор недостаточно информации о характеристиках не гранулированного сырья с точки зрения эффективности и выбросов загрязняющих веществ в соответствии с пороговыми значениями в зависимости от различных конструкций небольших систем и условий эксплуатации.В основном использовалась древесная щепа (Kortelainen et al., 2015; Caposciutti and Antonelli, 2018), тогда как разработка котлов в странах Средиземноморья идет медленно.

Было доказано, что маломасштабные системы биомассы вносят значительный вклад в качество местного воздуха за счет выбросов загрязняющих веществ, таких как CO, SO 2 , NO x , полиароматических углеводородов и твердых частиц, которые могут серьезно повлиять на здоровье человека и климат. Эти выбросы зависят от свойств топлива, применяемой технологии и условий процесса, и их мониторинг и контроль очень важны для соблюдения экологических ограничений и экономической эффективности требований рынка.Было обнаружено, что выбросы CO варьируются от 600 до 680 частей на миллион v для персиковых косточек (Rabacal et al., 2013), 50-400 частей на миллион v для скорлупы бразильских орехов и 100-400 частей на миллион v для лузги подсолнечника ( Cardozo et al., 2014). Было показано, что выбросы NO x находятся в диапазоне 300-600 мг / м 3 для персиковых косточек (Rabacal et al., 2013), 180-270 мг / м 3 для скорлупы бразильских орехов и 50-720 мг. / м 3 для лузги подсолнечника (Cardozo et al., 2014). Для последнего выбросы SO 2 варьировались от 78 до 150 мг / м 2 3 .Сообщается, что КПД котла (Rabacal et al., 2013; Fournel et al., 2015) составляет от 63 до 83%, в зависимости от типа топлива.

Поскольку сельскохозяйственные остатки доступны только в течение ограниченного периода времени в течение года, их смеси увеличивают возможности поставок для действующих предприятий. Однако, когда смеси используются в качестве сырья, совместимость топлив в отношении характеристик сгорания должна быть должным образом оценена для эффективной конструкции и работы агрегатов сгорания.Переменный состав этих материалов предполагает тщательное знание их поведения в тепловых системах, чтобы избежать топливных комбинаций с нежелательными свойствами. Насколько известно авторам, смеси таких отходов, которые можно найти по низкой цене или бесплатно, не исследовались в бытовых приборах. Для определения выбросов твердых частиц и образования шлака использовались только гранулы древесного топлива или энергетических культур (Carroll and Finnan, 2015; Sippula et al., 2017; Zeng et al., 2018).

Основываясь на вышеизложенном, целью настоящего исследования было сравнить характеристики горения выбранных не гранулированных сельскохозяйственных остатков, которые широко распространены в странах Южной Европы, и их смесей, чтобы изучить любые аддитивные или синергетические эффекты между компонентами топлива и получить выгоду. знания об использовании таких смесей в небольших котлах.Цель состояла в том, чтобы оценить производительность прототипа малозатратной установки для сжигания, позволяющей осуществлять предварительную сушку топлива и воздуха для горения выхлопными газами для производства тепловой энергии в зданиях, фермах, малых предприятиях и теплицах с точки зрения важности параметры, такие как сгорание и КПД котла, температура дымовых газов и выбросы в окружающую среду.

Экспериментальная секция

Топливо и характеристики

Сельскохозяйственные остатки для данного исследования были отобраны на основе их обилия и доступности в Греции и странах Средиземноморья в целом.Это были ядра оливкового масла (OK), предоставленные AVEA Chania Oil Cooperatives (Южная Греция), ядра персика (PK), предоставленные Союзом сельскохозяйственных кооперативов Giannitsa (Северная Греция), скорлупа миндаля (AS), предоставленная частной компанией ( Agrinio, C. Греция) и скорлупа грецких орехов (WS), предоставленные компанией Hohlios (Северная Греция).

После сушки на воздухе, гомогенизации и рифления материалы измельчали ​​до размера частиц <6 мм, используя щековую дробилку и вибрационное сухое просеивание. Типичные образцы были измельчены до размера частиц -425 мкм с помощью режущей мельницы и охарактеризованы с помощью экспресс-анализа, окончательного анализа и теплотворной способности в соответствии с европейскими стандартами CEN / TC335.Содержание летучих измеряли термогравиметрическим анализом с использованием системы TGA-6 / DTG в диапазоне 25–900 ° C, в потоке азота 45 мл / мин и при линейной скорости нагрева 10 ° C / мин. Химический анализ золы проводили на рентгенофлуоресцентном спектрофотометре (XRF) типа Bruker AXS S2 Ranger (анод Pd, 50 Вт, 50 кВ, 2 мА). Тенденция осаждения золы была предсказана с помощью эмпирических индексов. Эти показатели, несмотря на их недостатки из-за сложных условий, которые возникают в котлах и связанном с ними теплопередающем оборудовании, широко используются и, вероятно, остаются наиболее надежной основой для принятия решений, если они используются в сочетании с испытаниями пилотной установки.

Отношение оснований к кислотам (уравнение 1) является полезным показателем, поскольку обычно высокий процент основных оксидов снижает температуру плавления, в то время как кислотные оксиды повышают ее. Это принимает форму (Vamvuka et al., 2017):

Rb / a =% (Fe2O3 + CaO + MgO + K2O + Na2O)% (SiO2 + TiO2 + Al2O3) (1)

, где на этикетке каждого соединения указывается его массовая концентрация в золе. Когда R b / a <0,5 тенденция к осаждению низкая, когда 0,5 b / a <1 тенденция к осаждению является средней, и когда R b / a > 1 тенденция к осаждению является высокой.Для значений R b / a > 2 этот индекс нельзя безопасно использовать без дополнительной информации.

Влияние щелочей на склонность золы биомассы к шлакованию / загрязнению является критическим из-за их тенденции к снижению температуры плавления золы. Один простой индекс, индекс щелочности (уравнение 2), выражает количество оксидов щелочных металлов в топливе на единицу энергии топлива в ГДж (Vamvuka et al. , 2017):

AI = кг (K2O + Na2O) ГДж (2)

Когда значения AI находятся в диапазоне 0.17–0,34 кг / ГДж загрязнение или шлакообразование вероятно, тогда как при этих значениях> 0,34 практически наверняка произойдет обрастание или образование шлаков.

Для испытаний на сжигание были приготовлены смеси вышеуказанных материалов с соотношением компонентов до 50% по весу с наиболее распространенными в Греции сельскохозяйственными отходами — ядрами оливок.

Описание прототипа системы сгорания

Блок сжигания схематично показан на рисунке 1. Основными частями являются два бункера, эксикатор, система непрерывной подачи сырья и бойлер с поперечным потоком.Номинальная мощность 65 кВт т .

Рисунок 1 . Принципиальная схема многотопливного котла (сплошные стрелки показывают направление потока воздуха, пунктирные стрелки показывают направление потока биомассы).

Топливо хранится в главном бункере (A), боковые поверхности которого перфорированы для физического осушения топлива. В зависимости от наличия биомассы и особых потребностей в энергии открывается регулирующий клапан, и в систему подается соответствующее топливо. Затем биомасса переносится из бункера в эксикатор через наклонную стойку с направляющими, скорость которой регулируется в соответствии с потребностями котла.Горячий воздух поступает из выхлопных газов через систему обратной связи (H, J). В сушилке установлены две внутренние конвейерные ленты (B), состоящие из перфорированных медленно вращающихся роликов со стальной сеткой, позволяющих горячему воздуху проходить через него в восходящем направлении потока. Осушитель (B) имеет несколько отсеков, чтобы позволить воздуху перемещаться и в конечном итоге потерять часть своей температуры, создавая тем самым разницу температур. Специальная стальная сетка обладает высокой износостойкостью и довольно эффективно выдерживает экстремальные перепады температур.Скорость роликов тесно связана с влажностью биомассы и может изменяться в зависимости от потребностей автоматического управления. Затем сухая биомасса переносится (C) во временный бункер (D) и смешивается с теплым воздухом, поступающим из системы обратной связи (E), прежде чем направить его в горелку и зону горения котла. Используя горизонтальный теплый шнек диаметром 1 и 1/2 дюйма, обработанная биомасса подается в горелку (G). Скорость подачи регулируется двумя электронными диммерами. Первый диммер соответствует времени работы системы питания, а второй диммер соответствует времени задержки (винт выключен).Таким образом, подача сырья осуществляется полупериодическим способом. Первичный воздух для горения вводится через трубу в передней части топки и регулируется с помощью воздуходувки. Соотношение первичного и вторичного воздуха регулируется с помощью регулятора, установленного в дымоходе (K), с механическим регулятором, который позволяет изменять тягу в дымоходе. Котел (G) является гидравлическим и в основном производит горячую воду в замкнутой циркуляционной системе (F). Эта система имеет меры безопасности, чтобы поддерживать постоянное давление воды и транспортировать горячую воду к высокоэффективным фанкойлам для обогрева помещений. Датчики температуры Pt используются для измерения температуры воды в прямом и обратном потоке, а также в потоке внутри котла. Измеритель теплотворной способности измеряет расход воды и полезную энергию, получаемую водой. Выхлопные газы котла перед тем, как попасть в дымоход, проходят через теплообменник. Теплообменник (I) использует выхлопные газы для нагрева воздуха, который затем используется для сушки влажной биомассы.

Новинкой этого прототипа является конструкция эксикатора, питаемого выхлопными газами, выдерживающего экстремальные перепады температуры и работающего в соответствии с потребностями котла, теплообменник также питается выхлопными газами, а также прилагаются датчики температуры и измеритель теплотворной способности.Поскольку все основные части устройства являются стандартными, стоимость изготовления такой установки остается низкой. Уже установленные аналоговые датчики и детали будут заменены цифровыми датчиками и механическими деталями с цифровыми входами и выходами, в соответствии с результатами экспериментов с реакцией установки. Ограничением системы является невозможность отрегулировать оптимальный коэффициент избытка воздуха, поэтому существует потребность в надежном управлении подаваемым воздухом для горения. Следует принять определение оптимальных параметров пользовательской системы автоматического управления, чтобы установка могла работать автономно.

Методика эксперимента и измерения данных

Эксперименты были структурированы таким образом, чтобы можно было построить аналитический профиль каждого материала, а также можно было исследовать поведение типа топлива на различных стадиях процесса. Были проведены две серии экспериментов, чтобы изучить поведение и реакцию каждого остатка на технологическую цепочку устройства. Во время первой серии испытаний для каждого биотоплива проводилась калибровка скорости подачи в зависимости от диммерных переключателей.Скорость подачи определялась последовательностями интервалов задержки включения-выключения первого и второго диммера соответственно. Расход дымовых газов для каждой подачи сырья определялся путем измерения скорости вентилятора на выходе газа, установленного в положении (K), с помощью анемометра. Следовательно, каждое биотопливо было протестировано в установке для сжигания, чтобы оптимизировать тепловой КПД путем настройки его специальных параметров с учетом качества выбросов. Важными независимыми переменными были скорость подачи сырья, скорость вентилятора, регулирующего поток воздуха в котле, и внутренняя температура котла.В настоящем исследовании представлены результаты для одного набора этих параметров с целью сравнения характеристик сгорания между испытанными сельскохозяйственными остатками, а также их смесями при постоянных рабочих условиях. Параметрическое исследование для оптимизации процесса будет представлено в следующем отчете.

Для запуска котла было подожжено топливо, были включены питатель твердого вещества и воздуховоды и выставлены желаемые значения (вкл. / Выкл. 10/30 с / с). Перед снятием первых показаний печи давали поработать 30 мин.Циркуляционная система горячей воды была настроена на работу после того, как температура достигла ≥55 ° C. Когда температура воды превышала 70 ° C, подача сырья временно прекращалась.

Состав дымовых газов непрерывно контролировался во время испытаний с помощью многокомпонентного газоанализатора, модель Madur GA-40 plus от Maihak, оснащенного двухрядным фильтром и осушителем. Отбор проб производился с помощью нагревательной линии с зондом в соответствии с греческими стандартами ELOT 896. В анализаторе используются электрохимические датчики для измерения концентрации газа.Содержание CO 2 , CO, O 2 , SO 2 , NO x в потоке выхлопных газов, индекс сажи, тепловые потери дымовых газов, температура дымовых газов и коэффициент избытка воздуха ( λ) непрерывно регистрировались анализатором. Аналоговый выходной сигнал анализатора передавался в компьютер, где сигналы обрабатывались и вычислялись средние значения за период дискретизации 0,5 мин.

После проведения измерений в установившемся рабочем режиме и давая печи поработать около 3 часов, питатель топлива и воздуховод были отключены, смотровое окно было открыто, а вытяжной вентилятор был установлен на высокую мощность для охлаждения устройства. Зольный остаток был осушен, взвешен и проанализирован на предмет потерь при сжигании из-за несгоревшего углерода. Эксперименты были повторены дважды, чтобы определить их воспроизводимость, которая оказалась хорошей.

Тепловой КПД системы был определен как доля полезной энергии, полученной водой из котла, к энергии, произведенной топливом:

ηt = QoutQin = qwcpwΔTwΔtmfQf (%) (3)

где, q w : массовый расход воды (кг / ч), c pw : теплоемкость воды (МДж / кг · K), ΔT w : разница температур прямого и обратного потоков воды (° K), Δt: общее время горения при температуре воды 70 ° C, м f : масса сожженного топлива / смеси (кг), Q f : теплотворная способность топлива / смеси (МДж / кг).

Эффективность сгорания определялась следующим образом:

ηc = 100-SL-IL-La (%) (4)

где,

SL = (Tf-Tamb) (A [CO2] + B) (5)

IL = a [CO] [CO] + [CO2] (6)

La = 100 мес. (7)

где: T f : температура дымовых газов (° C), T amb : температура окружающего воздуха (° C), [CO] и [CO 2 ]: концентрации CO и CO 2 в дымовых газах (%), A, B, a: параметры горения, характерные для каждого вида топлива (данные анализатором), m o : общая масса сожженного органического вещества топлива (кг), m a : масса органического вещества в золе (кг).

Для каждого экспериментального испытания проверялось, достаточно ли имеющегося тепла дымового газа для предварительного нагрева входящего воздуха для сжигания топлива до 70 ° C, а также для сушки биомассы в эксикаторе системы:

или

mflcpflΔTf≥mambcpambΔTamb + Qd (9)

где: m fl , m amb : масса дымовых газов и воздуха на кг сожженной биомассы (кг), c pfl , c pamb : удельная теплоемкость дымового газа и воздуха (кДж / кг ° K), ΔT f , ΔT amb : разница температур дымовых газов на выходе и входе в дымоход, а также предварительно нагретого и окружающего воздуха, соответственно (° K), Q d : теплота сушки биомассы ( Мойерс и Болдуин, 1997).Согласно последующим результатам, указанное выше неравенство сохранялось всегда.

Результаты и обсуждение

Анализы сырого топлива

В Таблице 1 указаны приблизительный и окончательный анализы изученных сельскохозяйственных остатков. Как можно видеть, все образцы были богаты летучими веществами и имели низкую зольность. В скорлупе миндаля самый высокий процент летучих веществ, а в скорлупе грецких орехов — самый низкий процент золы. Концентрация кислорода была значительной для всех образцов, а теплотворная способность колебалась в пределах 17.5 и 20,4 МДж / кг, что сопоставимо с верхним пределом для низкосортных углей. Содержание серы во всех остатках было практически нулевым, что свидетельствует о том, что выбросы SO 2 не вызывают беспокойства для этого биотоплива. С другой стороны, содержание азота в скорлупе миндаля было значительным, что могло быть проблемой во время термической обработки с точки зрения выбросов NO x .

Таблица 1 . Предварительный и окончательный анализы и теплотворная способность образцов (% от сухого веса).

Химический анализ золы, выраженный обычным способом для топлива в виде оксидов, сравнивается в Таблице 2 вместе с индексами шлакообразования / засорения и тенденцией осаждения. Общей чертой этих золошлаковых материалов является то, что они были богаты Ca и K и в меньшей степени P и Mg. Отношение основания к кислоте было намного больше 2 из-за низкого содержания кремнезема и глинозема в этой золе, так что не может быть составлено каких-либо конкретных рекомендаций по поведению шлакования. Потенциал образования шлака / засорения, вызванного щелочью, можно более точно предсказать с помощью щелочного индекса.Таким образом, согласно значениям AI, для оливковых ядер и скорлупы миндаля неизбежна склонность к обрастанию из-за большого количества щелочи по отношению к единице топливной энергии, которую они содержат (для миндальной скорлупы склонность намного ниже), в то время как для ядер персиков и скорлупы грецких орехов не ожидается загрязнения котлов. Когда ядра оливок были смешаны с другими остатками при соотношении компонентов смеси до 50%, таблица 2 показывает, что значения AI были значительно снижены. Однако следует отметить, что для небольших систем, таких как та, которая использовалась в этой работе, работающей при температуре ниже 1000 ° C и в течение относительно короткого периода времени, явления шлакообразования или загрязнения из-за золы не наблюдались.

Таблица 2 . Химический анализ золы сырья и склонности к шлакованию / засорению.

Характеристики сжигания биотоплива из сельскохозяйственных остатков

Температура котловой воды

Изменение температуры воды на выходе из котла во время полной работы топочного агрегата показано на рисунке 2. Ясно, что ядра персика и скорлупа грецких орехов начали гореть раньше, чем два других остатка, передавая свою тепловую энергию воде примерно На 6 мин раньше оливковых ядер для повышения температуры с 25 до 70 ° C.Однако поведение скорлупы грецкого ореха было совершенно другим. Температура воды во время фазы запуска поднялась до 78 ° C (второй диммер выключен), так что для трех полных циклов (включение / выключение) время горения было увеличено примерно на 20 минут по сравнению с оливковыми ядрами. Для скорлупы грецкого ореха и миндаля три цикла в исследованных условиях длились около 1 часа.

Рисунок 2 . Изменение температуры воды на выходе из котла для сырого топлива при полной работе агрегата.

Температура дымовых газов и выбросы

Температура дымовых газов (таблица 3) представляет собой зависимость от топлива.Таким образом, оно было выше для миндальной скорлупы, 267 ° C, для полной работы котла (в установившемся режиме), и ниже для ядер персика, 245 ° C, что означает большие и меньшие потери тепла из печи, соответственно. Все значения температуры дымовых газов были достаточно высокими для предварительной сушки сырья (уравнение 9).

Таблица 3 . Характеристики горения топлива (средние значения) в установившемся режиме.

Концентрация

CO в дымовых газах при установившемся режиме работы печи (диммер включен) для четырех исследуемых остатков сравнивается на Рисунке 3.Повышенные уровни CO в биотопливе из ядер оливок, скорее всего, были связаны с его большим количеством летучих веществ, которые увеличивают концентрацию углеводородов в реакторе, препятствуя дальнейшему окислению CO до CO 2 , а также, в меньшей степени, более высокой зольностью это топливо, которое ослабляло проникновение кислорода к частицам полукокса. Тем не менее, все значения CO были ниже законодательных пределов для малых систем (ELOT, 2011).

Рисунок 3 . Концентрация CO в дымовых газах для сырого топлива в установившемся режиме.

Средние концентрации загрязняющих веществ (± стандартная ошибка) в установившемся режиме и в течение всей работы установки представлены и сравнены на рисунках 4A, B, соответственно. Выбросы SO 2 от всех видов биотоплива, являющиеся чрезвычайно низкими (0–13 ppm против ), не были включены в графики. На рис. 4A показано, что наибольшие выбросы CO были получены при сжигании ядер оливок, а наименьшие — при сжигании ядер персиков. Однако даже если во время полной работы котла (включая интервалы без подачи топлива, т.е.е., второй диммер выключен) Значения CO были выше (Рисунок 4B), они не превышали допустимых пределов (ELOT, 2011). Кроме того, выбросы NO x от всех изученных материалов были низкими и в соответствии с директивами стран ЕС (EC, 2001; ELOT, 2011) для небольших установок (200–350 мг / Нм 3 ). Более низкие уровни NO x в скорлупе миндаля, несмотря на их более высокий топливный N среди протестированных биотоплив, могут быть результатом временной восстанавливающей среды, создаваемой большим количеством летучих веществ в этом остатке (81.5%), что способствовало разложению NO x .

Рисунок 4 . Средние концентрации загрязняющих веществ в газах от сырого топлива (A) в установившемся режиме и (B) в течение всей работы установки.

Нынешние значения выбросов газообразных веществ сопоставимы с указанными в литературе для аналогичных видов топлива, в то время как значения NO x были значительно ниже. Для косточек персика выбросы CO варьировались от 600 до 680 частей на миллион v (Rabacal et al., 2013), для скорлупы бразильских орехов от 50 до 400 частей на миллион v (Cardozo et al., 2014), для ядер пальмы от 2000 до 14000 частей на миллион v (Pawlak-Kruczek et al. , 2020), для жмыха гранулы между 1900 и 6500 частями на миллион v (Kraszkiewicz et al., 2015), а гранулы для обрезки оливок — 1800 частей на миллион v (Garcia-Maraver et al., 2014). С другой стороны, выбросы NO x были обнаружены для косточек персика 300–600 мг / м 3 (Rabacal et al., 2013), для скорлупы бразильских орехов 180–270 мг / м 3 (Cardozo et al. ., 2014), для пальмовых ядер от 90 до 200 частей на миллион v (Pawlak-Kruczek et al., 2020), для гранул жмыха 230-870 мг / м 3 (Kraszkiewicz et al., 2015) и для оливкового масла. гранулы для обрезки 680 мг / м 3 (Garcia-Maraver et al., 2014).

Горение и тепловой КПД

Характеристики сгорания четырех остатков представлены в таблице 3. Эффективность сгорания считается удовлетворительной для небольших систем (77% в соответствии с европейскими стандартами EN 303-5) и находится в диапазоне от 84 до 86%.Эти значения контролировались температурами дымовых газов, которые отражали чувствительные тепловые потери и концентрацию CO в дымовых газах, которые представляли основные потери тепла из-за неполного сгорания. Таким образом, ядра персика с наименьшими потерями SL и IL горели с наибольшей эффективностью. Интересно отметить, что большее количество воздуха в случае оливковых ядер (коэффициент избытка воздуха λ = 1,9), увеличивая поток дыма, казалось, каким-то образом снижает температуру камина и, следовательно, увеличивает уровень CO и газообразные тепловые потери (IL).Кроме того, на тепловой КПД системы, показанный в Таблице 3, влияла эффективность сгорания топлива, и она была выше для ядер персика из-за улучшенного сгорания в печи и улучшенной рекуперации тепла в трубках системы за счет повышения температуры. разница между прямым и обратным потоком воды в котел (ΔT w = 26,2 ° C). Колебания, наблюдаемые в таблице, связаны с различным количеством сжигаемого биотоплива в зависимости от времени, когда котел работал с определенными интервалами включения / выключения диммеров, регулирующих подачу.Оптимизация расхода топлива и коэффициента избытка воздуха в сторону более низкого значения может привести к более высокой температуре камина (высокий поток подаваемого воздуха охлаждает печь), снижению выбросов CO из-за лучшего сгорания, более низкого содержания кислорода и более высоких концентраций CO 2 в дымах и, следовательно, снижение потерь тепла или топлива и повышение эффективности сгорания. Это, в свою очередь, улучшит рекуперацию тепла в трубках и повысит тепловой КПД. Кроме того, некоторые модификации печи для увеличения времени пребывания дымовых газов снизят их температуру на выходе и, следовательно, чувствительны к потерям тепла.

Тем не менее, КПД котла соответствовал литературным данным. Значения 91%, 83–86% и 75–83% были зарегистрированы для древесных гранул (Kraiem et al., 2016), древесины сосны и персика (Rabacal et al., 2013), соответственно. Более того, для многотопливного котла, сжигающего древесные материалы, было обнаружено (Fournel et al., 2015), что термический КПД зависит от зольности каждого сырья, т. Е. При содержании золы 1% КПД составляет 74%, а для золы содержание 7% упало до 63%. В другом блоке, сжигающем лесные остатки и энергетические культуры, эффективность варьировалась от 69 до 75% (Forbes et al., 2014).

Характеристики сжигания смесей сельскохозяйственных остатков

Температура котловой воды

На рисунках 5A – C показано изменение температуры воды на выходе из котла в зависимости от времени во время полной работы печи для смесей остатков ядер оливок с ядрами персика, скорлупой миндаля и грецкого ореха. Из этих рисунков можно заметить, что как фаза запуска, так и фаза, когда система работала на полную мощность, были задержаны при подаче смесей топлива, смещая кривые в сторону более высоких значений времени примерно на 4–6 мин.Кажется, что подача смесей и, как следствие, выгорание не были такими однородными, как ожидалось теоретически.

Рисунок 5 . Изменение температуры воды на выходе из котла при полной работе агрегата для смесей (A), OK / PK, (B), OK / AS и (C), OK / WS.

Температура дымовых газов и выбросы

Таблица 4 показывает, что температуры дымовых газов, которые влияют на чувствительные тепловые потери дымовых газов, для всех смесей в установившемся режиме варьируются между значениями компонентов топлива.Это показывает, что характеристики горения смесей зависели от вклада каждого остатка в смеси.

Таблица 4 . Характеристики горения топливных смесей (средние значения) в установившемся режиме.

Средние выбросы CO и NO x (± стандартная ошибка) в установившемся режиме для всех смесей сравниваются с выбросами сырого топлива на рисунках 6A – C. Выбросы SO 2 не представлены на графиках, так как они были чрезвычайно низкими (4–20 ppm v ).Значения CO в диапазоне от 1,121 до 1212 частей на миллион v поддерживались в пределах значений, соответствующих компонентным видам топлива, и находились в допустимых пределах для малых установок (ELOT, 2011). Более того, уровни NO x (87–129 ppm v или 174–258 мг / м 3 ) следовали той же тенденции и держались ниже пороговых значений стран ЕС (EC, 2001; ELOT, 2011). . Наилучшие показатели выбросов были достигнуты при использовании смеси ОК / ПК 50:50.

Рисунок 6 .Средние выбросы CO и NO x газов в установившемся режиме из смесей (A) OK / PK, (B) OK / AS и (C) OK / WS.

Горение и тепловой КПД

Эффективность горения смесей ядер оливок с ядрами персика, миндаля и скорлупы грецких орехов варьировалась от 84,2 до 85,6%, как показано на Рисунке 7. Эти значения находились между значениями, соответствующими материалам компонентов, но не пропорциональными процентному содержанию каждого остатка в смесь.Как показано в Таблице 4, эффективность сгорания зависела от типа сырья и массового расхода, а также от коэффициента избытка воздуха, который определял температуру камина и дымовых газов и, следовательно, тепловые потери. Наибольшая эффективность была достигнута в случае смеси ОК / ПК 50:50, что, в свою очередь, отразилось на тепловом КПД котла за счет улучшенной рекуперации тепла из потока воды.

Рисунок 7 . Эффективность сгорания топливных смесей.

Выводы

Изученные сельскохозяйственные остатки характеризовались высоким содержанием летучих и малозольных.Их теплотворная способность составляла от 17,5 до 20,4 МДж / кг. Выбросы CO и NO x от всех видов топлива в течение всего периода эксплуатации установки в изученных условиях были ниже установленных законом пределов, а выбросы SO 2 были незначительными. Эффективность горения была удовлетворительной, от 84 до 86%. Ядра персика, за которыми следует скорлупа грецких орехов, сожженные с максимальной эффективностью из-за более низких чувствительных тепловых потерь и потерь от неполного сгорания топлива, выделяют более низкие концентрации токсичных газов и повышают эффективность котла за счет улучшения рекуперации тепла в трубах системы.

Совместное сжигание сельскохозяйственных остатков можно в значительной степени предсказать по сжиганию компонентов топлива, что может принести не только экологические, но и экономические выгоды. Путем смешивания ядер оливок с ядрами персика, миндаля или скорлупы грецкого ореха в процентном отношении до 50% была улучшена общая эффективность системы с точки зрения выбросов и степени сгорания. Эффективность борьбы с вредителями была достигнута при смешивании ядер оливок и ядер персика в соотношении 50:50.

Эффективность сгорания зависит от типа сырья, массового расхода и коэффициента избытка воздуха.Необходим надежный контроль подачи воздуха для горения и определение оптимальных параметров.

Заявление о доступности данных

Все наборы данных, созданные для этого исследования, включены в статью / дополнительный материал.

Авторские взносы

DV: руководитель, оценка результатов и написание статей. DL: эксперименты. ES: эксперименты. АВ: эксперименты. СС: оценка результатов. ГБ: техническая поддержка и оценка результатов. Все авторы: внесли свой вклад в статью и одобрили представленную версию.

Конфликт интересов

ГБ использовала компания Energy Mechanical of Crete S.A.

Остальные авторы заявляют, что исследование проводилось при отсутствии каких-либо коммерческих или финансовых отношений, которые могли бы быть истолкованы как потенциальный конфликт интересов.

Благодарности

Авторы любезно благодарят AVEA Chania Oil Cooperatives, Союз сельскохозяйственных кооперативов Янницы и частные компании Agrinio и Hohlios за предоставленное топливо, а также лаборатории химии и технологии углеводородов и неорганической и органической геохимии Технического университета Крита. , для анализов CHNS и XRF.

Список литературы

Ан, Дж., И Янг, Дж. Х. (2018). Характеристики горения 16-ступенчатого колосникового котла на древесных гранулах. Обновить. Энергия 129, 678–685. DOI: 10.1016 / j.renene.2017.06.015

CrossRef Полный текст | Google Scholar

Caposciutti, G., and Antonelli, M. (2018). Экспериментальное исследование влияния вытеснения воздуха и избытка воздуха на выбросы CO, CO 2 и NO x небольшого котла на биомассе с неподвижным слоем. Обновить.Энергия 116, 795–804. DOI: 10.1016 / j.renene.2017.10.001

CrossRef Полный текст | Google Scholar

Кардозо, Э. , Эрлих, К., Алехо, Л., и Франссон, Т. Х. (2014). Сжигание сельскохозяйственных остатков: экспериментальное исследование для небольших приложений. Топливо 115, 778–787. DOI: 10.1016 / j.fuel.2013.07.054

CrossRef Полный текст | Google Scholar

Кэрролл Дж. И Финнан Дж. (2015). Использование добавок и топливных смесей для снижения выбросов от сжигания сельскохозяйственного топлива в небольших котлах. Биосист. Англ. 129, 127–133. DOI: 10.1016 / j.biosystemseng.2014.10.001

CrossRef Полный текст | Google Scholar

Карвалью Л., Вопиенка Э., Пойнтнер К., Лундгрен Дж., Кумар В., Хаслингер В. и др. (2013). Производительность пеллетного котла на сельскохозяйственном топливе. Прил. Энергия 104, 286–296. DOI: 10.1016 / j.apenergy.2012.10.058

CrossRef Полный текст | Google Scholar

EC (2001). Директива 2001/80 / ЕС Европейского парламента и Совета от 23 октября 2001 г. об ограничении выбросов определенных загрязнителей в воздух от крупных установок для сжигания топлива .

Google Scholar

ELOT (2011). EN 303.05 / 1999. Предельные значения выбросов CO и NO x для новых тепловых установок, использующих твердое биотопливо . FEK 2654 / B / 9-11-2011.

Google Scholar

Forbes, E., Easson, D., Lyons, G., and McRoberts, W. (2014). Физико-химические характеристики восьми различных видов топлива из биомассы и сравнение горения и выбросов приводят к получению малогабаритного многотопливного котла. Energy Conv. Managem. 87, 1162–1169.DOI: 10.1016 / j.enconman.2014.06.063

CrossRef Полный текст | Google Scholar

Fournel, S., Palacios, J.H., Morissette, R., Villeneuve, J., Godbout, S., Heitza, M., et al. (2015). Влияние свойств биомассы на технические и экологические показатели многотопливного котла при внутрихозяйственном сжигании энергетических культур. Прил. Энергия 141, 247–259. DOI: 10.1016 / j.apenergy.2014.12.022

CrossRef Полный текст | Google Scholar

Гарсия-Маравер, А. , Заморано, М., Фернандес, У., Рабакал, М., и Коста, М. (2014). Взаимосвязь между качеством топлива и выбросами газообразных и твердых частиц в бытовом котле на пеллетах. Топливо 119, 141–152. DOI: 10.1016 / j.fuel.2013.11.037

CrossRef Полный текст | Google Scholar

Kortelainen, M., Jokiniemi, J., Nuutinen, I., Torvela, T., Lamberg, H., Karhunen, T., et al. (2015). Поведение золы и образование выбросов в маломасштабном реакторе сжигания с возвратно-поступательной решеткой, работающем с древесной щепой, тростниковой канареечной травой и ячменной соломой. Топливо 143, 80–88. DOI: 10.1016 / j.fuel.2014.11.006

CrossRef Полный текст | Google Scholar

Крайем Н., Ладжили М., Лимузи Л., Саид Р. и Джегуирим М. (2016). Рекуперация энергии из тунисских агропродовольственных отходов: оценка характеристик сгорания и характеристик выбросов зеленых гранул, приготовленных из остатков томатов и виноградных выжимок. Энергия 107, 409–418. DOI: 10.1016 / j.energy.2016.04.037

CrossRef Полный текст | Google Scholar

Крашкевич, А., Пшивара, А., Качел-Якубовска, М., и Лоренцович, Э. (2015). Сжигание пеллет растительной биомассы на решетке котла малой мощности. Agricul. Agricul. Sci. Proc. 7, 131–138. DOI: 10.1016 / j.aaspro.2015.12.007

CrossRef Полный текст | Google Scholar

Мойерс, К. Г., и Болдуин, Г. У. (1997). «Психрометрия, испарительное охлаждение и сушка твердых частиц», в справочнике инженера-химика Perry, 7-е изд. , ред. Р. Х. Перри и Д. У. Грин (Нью-Йорк, Нью-Йорк: Mc Graw Hill).

Google Scholar

Низетич, С., Пападопулос, А., Радика, Г., Занки, В., и Ариси, М. (2019). Использование топливных гранул для отопления жилых помещений: полевое исследование эффективности и удовлетворенности пользователей. Energy Build. 184, 193–204. DOI: 10.1016 / j.enbuild.2018.12.007

CrossRef Полный текст | Google Scholar

Pawlak-Kruczek, H. , Arora, A., Moscicki, K., Krochmalny, K., Sharma, S., and Niedzwiecki, L. (2020). Переход домашнего котла с угля на биомассу — Выбросы от сжигания сырых и обожженных оболочек ядра пальмового дерева (PKS). Топливо 263, 116–124. DOI: 10.1016 / j.fuel.2019.116718

CrossRef Полный текст | Google Scholar

Пицци А., Фоппа Педретти Э., Дука Д., Россини Г., Менгарелли К., Илари А. и др. (2018). Выбросы отопительных приборов, работающих на агропеллетах, произведенных из остатков обрезки виноградной лозы, и экологические аспекты. Обновить. Энергия 121, 513–520. DOI: 10.1016 / j.renene.2018.01.064

CrossRef Полный текст | Google Scholar

Рабакал, М., Фернандес У. и Коста М. (2013). Характеристики горения и выбросов бытового котла, работающего на пеллетах из сосны, древесных отходах и персиковых косточках. Обновить. Энергия 51, 220–226. DOI: 10.1016 / j.renene.2012.09.020

CrossRef Полный текст | Google Scholar

Сиппула, О. , Ламберг, Х., Лескинен, Дж., Тиссари, Дж., И Йокиниеми, Дж. (2017). Выбросы и поведение золы в котле на пеллетах мощностью 500 кВт, работающем на различных смесях древесной биомассы и торфа. Топливо 202, 144–153.DOI: 10.1016 / j.fuel.2017.04.009

CrossRef Полный текст | Google Scholar

Сутар, К. Б., Кохли, С., Рави, М. Р., и Рэй, А. (2015). Кухонные плиты на биомассе: обзор технических аспектов. Обновить. Устойчивая энергетика Ред. 41, 1128–1166. DOI: 10.1016 / j.rser.2014.09.003

CrossRef Полный текст | Google Scholar

Вамвука Д. (2009). Биомасса, биоэнергетика и окружающая среда. Salonica: Tziolas Publications.

Google Scholar

Вамвука, Д., Трикувертис, М., Пентари, Д., Алевизос, Г., и Стратакис, А. (2017). Характеристика и оценка летучей и зольной пыли от сжигания остатков виноградников и перерабатывающей промышленности. J. Energy Instit. 90, 574–587. DOI: 10.1016 / j.joei.2016.05.004

CrossRef Полный текст | Google Scholar

Вамвука Д. и Цуцос Т. (2002). Энергетическая эксплуатация сельскохозяйственных остатков на Крите. Energy Expl. Эксплуатировать. 20, 113–121. DOI: 10.1260 / 014459802760170439

CrossRef Полный текст | Google Scholar

Цзэн, Т., Поллекс, А., Веллер, Н., Ленц, В., и Неллес, М. (2018). Гранулы из смешанной биомассы в качестве топлива для маломасштабных устройств сжигания: влияние смешения на образование шлака в зольном остатке и варианты предварительной оценки. Топливо 212, 108–116. DOI: 10.1016 / j.fuel.2017.10.036

CrossRef Полный текст | Google Scholar

WOC55 | Альтернативные системы отопления

Модель WOC55 производит 225 000 БТЕ / час, способная обогревать дома площадью от 2 000 до 5 500 кв. Футов. Они идеально подходят для домовладельцев, которым нужен прочный, долговечный котел, способный сжигать самые разные виды топлива.

WOC55 — это простой традиционный ручной восходящий котел с восходящим потоком воздуха. Они изготовлены из стального листа толщиной ¼ дюйма…

…, что позволяет им обеспечивать комфортное тепло вашей семье на всю жизнь или даже две. Будучи производимым более 30 лет, вы будете спокойны, зная, что сможете согреть свою семью и сэкономить много денег на долгие годы.

Наша торговая марка чугунная решетка и наши системы Dual Draft позволяют сжигать различные типы твердого топлива (каменный уголь и мягкий уголь) в одной камере сгорания и дают возможность настраивать воздушный поток для максимального повышения эффективности сгорания с каждым видом топлива. .Его также можно настроить для работы без электричества.

Разница между нашими моделями WC и WOC заключается в специальной камере сгорания в задней части котла, которая позволяет установить на нее горелку. Мы используем отдельную камеру сгорания, чтобы вы могли создать хороший рисунок пламени, который позволяет горелке работать эффективно, а отдельная камера сгорания защищает сопло горелки при сжигании различных других видов топлива. Горелка загорается в отдельную камеру сгорания, которая ведет к основной топке, поэтому, сжигаете ли вы нефть, каменный или мягкий уголь, вам нужен только один дымоход.Имеется резервная горелка на жидком топливе (жидком топливе). В стандартную комплектацию входит мазутная горелка Riello # 2, которая также управляется аквастатом котла.

Функция автоматического переключения с угля на масло, если температура воды падает из-за отсутствия огня, является доступным обновлением для всех моделей WOC. Опция «Автоматическое переключение» дает вам гибкость и свободу в понимании того, что в вашем доме не будет холода, если вы, например, решите уехать на выходные.

В стандартную комплектацию WOC55 входит:

  • Масляная горелка с ручным переключением
  • Старая система решетки
  • Большая 14-дюймовая загрузочная дверца
  • Автоматическая система двойной тяги — нагнетатель принудительной тяги и демпфер естественной тяги
  • Топка с облицовкой из огнеупорного кирпича
  • Перегородка с водяным охлаждением (для повышения эффективности)
  • Гидравлические испытания на 60 фунтов на квадратный дюйм
  • Изготовлен из стального листа ¼ ”
  • Система управления циркуляцией Honeywell Aquastat
  • Датчик температуры / давления
  • Клапан сброса давления, прошедший испытания ASME
  • Дымовая заслонка дверцы загрузки

Стоимость владения нашими многотопливными котлами — одна из самых низких в отрасли! 40 долларов. 00 — в среднем 50 долларов в год !!

Традиционно многотопливные котлы продавались как дровяные / угольные комбинации, однако из-за правил EPA Phase 2 эти котлы больше не продаются для постоянного использования с дровами.

Чтобы просмотреть наши многотопливные котлы, у которых нет опции горелки на жидком топливе. нажмите здесь WC55

Для котлов с автоматической загрузкой, пожалуйста, ознакомьтесь с нашей линейкой продуктов для деревянных пистолетов или угольных пистолетов

% PDF-1.3
%
119 0 объект
>
эндобдж
xref
119 88
0000000016 00000 н.
0000002129 00000 н.
0000002295 00000 н.
0000002438 00000 н.
0000003223 00000 н.
0000003614 00000 н.
0000003698 00000 н.
0000003782 00000 н.
0000003879 00000 п.
0000003992 00000 н.
0000004062 00000 н.
0000004179 00000 н.
0000004250 00000 н.
0000004367 00000 н.
0000004439 00000 н.
0000004572 00000 н.
0000004643 00000 п.
0000004771 00000 п.
0000004842 00000 н.
0000004963 00000 н.
0000005034 00000 н.
0000005147 00000 н.
0000005218 00000 п.
0000005342 00000 п.
0000005413 00000 н.
0000005522 00000 н.
0000005593 00000 п.
0000005751 00000 п.
0000005806 00000 н.
0000005916 00000 н.
0000005987 00000 н.
0000006086 00000 н.
0000006180 00000 н.
0000006235 00000 н.
0000006337 00000 н.
0000006392 00000 н.
0000006539 00000 н.
0000006610 00000 н.
0000006681 00000 п.
0000006858 00000 н.
0000006929 00000 п.
0000007047 00000 н.
0000007101 00000 п.
0000007187 00000 н.
0000007273 00000 н.
0000007374 00000 н.
0000007445 00000 н.
0000007547 00000 н.
0000007618 00000 н.
0000007673 00000 н.
0000007774 00000 н.
0000007845 00000 н.
0000007916 00000 п.
0000008028 00000 н.
0000008099 00000 н.
0000008169 00000 н.
0000008225 00000 н.
0000008330 00000 н.
0000008440 00000 н.
0000008463 00000 н.
0000018469 00000 п.
0000018492 00000 п.
0000025919 00000 п.
0000025942 00000 п.
0000034100 00000 п.
0000034123 00000 п.
0000041384 00000 п.
0000041407 00000 п.
0000048513 00000 п.
0000048536 00000 п.
0000056591 00000 п.
0000056834 00000 п.
0000058070 00000 п.
0000058093 00000 п.
0000066679 00000 п.
0000066702 00000 п.
0000076306 00000 п.
0000076328 00000 п.
0000077415 00000 п.
0000077494 00000 п.
0000077516 00000 п.
0000078588 00000 п.
0000078643 00000 п.
0000078666 00000 п.
0000082314 00000 п.
0000082386 00000 п.
0000002494 00000 н.
0000003201 00000 н.
трейлер
]
>>
startxref
0
%% EOF

120 0 объект
>
/ Контуры 124 0 R
>>
эндобдж
121 0 объект
; $ D =% p7 $% k% \ rr)
/ U (= ~ a \ (~ P ۤ l: F:> \ nh |.AEl \ 2 {u ݺ 2 tgp wf ‘, A +, qr {Z! U; 1 # M? 5T BR:>! P! T_RiNNb

Трубопровод котла косвенного нагрева с рециркуляцией для котельной частного дома |

Если у вас нет опыта работы с бойлерами косвенного нагрева, то лучше поручить жгут профессионалам. Если вы живете в загородном доме, то для вас не секрет, что в этом случае не всегда можно получить горячую воду. . Дело в том, что в большинстве сел и деревень нет общего снабжения горячей водой, поэтому еще совсем недавно люди могли мыться, только нагревая воду на плите или доводя ее до нужной температуры с помощью бойлера.Однако современные технологии позволяют независимо от наличия централизованного водоснабжения получать горячую воду в любое время. На данный момент самый экономичный и современный водонагреватель — это бойлер. О его подвеске поговорим сегодня.

Циркуляция горячей воды

Рециркуляция горячей воды позволит быстро получить достаточно горячей воды. Если вы устанавливаете в доме водогрейный котел, обязательно сделайте из него жгут.

Существуют специальные схемы, демонстрирующие, как работает рециркуляция горячей воды в доме

Благодаря рециркуляции создается магистраль, по которой постоянно течет вода и при этом постоянно нагревается, без необходимости остывать.Благодаря этой системе вы можете получить воду сразу же, как только откроете кран.

Такая система водяного отопления может распределять теплоноситель на несколько приемников тепла. Например, в кране, в батарее и в полотенцесушителе.

Для изготовления такой системы необходимо установить рециркуляционный насос. При этом поток горячей воды нужно направлять таким образом, чтобы она постоянно проходила через конструкции, нуждающиеся в тепле. Выполнив это условие, вы получите максимальный КПД котла.

Типы и схема трубопроводов бака косвенного нагрева

Трубопровод бойлера косвенного нагрева ведет к подключению труб бойлера к водопроводу. Этот этап считается наиболее значимым, но в то же время сложным. От качества обвязки зависит дальнейшая работа котла.

Есть несколько способов завязывания. Какой из них лучше для вас, нужно смотреть по месту.

Типы схем обвязки котла:

  1. Обвязка с помощью трехходового регулирующего клапана и сервопривода.Эта обвязка самая простая. Применяется, когда предполагается большой расход горячей воды. В этом случае котел подключают к основному и дополнительному контурам. Первый обеспечивает подогрев воды в водопроводах, а второй — подогревает воду в бойлере. Чтобы облегчить обвязку, используйте трехходовой регулирующий клапан. Сервопривод необходим для перенаправления горячей воды на отопление и обратно. Термостат следит за температурой воды, когда она достигает требуемой отметки, вода поступает на сервопривод, который перенаправляет ее на отопление, после того, как вода остынет, возвращается в котел.
  2. Обвязка с использованием двух насосов следующая: один насос устанавливается в отопительный контур, а другой подключается к водопроводу с горячей водой. Насосы управляются термостатом, который переключает режимы работы.
  3. Трубопровод с гидравлической стрелой применяется, когда, помимо подачи горячей воды и общей системы отопления, котел подключается к системе теплого пола. Гидравлический распределитель позволяет избежать сложностей с системой с системой, в которой каждый из контуров имеет свой насос с рециркуляцией.

Схемы привязки бойлера косвенного размера можно найти в Интернете или сделать самостоятельно с помощью компьютерных программ

Каждый вид обвязки имеет свою схему. Какой из них выбрать, решать в зависимости от ваших потребностей. Для частного дома с собственной котельной подходят все три варианта. Если вы хотите установить в своем доме систему теплого пола, используйте гидравлический указатель для привязки котла.

Основные принципы установки бойлера косвенного нагрева

Установить бойлер косвенного нагрева — задача не из легких.Требуется опыт таких работ и повышенная внимательность. Если вы не уверены в своих силах, лучше не экспериментировать, пытаясь установить устройство самостоятельно, а обратиться к опытному мастеру.

Установка котла включает несколько основных рекомендаций. Приклеивая их, можно правильно подключить к системе отопления.

Перед установкой бойлера косвенного нагрева стоит изучить рекомендации специалистов и посмотреть обучающее видео

Советы по установке котла:

  1. Правила подключения водонагревателя гласят, что холодная вода должна поступать в прибор снизу, а выходить сверху, уже нагретая.Поэтому стоит обратить особое внимание на расположение шлангов газовых и электрических котлов.
  2. Котельная установка предполагает, что вода или антифриз будут собираться в бак сверху вниз. Таким образом, жидкость попадает в верхнюю ветвь емкости, а возвращается из нижней.
  3. Рециркуляция должна быть в центре котла.

Повторное использование воды значительно экономит ваше время. Ведь без такой функции придется подождать, пока вода в кране нагреется и станет теплой.При таком способе нагрева жидкость постоянно циркулирует по трубам водяного отопления, благодаря чему она постоянно теплая.

Схема подключения частного дома с котлом

Чтобы котел отлично взаимодействовал с газовым котлом, в его устройство входит датчик температуры. Он отвечает за поток между двумя контурами: основным и ГВС.

Схема подключения твердотопливного или газового котла к котлу:

  1. Для подключения одноконтурного газового котла и емкостного котла можно использовать метод привязки двух насосов.При этой настройке добавляется картина синхронизма обеих цепей. Чтобы устройство работало правильно, необходимо разделить потоки воды. Как было сказано выше, один насос устанавливается на отопительный контур, а другой — на водяной. Такой способ обвязки значительно улучшает качество нагрева. Однако очень важным в этом варианте является установка клапанов на выходе из насоса. В противном случае нагревательный и водяной потоки жидкости могут смешаться внутри агрегата.
  2. Если вы хотите подключить к котлу двухконтурный насос, используйте два электромагнитных клапана. Здесь принцип такой: котел используется как накопитель. Вода поступает в устройство из водопровода. Клапан на входе ГВС закрыт. В бойлере хранится горячая вода.

Схема подключения частного дома к котлу позволяет обеспечить дом горячей водой

Очень важно знать, как лучше установить котел в котельной. Всего существует 4 способа такой установки: горизонтальный и вертикальный настенный, а также горизонтальный и вертикальный напольный.

Напольные котлы обычно имеют во много раз больший объем, чем настенные. Поэтому устанавливать бойлер не место ВТО, которое производитель ему предоставил категорически запрещено.

Установка такого бойлера на стену происходит по тому же принципу, что и крепление электрического водонагревателя или колонки. Единственное отличие — трубы, по которым будет течь вода, должны смотреть в сторону котла. Если этого не сделать, то вы не сможете установить достаточно качественную обвязку, и при этом потратите большие деньги.

Бойлер косвенного нагрева (видео)

Обвязка котла — ответственная и сложная работа. Если вы не уверены в своих силах, лучше обратиться к мастеру. Однако, внимательно изучив схемы, вы сможете проделать такую ​​работу самостоятельно.

Твердотопливные котлы длительного горения. Напольные котлы Малые твердотопливные котлы

Комбинированный котел, уверенно занимающий 3 место в нашем ТОП-10, который может работать как на твердом топливе, так и на газе или дизельном топливе.Производитель рекомендует дрова, но также этот котел отлично использует кокс, уголь, газ, отработанное масло для выработки тепла. Прочный чугун и надежная фурнитура делают этот прибор хорошим выбором для активного использования.

Твердотопливный котел с открытой камерой сгорания изготовлен из прочного прочного чугуна. Немецкий производитель Buderus рекомендует использовать для отопления не только дрова и уголь, но и кокс — это позволяет выбрать для себя наиболее удобный вариант. Котел Logano G221-20 — покупка на много лет.Он скорее соскучится, чем сломается.

Плюсы:

  • Установка проста и не требует сварки.
  • Продуманная конструкция обеспечивает долговечность изделия.
  • Большая загрузочная дверца — удобство работы с большими бревнами.

Минусы:

  • Цена — на такой товар невысокая, но есть варианты подешевле.

1 ZOTA Pellet 25A

Одноконтурный котел, лидер нашего рейтинга лучших твердотопливных котлов 2018 — 2019 годов, предназначен для отопления средних и больших площадей — до 250 кв.м. Опытные пользователи сразу оценят особенности этого котла — он требует минимум физического присутствия, так как оснащен функцией автоматической подачи топлива, а также автоматизированной системой управления, возможностью подключения внешнего управления и теплых полов.

Малый твердотопливный котел 14 кВт

Несмотря на высокий уровень газификации, возможность подключения магистрального газа есть далеко не везде, и котлы, работающие на твердом топливе, продолжают пользоваться большим спросом у владельцев частных домов.

Котлы твердотопливные малой мощности

К малым отопительным котлам твердотопливные котлы относятся котлы мощностью 7-12 кВт. Они компактны, легки и удобны в использовании. Некоторые модели оснащены варочной панелью для приготовления и разогрева пищи, что делает их незаменимым помощником в небольшом загородном доме.

это напольные котлы, чаще всего оборудованные одним отопительным контуром.

В качестве топлива для котла используются:

  • Бурый и черный уголь;
  • Кокс;
  • Дрова;
  • Пеллеты;
  • Топливные брикеты.

Планируя купить небольшой котел для частного дома или дачи, сначала определитесь, какое топливо будет использоваться в основном. Еще один правильный выбор компактный твердотопливный котел. Если это дрова, то предпочтительнее будет выбрать систему донного сжигания. Обычно такой котел оборудуют 2-3 камерами сгорания, топливо в них сгорает практически полностью. Низкий расход дров, низкий уровень выбросов продуктов сгорания в атмосферу выделяют данную модель котла среди других систем сжигания.Такой котел позволяет управлять процессом горения, регулируя объем воздуха, поступающего непосредственно в камеру сгорания.

Системы верхнего сжигания чаще устанавливаются, когда в качестве основного топлива для котла выбирается уголь.

Такие котлы изготавливаются из следующих материалов:

Стальные котлы отличаются от чугунных котлов того же производителя более низкой стоимостью, но при этом относительно небольшим сроком службы и неразборной конструкцией.

Малый твердотопливный котел Cleaver

Как правильно установить твердотопливный котел

Высота потолков помещения, в котором планируется установить котел, должна быть не менее 2,2 м, объем помещения не менее 8 м³, помещение должно быть оборудовано открывающимся окном площадью \ u200b более 0,7 м². Большое значение имеет система вентиляции помещения и противопожарная развязка. При установке необходимо предусмотреть отдельный выход для дымохода.

Особое внимание уделите организации дымохода. Он должен быть утеплен. Высота должна быть не менее 6 м. Учтите, что чугун для трубы не годится — он быстро трескается.

Весовая нагрузка небольшая, не превышает допустимого уровня нагрузки по СНиП на единицу площади пола — 250 кг / м²

КПД такого котла легко можно повысить, установив в систему отопления циркуляционный насос.

Купив малых твердотопливных котлов , вы действительно получаете возможность обеспечить дом теплом с минимальными финансовыми затратами.

Котлы твердотопливные длительного горения от производителя

На нашем сайте Вы можете узнать, что такое твердотопливные котлы , где их можно купить, как выбрать качественную технику, узнать, какова цена на такие котлы. Это стальные или чугунные отопительные приборы, работающие на твердом топливе. Если речь идет о бытовом агрегате, то предполагается ручная подача топлива, промышленные образцы оснащены автоматической подачей и золоудалением. Такие котлы устанавливаются там, где нет газового отопления, или как резервный теплоноситель.

Виды оборудования

По типу управления котлы делятся на автоматические и механические. Причем второй вариант выгодно отличается как по цене, так и по надежности. Как правило, такие устройства можно купить недорого. Отопительные котлы нуждаются в регулярном обслуживании, например, в удалении накипи и сжигании, так как это поможет избежать нарушения теплоотдачи от стенки котла и повреждения металлических деталей из-за перегрева. Современные твердотопливные котлы высокотехнологичны и безопасны, а работа их стабильна.За консультацией по выбору такого оборудования вы можете обратиться к нашим специалистам. Топливо для таких приборов, как твердотопливный котел длительного горения, служат:

  • … уголь;
  • … дрова;
  • … торф;
  • … пеллеты;
  • … тростник или солома.

Различные виды топлива различаются временем горения, которое составляет от двух до восьми часов. Через топливный теплообменник выделяющееся при горении тепло передается воде — теплоносителю системы отопления.Что касается котлов с длительным временем горения, то такие системы отличаются от обычных своей конструкцией. Здесь процесс горения начинается не снизу, а сверху. Горючее, воспламененное таким образом, горит намного дольше. Распределитель воздуха таких котлов имеет телескопическую конструкцию и постоянно давит на пламя под действием собственной силы тяжести. И благодаря этому давлению топливо постепенно выгорает горизонтальными слоями. Именно такая конструкция делает сгорание более качественным и продолжительным, что очень выгодно для обогрева.К тому же такие агрегаты имеют более длительный срок эксплуатации, ведь стальной теплообменник не испытывает значительных нагрузок. Усовершенствования отопительных котлов, получившие в последнее время более широкое распространение в связи с популяризацией таких систем, вызывают в системе избыточное давление и повышение температуры. По этой причине они опасны, так как приводят к разрыву трубок теплообменника. Чтобы избежать таких последствий, устанавливается расширительный бачок. В нем скапливается лишняя вода, которая при слишком сильном нагревании расширяется.

Как выгодно купить агрегат

Если Вам необходимо недорого приобрести твердотопливный котел длительного горения в Москве, мы будем рады помочь Вам в этом вопросе. Здесь вы найдете множество вариантов котлов от производителя, вы можете заказать товары российского производства оптом или в розницу. Наши специалисты помогут вам легко сделать правильный выбор и совершить удачную покупку.

Котел двухконтурный твердотопливный

Двухконтурный котел длительного горения для отопления имеет конструктивные особенности.Два цилиндрических бака, один помещенный в другой, обеспечивают нагрев. Резервуар меньшего размера отвечает за обогрев самого помещения, а резервуар большего размера подает горячую воду. Схема двухконтурного котла обязательно включает камеру нагрева воздуха, регулятор тяги системы отопления, телескопическую трубу, заслонку, камеру полного сгорания, зону генерации и горения и распределитель воздуха. Модуль рассчитан на тридцать килограммов топлива, которое сгорит в течение семи-восьми часов, при этом устройство не потребует участия человека, оно будет работать в автоматическом режиме.

Характеристики оборудования

Двухконтурный твердотопливный котел имеет определенные плюсы и минусы, с которыми мы вас познакомим. Достоинства: срок службы, экономичность, широкий ассортимент, надежность, возможность работать самостоятельно. К нему придумывают разные виды недорогого топлива. Недостатки: топливо должно быть сухим, нет управляемости горячей водой, отсутствие автоматического управления, ручного наполнения. Также есть особенности установки таких котлов. Этим должны заниматься только компетентные и опытные специалисты, которых вы можете найти на этом сайте.Обеспечат гарантированно высокое качество монтажных работ … Для отопительных котлов используются следующие материалы:

  1. 1. Чугун.
  2. 2. Сталь.

Первый вариант более прочный, обеспечивает лучшую теплопередачу в помещение, но чугун более хрупкий. Стальные котлы существенно отличаются как по качеству, так и по конструкции. Они более прочные, но подвержены коррозии. Для чугуна характерна ручная и более качественная сборка. Но стальные образцы легче чистить.Если вы выберете, какой двухконтурный нагревательный модуль вам следует купить, вас будет интересовать, какова цена на чугунные и стальные модули. С этим вопросом вы можете обратиться к нашим сотрудникам, и они будут рады вам помочь.

Твердотопливный котел длительного горения с водяным контуром

К преимуществам водяного контура в системе отопления длительного горения можно отнести, прежде всего, производительность, приличный КПД, быстрый нагрев теплоносителя, рациональность распределения тепла и эффективность.Но помните, что если мы выберем чугунный аппарат, его обслуживание все равно будет довольно сложным. Твердотопливный котел с водяным контуром стоит довольно недорого по сравнению с другими агрегатами. Требования к документации на установку таких систем отопления также невысоки. Чтобы установить котел на твердом топливе с водяным контуром для дома, вам понадобится только хорошая вентиляция и дымоход в помещении, где будет установлено это оборудование.

Установка твердотопливного котла

Установка котлов отопления играет не меньшую роль для безопасности и надежности системы, чем сами устройства.Поэтому такую ​​работу должны выполнять только настоящие опытные профессионалы. Твердотопливные отопительные котлы, как правило, не имеют в своем оборудовании регуляторов и циркуляционного насоса. У них также отсутствует группа безопасности. Схема обвязки котла выбрана таким образом, чтобы решить эти проблемы. Для этого в схему включается дополнительное оборудование, устройства и узлы. Например, аккумулятор тепла и бойлер косвенного нагрева. Эти дополнения нужны для обеспечения бесперебойной и качественной работы системы отопления.Вот как обычно устанавливают твердотопливный котел:

  1. 1. В первую очередь перед установкой определите мощность твердотопливного котла.
  2. 2. Для него выделено отдельное помещение, где будут соблюдаться все правила безопасности. Полы в этом месте бетонируются.
  3. 3. Сама установка устройства и других компонентов, например регуляторов, дымохода и других компонентов системы.
  4. 4. Настройка котла отопления.
  5. 5. Регулярный контроль и чистка рабочего оборудования.

Двухконтурные котлы обычно устанавливают в небольших постройках, например, в деревянном доме, где одна баня находится недалеко от кухни. Тогда бойлер можно будет расположить не только в отдельном месте, но и на кухне.

Трубопровод твердотопливного котла

Трубопровод — это совокупность оборудования, включенного в систему отопления. В обвязке обязательно должны быть:

  • … отопительный котел;
  • … трубопровод;
  • … теплый пол, батареи;
  • … фитинги;
  • … регулирующее оборудование;
  • … аппаратура управления.

Обвязка твердотопливного котла — дело настоящего мастера-монтажника, ведь от него зависит вся дальнейшая работа системы. На нашем сайте вы легко найдете таких специалистов в Москве, которые отвечают за создание систем отопления. Вот основные правила, которые необходимо соблюдать в таком деле, как обвязка котла отопления:

  1. 1.Наличие контрольных устройств желательно.
  2. 2. Разница температур жидкостей при циркуляции не должна превышать двадцати градусов.
  3. 3. Давление должно быть в пределах соответствующих стандартов.

Варианты схем трубопроводов делятся на схемы с естественной циркуляцией (открытая и закрытая), схема подключения коллектора, с принудительной циркуляцией, гидравлическая стрела, теплоаккумулятор и косвенный водонагреватель.

Схема подключения

Подключение котлов отопления, а также их дальнейшая работа зависит от того, насколько профессионально сделана разводка труб и радиаторов отопления.Создать безупречную схему подключения системы отопления может только человек, знающий принципы ее работы и имеющий богатый опыт проведения подобных процедур.

Котел твердотопливный WBS-N AC 50

Тепловая мощность данной модели составляет 50 кВт. Котел предназначен для отопления бытовых помещений за счет сжигания твердого топлива (дрова, уголь, брикеты и др.) В системах с принудительной циркуляцией теплоносителя, а также в открытых системах. Котел может быть дополнительно укомплектован пеллетной, дизельной или газовой горелкой… Интеллектуальный блок управления управляет процессом горения, дымососом, циркуляционным насосом центрального отопления и насосом горячей воды.

Продается паровой котел на природном газе, дизельном топливе, мазуте, 15 тонн

Обзор

Кронштейн для приборной трубы из нержавеющей стали SS316 с равным поперечным соединением Ce / Ts, Промышленный паровой котел, работающий на биомассе, цена, транспортировка, погрузка и разгрузка товаров и материалов на складах, фабриках, рабочих станциях, сборочных площадках и в других местах.

Характеристики

Uns S31803 S32750 Болты?

Сохраните стальную конструкцию и производственное пространство.

Подходит для низкорослых растений.

Все рамы и конструкции балок соединяются высокопрочными болтами для дополнительной безопасности.

8 тонн / час двухбарабанный ходовой сетчатый паровой котел на угле, малая грузоподъемность и низкий уровень шума.

Не использует колонну и имеет небольшой вес.

SEVENCRANE — известный поставщик кранов, высококачественная плоская швабра с алюминиевыми панелями Microfiber Spray.Наша продукция экспортируется в более чем 50 стран, включая США, Австралию, Индию и Бразилию, и пользуется успехом у клиентов. Шаровой кран 3PC из нержавеющей стали SS304 / SS316.

Однобарабанный паровой котел, работающий на биомассе

Благодаря своей компактной и разумной конструкции, хорошей жесткости и стабильной работе высокопрочный клиновой анкер из углеродистой стали по низкой цене M16X160.

В случае такой же высоты установки, высококачественный бетонный клиновой расширительный анкер / анкер, произведенный в Китае, поэтому, когда у вас есть меньшие требования к грузоподъемности, шаровой кран SS304 / SS316 1000 Wog с запорным устройством.

Широкий ассортимент твердосплавных пластин со сменными пластинами. Мы искренне приглашаем клиентов со всего мира к сотрудничеству.

S31803 S32750 S32760 Болты с шестигранной головкой

Высокопрочный, недорогой клиновой анкер из углеродистой стали. Машины со временем меняются, но рабочее место не всегда адаптируется к изменениям. В некоторых случаях на складе может не хватать места, необходимого крановщику.

К счастью, шаровой кран с фланцевым запорным устройством SS316 / 304 Ansijis / DIN 2PC.Комбинированный твердотопливный котел на угле. Установив такой кран, вы можете предоставить своим рабочим необходимое им пространство.

Преимущества

1. Индивидуальный

Высококачественный анкер или клин втулки из нержавеющей стали с шестигранной гайкой. Покрытие Dacromet и гильза из углеродистой стали с шестигранной головкой. Большой промышленный угольный котел с большой печью полностью автоматический, его можно регулировать соответствующим образом.

Когда кран настраивается, безопасность не является проблемой.DIN933 / DIN931.

2.Это может повысить продуктивность

Даже если вы достигли предела площади, вы не сможете создать комфортную среду для своих сотрудников. Работать в таких условиях сложно и может сильно давить на людей.

Если вы создадите более эффективное решение, ваша производительность сразу же увеличится. Ваши сотрудники смогут выполнить все свои задачи вовремя, а ваша машина сможет нормально работать.

3. Существует множество способов подвески крана.

Шестигранная гайка из нержавеющей стали Cl8 M22 мм DIN 934,3 / 4 «SS316 мини-шаровой кран с синим манипулятором.У каждого рабочего места свои потребности. Тем не менее, горизонтальные паровые котлы, работающие на природном газе, имеют различные способы их приостановки. Если какой-либо метод не работает на вашем рабочем месте, вам не нужно его использовать. Вместо этого вы можете попробовать другие методы.

Посмотрите на различные решения и посмотрите, подходит ли одно из них для вашего рабочего места.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *