Драйвер светодиодный схема: Схема драйвера для светодиодной лампы на 220В

Содержание

Схема драйвера для светодиодной лампы на 220В

Неотъемлемой частью любой качественной лампы или светильника на светодиодах является драйвер. Применительно к освещению, под понятием «драйвер» следует понимать электронную схему, которая преобразует входное напряжение в стабилизированный ток заданной величины. Функциональность драйвера определяется шириной диапазона входных напряжений, возможностью регулировки выходных параметров, восприимчивостью к перепадам в питающей сети и эффективностью.

От перечисленных функций зависят качественные показатели светильника или лампы в целом, срок службы и стоимость. Все источники питания (ИП) для светодиодов условно разделяют на преобразователи линейного и импульсного типа. Линейные ИП могут иметь узел стабилизации по току или напряжению. Часто схемы такого типа радиолюбители конструируют своими руками на микросхеме LM317. Такое устройство легко собирается и имеет малую себестоимость. Но, ввиду очень низкого КПД и явного ограничения по мощности подключаемых светодиодов, перспективы развития линейных преобразователей ограничены.

Импульсные драйверы могут иметь КПД более 90% и высокую степень защиты от сетевых помех. Их мощность потребления в десятки раз меньше мощности, отдаваемой в нагрузку. Благодаря этому они могут изготавливаться в герметичном корпусе и не боятся перегрева.

Первые импульсные стабилизаторы имели сложное устройство без защиты от холостого хода. Затем они модернизировались и, в связи с бурным развитием светодиодных технологий, появились специализированные микросхемы с частотной и широтно-импульсной модуляцией.

Схема питания светодиодов на основе конденсаторного делителя

К сожалению, в конструкции дешёвых светодиодных ламп на 220В из Китая не предусмотрен ни линейный, ни импульсный стабилизатор. Мотивируясь исключительно низкой ценой готового изделия, китайская промышленность смогла максимально упростить схему питания. Называть её драйвером не корректно, так как здесь отсутствует какая-либо стабилизация.

Из рисунка видно, что электрическая схема лампы рассчитана на работу от сети 220В. Переменное напряжение понижается RC-цепочкой и поступает на диодный мост. Затем выпрямленное напряжение частично сглаживается конденсатором и через токоограничивающий резистор поступает на светодиоды. Данная схема не имеет гальванической развязки, то есть все элементы постоянно находятся под высоким потенциалом.

В результате частые просадки сетевого напряжения приводит к мерцанию светодиодной лампы. И наоборот, завышенное напряжение сети вызывает необратимый процесс старения конденсатора с потерей ёмкости, а, иногда, становится причиной его разрыва. Стоит отметить, что еще одной, серьезной отрицательной стороной данной схемы является ускоренный процесс деградации светодиодов вследствие нестабильного тока питания.

Схема драйвера на CPC9909

Современные импульсные драйверы для светодиодных ламп имеют несложную схему, поэтому ее можно легко смастерить даже своими руками. Сегодня, для построения драйверов, производится ряд интегральных микросхем, специально предназначенных для управления мощными светодиодами. Чтобы упростить задачу любителям электронных схем, разработчики интегральных драйверов для светодиодов в документации приводят типичные схемы включения и расчеты компонентов обвязки.

Общие сведения

Американская компания Ixys наладила выпуск микросхемы CPC9909, предназначенной для управления светодиодными сборками и светодиодами высокой яркости. Драйвер на основе CPC9909 имеет небольшие габариты и не требует больших денежных вложений. ИМС CPC9909 изготавливается в планарном исполнении с 8 выводами (SOIC-8) и имеет встроенный стабилизатор напряжения.

Благодаря наличию стабилизатора рабочий диапазон входного напряжения составляет 12-550В от источника постоянного тока. Минимальное падение напряжения на светодиодах – 10% от напряжения питания. Поэтому CPC9909 идеальна для подключения высоковольтных светодиодов. ИМС прекрасно работает в температурном диапазоне от -55 до +85°C, а значит, пригодна для конструирования светодиодных ламп и светильников для наружного освещения.

Назначение выводов

Стоит отметить, что с помощью CPC9909 можно не только включать и выключать мощный светодиод, но и управлять его свечением. Чтобы узнать обо всех возможностях ИМС, рассмотрим назначение ее выводов.

  1. VIN. Предназначен для подачи напряжения питания.
  2. CS. Предназначен для подключения внешнего датчика тока (резистора), с помощью которого задаётся максимальный ток светодиода.
  3. GND. Общий вывод драйвера.
  4. GATE. Выход микросхемы. Подает на затвор силового транзистора модулированный сигнал.
  5. PWMD. Низкочастотный диммирующий вход.
  6. VDD. Выход для регулирования напряжения питания. В большинстве случаев подключается через конденсатор к общему проводу.
  7. LD. Предназначен для задания аналогового диммирования.
  8. RT. Предназначен для подключения время задающего резистора.

Схема и ее принцип работы

Типичное включение CPC9909 с питанием от сети 220В показано на рисунке. Схема способна управлять одним или несколькими мощными светодиодами или светодиодами типа High Brightness. Схему можно легко собрать своими руками даже в домашних условиях. Готовый драйвер не нуждается в наладке с учетом грамотного выбора внешних элементов и соблюдением правил их монтажа.

Драйвер для светодиодной лампы на 220В на базе CPC9909 работает по методу частотно-импульсной модуляции. Это означает, что время паузы является постоянной величиной (time-off=const). Переменное напряжение выпрямляется диодным мостом и сглаживается емкостным фильтром C1, C2. Затем оно поступает на вход VIN микросхемы и запускает процесс формирования импульсов тока на выходе GATE. Выходной ток микросхемы управляет силовым транзистором Q1. В момент открытого состояния транзистора (время импульса «time-on») ток нагрузки протекает по цепи: «+диодного моста» – LED – L – Q1 – RS – «-диодного моста». За это время катушка индуктивности накапливает энергию, чтобы отдать её в нагрузку во время паузы. Когда транзистор закрывается, энергия дросселя обеспечивает ток нагрузки в цепи: L – D1 – LED – L. Процесс носит циклический характер, в результате чего ток через светодиод имеет пилообразную форму. Наибольшее и наименьшее значение пилы зависит от индуктивности дросселя и рабочей частоты. Частота импульсов определяется величиной сопротивления RT. Амплитуда импульсов зависит от сопротивления резистора RS. Стабилизация тока светодиода происходит путем сравнения внутреннего опорного напряжения ИМС с падением напряжения на RS. Предохранитель и терморезистор защищают схему от возможных аварийных режимов.

Расчет внешних элементов

Частотозадающий резистор

Длительность паузы выставляют внешним резистором RT и определяют по упрощенной формуле:

tпаузы=RT/66000+0,8 (мкс).

В свою очередь время паузы связано с коэффициентом заполнения и частотой:

tпаузы=(1-D)/f (с), где D – коэффициент заполнения, который представляет собой отношение времени импульса к периоду.

Рекомендованный производителем диапазон рабочих частот составляет 30-120 кГц. Таким образом, сопротивление RT можно найти так: RT=(tпаузы-0,8)*66000, где значение tпаузы подставляют в микросекундах.

Датчик тока

Номинал сопротивления RS задает амплитудное значение тока через светодиод и рассчитывается по формуле: RS=UCS/(ILED+0.5*IL пульс), где UCS – калиброванное опорное напряжение, равное 0,25В;

ILED – ток через светодиод;

IL пульс – величина пульсаций тока нагрузки, которая не должна превышать 30%, то есть 0,3*ILED.

После преобразования формула примет вид: RS=0,25/1.15*ILED (Ом).

Мощность, рассеиваемая датчиком тока, определяется формулой: PS=RS*ILED*D (Вт).

К монтажу принимают резистор с запасом по мощности 1,5-2 раза.

Дроссель

Как известно, ток дросселя не может измениться скачком, нарастая за время импульса и убывая во время паузы. Задача радиолюбителя в том, чтобы подобрать катушку с индуктивностью, обеспечивающей компромисс между качеством выходного сигнала и её габаритами. Для этого вспомним об уровне пульсаций, который не должен превышать 30%. Тогда потребуется индуктивность номиналом:

L=(USLED*tпаузы)/ IL пульс, где ULED – падение напряжения на светодиоде (-ах), взятое из графика ВАХ.

Фильтр питания

В цепи питания установлены два конденсатора: С1 – для сглаживания выпрямленного напряжения и С2 – для компенсации частотных помех. Так как CPC9909 работает в широком диапазоне входного напряжения, то в большой ёмкости электролитического С1 нет нужды. Достаточно будет 22 мкФ, но можно и больше. Емкость металлопленочного С2 для схемы такого типа стандартная – 0,1 мкФ. Оба конденсатора должны выдерживать напряжение не менее 400В.

Однако, производитель микросхемы настаивает на монтаже конденсаторов С1 и С2 с малым эквивалентным последовательным сопротивлением (ESR), чтобы избежать негативного влияния высокочастотных помех, возникающих при переключении драйвера.

Выпрямитель

Диодный мост выбирают, исходя из максимального прямого тока и обратного напряжения. Для эксплуатации в сети 220В его обратное напряжение должно быть не менее 600В. Расчетная величина прямого тока напрямую зависит от тока нагрузки и определяется как: IAC=(π*ILED)/2√2, А.

Полученное значение необходимо умножить на два для повышения надежности схемы.

Выбор остальных элементов схемы

Конденсатор C3, установленный в цепи питания микросхемы должен быть ёмкостью 0,1 мкФ с низким значением ESR, аналогично C1 и C2. Незадействованные выводы PWMD и LD также через C3 соединяются с общим проводом.

Транзистор Q1 и диод D1 работают в импульсном режиме. Поэтому выбор следует делать с учетом их частотных свойств. Только элементы с малым временем восстановления смогут сдержать негативное влияние переходных процессов в момент переключения на частоте около 100 кГц. Максимальный ток через Q1 и D1 равен амплитудному значению тока светодиода с учетом выбранного коэффициента заполнения: IQ1=ID1= D*ILED, А.

Напряжение, прикладываемое к Q1 и D1, носит импульсный характер, но не более, чем выпрямленное напряжение с учетом емкостного фильтра, то есть 280В. Выбор силовых элементов Q1 и D1 следует производить с запасом, умножая расчетные данные на два.

Предохранитель (fuse) защищает схему от аварийного короткого замыкания и должен длительно выдерживать максимальный ток нагрузки, в том числе импульсные помехи.

IFUSE=5*IAC, А.

Установка терморезистора RTH нужна для ограничения пускового тока драйвера, когда фильтрующий конденсатор разряжен. Своим сопротивлением RTH должен защитить диоды мостового выпрямителя от пробоя в начальные секунды работы.

RTH=(√2*220)/5*IAC, Ом.

Другие варианты включения CPC9909

Плавный пуск и аналоговое диммирование

При желании CPC9909 может обеспечить мягкое включение светодиода, когда его яркость будет постепенно нарастать. Плавный пуск реализуется при помощи двух постоянных резисторов, подключенных к выводу LD, как показано на рисунке. Данное решение позволяет продлить срок службы светодиода.

Также вывод LD позволяет реализовывать функцию аналогового диммирования. Для этого резистор 2,2 кОм заменяют переменным резистором 5,1 кОм, тем самым плавно изменяя потенциал на выводе LD.

Импульсное димирование

Управлять свечением светодиода можно путем подачи импульсов прямоугольной формы на вывод PWMD (pulse width modulation dimming). Для этого задействуют микроконтроллер или генератор импульсов с обязательным разделением через оптопару.

Кроме рассмотренного варианта драйвера для светодиодных ламп, существуют аналогичные схемные решения от других производителей: HV9910, HV9961, PT4115, NE555, RCD-24 и пр. Каждая из них имеет свои сильные и слабые места, но в целом, они успешно справляются с возложенной нагрузкой при сборке своими руками.

О драйверах светодиодных светильников — sxemy-podnial.net

Предлагаю вашему вниманию схемы драйверов светодиодных светильников, которые мне пришлось недавно ремонтировать. Начну с простой (фото 1, справа) и схема на рисунке 1.

Светодиодные светильники. Фото 1.Драйвер светодиодного светильника на CL1502. Рис. 1.

В схеме этого драйвера установлена микросхема CL1502. Микросхем с подобными функциями выпущено уже много, и не только в корпусе с 8 ножками. На эту микросхему в интернете есть много технических данных, к примеру в [1]. Собран драйвер по «классической» схеме. Неисправность была в выгорании пары светодиодов. Первый раз просто закоротил их, так как находился вдали от «цивилизации». Тоже сделал и во второй раз. И когда сгорела третья пара, я понял, что жить этому светильнику осталось мало. Простым закорачиванием пар светодиодов, так просто не обойдёшься. Требовалось что-то по-кардинальные. Ранее я изучал схемотехнику и работу подобных микросхем, с целью укоротить светодиодную лампу, в корпусе трубчатой стеклянной люминисцентной 36 Ватт, с длины 120 сантиметров в 90, так как был в наличии такой светильник, установленный над рабочим столом. И всё удалось и работает. А здесь. Насколько я понял работу подобных светильников, с применением таких драйверов, то ничего плохого не должно происходить после закорачивания хотя бы всех светодиодов, кроме последней пары. Ведь всё в них решает датчик тока, в данной схеме это резисторы R3 и R4. Напряжение выделенное этими резисторами, попадая через выводы 7 и 8 микросхемы CL1502 к компаратору выключения силового ключа работают отлично. Но что-то всё же жжёт светодиоды. Но что? Моё предположение — их жжёт сам драйвер! Светодиоды применённые в этом светильнике, похожи на 2835SMDLED (0,5 Вт одного светодиода). И если это действительно они, то заявленная мощность светильника вполне оправдана. Но у меня, сильные подозрения, что в светильнике стоят 3528SMDLED, которые имеют параметры, чуть ли не на порядок ниже. Но понять мне это очень трудно, так как на SMD светодиодах нет обозначений. Что сделал я? Я убрал с платы резистор R4. При этом уменьшился ток через светодиоды и… светодиоды перестали сгорать. Что интересно, в строительном вагончике, в котором стояли три светильника одного типа, последовательно пришлось ремонтировать все три. И везде пришлось снять по одному резистору. И да, везде упал световой поток, хотя глазом это и трудно определить, но если сравнивать, то заметно.

В другом вагончике, было два светильника с внешними размерами 595х595 мм.. И они тоже «горели». В этих светильниках ячейки состояли из четырёх светодиодов в параллели и было таких 28 ячеек. Так как и там была подобная схема (поднять не удалось), то просто выпаял по одному резистору.

В итоге, можно сделать вывод, что ремонт можно выполнять, по подобной методике, то есть уменьшать ток через светодиоды, так как лучше, пусть светят темнее, чем совсем погаснут. Хотя конечно, правильнее поменять все светодиоды на 2835SMDLED, но это при их наличии.

Драйвер светодиодного светильника на B77CI. Рис. 2.

Схема второго драйвера, изображённого на рисунке 2, я «поднял» со светильника, который нашёл в металлоломе, с механическими поломками корпуса. На рисунке 3 схема четырёх плат светодиодов по 9 Вт каждая. Хотел снять светодиоды для запчастей. И даже, не сразу заметил невзрачную коробочку с драйвером. Схема оказалась почти «монстром».

Фонарь светодиодного светильника. Рис. 3.Внешний вид платы драйвера на B77CI. Фото 2.

Наличие двух микросхем, двух мощных полевых транзисторов, двух дросселей и двух электролитических конденсаторов 220 мк х 100 В включенных параллельно, указывало на то, что разработчики поработали на славу. Так же присутствует довольно хорошая схема фильтров (смотрите фото 2). Микросхема DX3360T — это, по всей видимости, стабилизатор напряжения, и возможно, с корректором мощности. Я в интернете нашёл только невзрачную картинку, без описания. А на микросхему B77CI не нашёл ни чего, и названия выводов на схеме ставил, по интуиции. В работе этот драйвер не видел. Но предполагаю хорошую работу. Но если, придётся уменьшать ток через светодиоды, то нужно или убрать с платы один-два резистора Rs4..Rs6, или менять на другие, расчётные.

И ещё. Совсем не понятно, как в подобных светильниках организован отвод тепла от светодиодов. Ведь они запаиваются на платки из фольгированного стеклотекстолита, шириной в 5 мм. и толщиной примерно в 1 мм.? Думаю, что почти ни как. Всё ширпотреб.

Литература:
1. https://www.dianyuan.com/upload/community/2014/04/10/1397117125-79110.pdf

назначение, принцип работы, схема и ремонт

Сейчас уже можно разделить светодиоды на два основных подтипа: индикаторные и осветительные. Осветительные светодиоды – относительно новые элементы светотехники. Первые модели применялись как индикаторы еще лет 30 назад. Но прогресс на месте не стоит. Инженерам удалось получить большую яркость при минимальном размере и потребляемом токе в сравнение с лампами. Кроме того, светодиоды имеют намного большую механическую прочность. Как лампочку их уже не разобьешь.

Светодиодная осветительная продукция серьезно потеснила практически все другие источники света. Светодиоды могут обеспечить освещение не хуже лампового. А их энергоэффективность намного выше. Обычно источники света на основе светодиодов окупаются в течение года. Сейчас их можно встретить в качестве домашнего освещения, уличных фонарей. Они устанавливаются в световое оборудование автомобилей. Даже в мониторах и телевизорах они заменили лампы подсветки.

Назначение.

Светодиод весьма чувствителен к качеству электропитания. Если пониженное напряжение ему не сделает ничего плохого, то повышенные напряжения и токи очень быстро снижают ресурс этих перспективных источников света. Многие видели, наверное, как на автомобилях хаотично моргают огни. Этот светодиод уже отслужил.

Для обеспечения стабильного электропитания (поддержания заданного напряжения и тока) необходима дополнительная электронная схема – блок питания или драйвер питания. Часто его называют led driver.

Принцип работы.

Электронная схема должна обеспечить строго стабилизированные напряжение и ток, подводимые к кристаллу. Небольшое превышение в цепи питания существенно снижает ресурс светоизлучателя.

В простейшем и самом дешевом случае просто ставят ограничительный резистор.

Питание диода через ограничивающий резистор.

Это простейшая линейная схема. Она не способна автоматически поддерживать ток. С ростом напряжения, он будет расти, при превышение допустимого значения произойдет разрушение кристалла от перегрева. В более сложном случае управление реализуется через транзистор. Недостаток линейной схемы – бесполезное рассеивание мощности. С ростом напряжения будут расти и потери. Если для маломощных LED-источников света такой подход еще допустим, то при использовании мощных светоизлучающих диодов такие схемы не используются. Из плюсов только простота реализации, низкая себестоимость, достаточная надежность схемы.

Можно применить импульсную стабилизацию. В простейшем случае схема будет выглядеть так:

Пример.Импульсная стабилизация (упрощенно)

При нажатии на кнопку происходит заряд конденсатора, при отпускании, он отдает накопленную энергию полупроводнику, а тот излучает свет.  При росте напряжения время на зарядку сокращается, при падении – увеличивается. Вот так на кнопку и надо нажимать, поддерживая свечение. Естественно, сейчас это все делает электроника. В источниках питания роль кнопки выполняет транзистор, либо тиристор. Это — принцип ШИМ — широтно-импульсная модуляция. Замыкание происходит десятки, а то и тысячи раз в секунду. КПД ШИМ может достигать 95%.

Категорически не стоит путать светодиодный драйвер и ПРА для люминесцентных ламп, у них разные принципы работы.

Характеристики драйверов, их отличия от блоков питания LED ленты.

Если сравнивать драйвер и блок питания, то у них есть различия в работе. Драйвер – это источник тока. Его задача поддерживать именно определенную силу тока через кристалл или светодиодную линейку.

Задача стабилизированного блока питания в выдаче именно стабильного напряжения. Хотя блок питания – понятие обобщенное.

Источник напряжения применяется в основном со светодиодной лентой, где диоды включены в параллель. Соответственно через них должен проходить равный ток, при неизменном напряжении. При использовании одного светодиода важно обеспечить определенную силу тока через него. Отличия есть, но оба выполняют одну и туже задачу – обеспечение стабильного питания.

Для подключения светодиодной ленты необходимы, как правило, блоки питания, выдающие 12, либо 24 В. Второй параметр – это мощность. Блок питания должен выдавать мощность не равную, а несколько большую, чем мощность подключаемой светодиодной линейки. В противном случае, яркость свечения будет недостаточна. Обычно запас по мощности рекомендуется в пределах 20-30 процентов от суммарной мощности.

При выборе драйвера нужно учесть:

  • Мощность,
  • Напряжение,
  • Предельный ток.

Кроме того, существуют и регулируемые источники питания. Их задача – регулировка яркости освещения. Но различаются принципы – регулировка напряжения, либо силы тока.

Для подключения led-линейки потребуется большая сила тока при неизменном напряжении.

Суммарная мощность будет рассчитываться по формуле P = P(led) × n, где Р – мощность, Р(led) – мощность единичного диода в линейке, n – их количество.

Сила тока через линейку будет рассчитываться по аналогичной формуле.

Если есть желание самостоятельно изготовить источник питания для светодиодов, то самый простой вариант – импульсный без гальванической развязки.

Схема простого led-драйвера без гальванической развязки.

Схема проста и надежна. Делитель основан на емкостном сопротивлении. Выпрямление производится при помощи диодного моста. Электролитический конденсатор (перед L7812) сглаживает пульсации после выпрямления. Конденсатор после L7812 сглаживает пульсации на светодиодах. На работу схемы он не влияет. L7812 – собственно сам стабилизатор. Это импортный аналог советских микросхем серии КРЕНхх. Та же самая схема включения. Характеристики несколько улучшены. Однако предельный ток составляет не более 1.2А. Это не позволит создать мощный светильник. Существуют неплохие варианты готовых источников питания.

Как выбрать драйвер для светодиодов.

От выбора драйвера зависит срок службы светодиодов. При этом светодиод достигает своих номинальных характеристик, так как получает необходимую ему мощность.

В зависимости от степени защиты драйвер можно применять либо дома, либо на улице. Внешне драйвер может быть открытым, в корпусе из перфорированного металла, либо – закрытый, размешенный в герметичной металлической коробке. Для дома достаточно негерметизированного пластикового корпуса, в котором расположен электронный блок.

Сразу стоит учесть, что ограничивающий резистор – это не самый лучший вариант. Он не избавит ни от скачков питающей сети, ни от импульсных помех. Любое изменение напряжения приведет в скачку тока. Линейные стабилизаторы также не являются достойным средством запитки светоизлучающих диодов. Его способности ограничиваются низкой эффективностью.

Выбор драйвера производится только после того, как известна суммарная мощность, схема подключения и количество светодиодов.

Сейчас много подделок и одни и те же по типоразмерам диоды могут обеспечивать разные мощности. Лучше использовать только известные марки электротехнической продукции.

На корпусе драйвера для подключения светодиодов, всегда размещена спецификация. Она включает:

  • класс защищенности от пыли и жидкости,
  • мощность,
  • номинальный стабилизированный ток,
  • рабочее входное напряжение,
  • диапазон выходного напряжения.

Достаточно популярны бескорпусные led-драйверы. Плату потребуется разместить в корпусе. Это необходимо для безопасного использования. Платы больше подходят для радиолюбителей-энтузиастов. У них входное напряжение может быть либо 12 В, либо 220 В.  

Также стоит продумать о размещении драйвера. Температура и влажность влияют на надежность системы освещения.

Не стоит пытаться выжать из источника тока максимум. Это приводит к работе на предельных режимах, соответственно возникает повышенный нагрев. Превышение может вывести стабилизатор из строя.

Виды драйверов.

По типу их можно подразделить на:

Линейные. Они наиболее подходящие, если входное напряжение не стабильно. Отличаются улучшенной стабилизацией. Распространены мало по причине низкого КПД. Выделяет большее количество тепла, подходит для маломощной нагрузки.

Внутреннее устройство драйвера

Внешний вид и схема драйвера LED 1338G7.

Импульсные. Основаны на микросхемах ШИМ. Обладают высоким КПД. Отличаются малым нагревом и длительным сроком службы.

ШИМ-драйвер Recom.

Микросхемы ШИМ создают значительный уровень электромагнитных помех. Людям с кардиостимуляторами не рекомендовано находится в помещениях, где применяются такие драйвера для питания светодиодов.

Драйвер, работающий с диммером. Принцип основан на использовании ШИМ-контроллера. Принцип состоит в том, что регулируется сила тока на светодиодах. Низкокачественные изделия дают эффект мерцания.

Драйвер с диммером.

LED драйвер на 220 В.

Существует немало уже готовых светодиодных драйверов промышленного производства. Естественно, они обладаю различными характеристиками. Их особенность в том, что они питаются от сети 220 В переменного напряжения и могут работать в широком диапазоне питающего напряжения. Задача, у них все та же. Выдать определенную силу тока. Многие промышленные изделия уже имеют гальваническую развязку. Гальваническая развязка предназначена для передачи электроэнергии без непосредственного соединения входной и выходной частей схемы. Это дополнительные очки в плане электробезопасности (простейшей и исторически первой гальванической развязкой считается обычный трансформатор). Обычно они имеют нестабильность не более 3 %. В подавляющем большинстве сохраняют работоспособность от 90-100 Вольт и до 260 Вольт. В магазинах очень часто их могут называть:

  • блок питания (БП),
  • источник тока,
  • адаптер питания,
  • источник питания.

Это все одно и тоже устройство. Продавцы не обязаны обладать техническим образованием.

Рекомендуемые производители светодиодных драйверов.

Многие светодиодные энергосберегающие лампы уже имеют встроенный драйвер. Тем не менее лучше не приобретать безымянную продукцию родом из Китая. Хотя временами и попадаются достойные внимания экземпляры, что в прочем явление редкое. Существует огромное количество поддельных осветителей. Многие модели не имеют гальванической развязки. Это представляет опасность для светодиодов. Такие источники тока при выходе из строя могут дать импульс и сжечь led-ленту.

Но тем не менее рынок в основном занят именно китайской продукцией. Российские поставщики известны не широко. Из них можно ответить продукцию фирм Аргос, Тритон ЛЕД, Arlight, Ирбис, Рубикон. Большинство моделей может работать и в экстремальных условиях.

Из иностранных можно смело выбрать источники тока от Helvar, Mean Well, DEUS, Moons, EVADA Electronics.

Led-драйвер Helvar.

Led-драйвер Mean Well.

Led-драйвер DEUS.

Led-драйвер «Ирбис».

Led-драйвер MOSO.

Из китайских можно доверять MOSO. Возможно появление новых брендов, которые производят конкурентоспособные устройства.

Хорошие рекомендации имеют Texas Instruments (США) и Rubicon (Япония, не путать с «Рубикон» Россия. Это разные марки). Но пока они дороги. 

Схема подключения драйвера к светодиодам.

Перед подключением светодиодов к драйверу необходимо уметь определять его полярность, иными словами, распознавать, где анод (+), где катод (-). Без этого света не будет.

Индикаторные диоды, а также некоторые маломощные осветительные, имеют два вывода.

Выводы светодиода.

Светодиоды в исполнении SMD (поверхностный монтаж) имеют либо 2, либо 4 вывода. В любом случае это анод и катод.

Выводы светодиодов в SMD-исполнении.

В первом случае выводы 3 и 4 могут быть не задействованы. Во втором случае косой срез расположен ближе к катоду. Обратите внимание, единого стандарта нет и возможны различия в полярности.

Поэтому можно либо обратиться к datasheet, либо использовать низковольтный источник постоянного тока и резистор ограничитель. В случае неправильной полярности светодиод не может загореться.

При использовании источника тока схема драйвера для светодиодов будет следующая:

Схема подключения светодиода.

Если у нас источник напряжения, то подключение осуществляется через ограничивающий резистор.

Схема подключения светодиода к источнику
напряжения через ограничитель.

Классическая светодиодная лента построена по такой схеме:

Схема светодиодной линейки.

В этом случае расчет производится по формулам:

Формула связи тока, напряжения, сопротивления.

При подключении важно учитывать:

  • При малой силе тока, мы теряем в яркости, при большой в сроке службы.
  • Напряжение из datasheet указывает падение напряжения при прохождении номинального тока. Этот параметром не основной.
  • Мощным светодиодам требуется и качественное питание, и хорошее охлаждение.

Схемы (микросхемы) светодиодных драйверов.

Как правило драйвера светодиодов строятся на интегральных стабилизаторах (КРЕНхх, либо импортные аналоги) или ШИМ. Схемы достаточно просты.

Использовании микросхем для стабилизации.

Принципиальные схемы светодиодных драйверов.

Существует схема самодельного источника тока на советской микросхеме К142ЕН12А.  Резистор R2 позволяет менять яркость свечения.

Принципиальная схема на отечественных компонентах.

Линейный светодиодный драйвер своими руками.

Эта часть статьи посвящена радиолюбителям.

Оригинальный линейный источник тока на компараторе.

Это весьма интересная схема. В качестве ключевого элемента выступает униполярный (полевой) транзистор. Степенью его открытия управляет микросхема – квадрантный компаратор напряжения. Возможно, эта схема покажется сложной, но тем не менее ее можно смело отнести к линейным источникам тока, так как управление током осуществляется через соединение «исток-сток». Степень открытия зависит от приложенного к затвору напряжения. Регулировка достигается за счет связи одного из входов компаратора и напряжения со стока. VD1 выполняет функцию защиты.

Срок службы светодиодных драйверов.

Как такового определенного срока службы нет, но многие производители готовы дать гарантию сроком в пять лет на свою продукцию. Естественно, при согласовании мощностей. Для того, чтобы источник питания прослужил дольше не следует давать нагрузку, при которой он будет отдавать предельные токи. Если он собран из качественных комплектующих, то он будет стабильно работать достаточно долгое время. Но рабочие температуры могут быть близки к критическим (зависит от схемотехнических решений). Оптимально, если мощность потребителей будет меньше на 20-30 процентов.

Если говорим о самодельном изготовлении, то многое зависит от качества сборки, качества радиодеталей. Интегральные стабилизаторы желательно закреплять на радиатор для обеспечения теплового режима, не следует забывать о про теплопроводящую пасту между корпусом стабилизатора и теплоотводом.

Драйвер для светодиодов своими руками: простые схемы с описанием

Для применения светодиодов в качестве источников освещения обычно требуется специализированный драйвер. Но бывает так, что нужного драйвера под рукой нет, а требуется организовать подсветку, например, в автомобиле, или протестировать светодиод на яркость свечения. В этом случае можно сделать драйвер для светодиодов своими руками.

Как сделать драйвер для светодиодов

В приведенных ниже схемах используются самые распространенные элементы, которые можно приобрести в любом радиомагазине. При сборке не требуется специальное оборудование, — все необходимые инструменты находятся в широком доступе. Несмотря на это, при аккуратном подходе устройства работают достаточно долго и не сильно уступают коммерческим образцам.

Необходимые материалы и инструменты

Для того, чтобы собрать самодельный драйвер, потребуются:

  • Паяльник мощностью 25-40 Вт. Можно использовать и большей мощности, но при этом возрастает опасность перегрева элементов и выхода их из строя. Лучше всего использовать паяльник с керамическим нагревателем и необгораемым жалом, т.к. обычное медное жало довольно быстро окисляется, и его приходится чистить.
  • Флюс для пайки (канифоль, глицерин, ФКЭТ, и т.д.). Желательно использовать именно нейтральный флюс, — в отличие от активных флюсов (ортофосфорная и соляная кислоты, хлористый цинк и др.), он со временем не окисляет контакты и менее токсичен. Вне зависимости от используемого флюса после сборки устройства его лучше отмыть с помощью спирта. Для активных флюсов эта процедура является обязательной, для нейтральных — в меньшей степени.
  • Припой. Наиболее распространенным является легкоплавкий оловянно-свинцовый припой ПОС-61. Бессвинцовые припои менее вредны при вдыхании паров во время пайки, но обладают более высокой температурой плавления при меньшей текучести и склонностью к деградации шва со временем.
  • Небольшие плоскогубцы для сгибания выводов.
  • Кусачки или бокорезы для обкусывания длинных концов выводов и проводов.
  • Монтажные провода в изоляции. Лучше всего подойдут многожильные медные провода сечением от 0.35 до 1 мм2.
  • Мультиметр для контроля напряжения в узловых точках.
  • Изолента или термоусадочная трубка.
  • Небольшая макетная плата из стеклотекстолита. Достаточно будет платы размерами 60х40 мм.

Макетная плата из текстолита для быстрого монтажа

Схема простого драйвера для светодиода 1 Вт

Одна из самых простых схем для питания мощного светодиода представлена на рисунке ниже:

Как видно, помимо светодиода в нее входят всего 4 элемента: 2 транзистора и 2 резистора.

В роли регулятора тока, проходящего через led, здесь выступает мощный полевой n-канальный транзистор VT2. Резистор R2 определяет максимальный ток, проходящий через светодиод, а также работает в качестве датчика тока для транзистора VT1 в цепи обратной связи.

Чем больший ток проходит через VT2, тем большее напряжение падает на R2, соответственно VT1 открывается и понижает напряжение на затворе VT2, тем самым уменьшая ток светодиода. Таким образом достигается стабилизация выходного тока.

Питание схемы осуществляется от источника постоянного напряжения 9 — 12 В, ток не менее 500 мА. Входное напряжение должно быть минимум на 1-2 В больше падения напряжения на светодиоде.

Резистор R2 должен рассеивать мощность 1-2 Вт, в зависимости от требуемого тока и питающего напряжения. Транзистор VT2 – n-канальный, рассчитанный на ток не менее 500 мА: IRF530, IRFZ48, IRFZ44N. VT1 – любой маломощный биполярный npn: 2N3904, 2N5088, 2N2222, BC547 и т.д. R1 – мощностью 0.125 — 0.25 Вт сопротивлением 100 кОм.

Ввиду малого количества элементов, сборку можно производить навесным монтажом:

Еще одна простая схема драйвера на основе линейного управляемого стабилизатора напряжения LM317:

Здесь входное напряжение может быть до 35 В. Сопротивление резистора можно рассчитать по формуле:

R=1,2/I

где I – сила тока в амперах.

В этой схеме на LM317 будет рассеиваться значительная мощность при большой разнице между питающим напряжением и падением на светодиоде. Поэтому ее придется разместить на небольшом радиаторе. Резистор также должен быть рассчитан на мощность не менее 2 Вт.

Более наглядно эта схема рассмотрена в следующем видео:

Здесь показано, как подключить мощный светодиод, используя аккумуляторы напряжением около 8 В. При падении напряжения на LED около 6 В разница получается небольшая, и микросхема нагревается несильно, поэтому можно обойтись и без радиатора.

Обратите внимание, что при большой разнице между напряжением питания и падением на LED необходимо ставить микросхему на теплоотвод.

Схема мощного драйвера с входом ШИМ

Ниже показана схема для питания мощных светодиодов:

Драйвер построен на сдвоенном компараторе LM393. Сама схема представляет собой buck-converter, то есть импульсный понижающий преобразователь напряжения.

Особенности драйвера

  • Напряжение питания: 5 — 24 В, постоянное;
  • Выходной ток: до 1 А, регулируемый;
  • Выходная мощность: до 18 Вт;
  • Защита от КЗ по выходу;
  • Возможность управления яркостью при помощи внешнего ШИМ сигнала (интересно будет почитать, как регулировать яркость светодиодной ленты через диммер).

Принцип действия

Резистор R1 с диодом D1 образуют источник опорного напряжения около 0.7 В, которое дополнительно регулируется переменным резистором VR1. Резисторы R10 и R11 служат датчиками тока для компаратора. Как только напряжение на них превысит опорное, компаратор закроется, закрывая таким образом пару транзисторов Q1 и Q2, а те, в свою очередь, закроют транзистор Q3. Однако индуктор L1 в этот момент стремится возобновить прохождение тока, поэтому ток будет протекать до тех пор, пока напряжение на R10 и R11 не станет меньше опорного, и компаратор снова не откроет транзистор Q3.

Пара Q1 и Q2 выступает в качестве буфера между выходом компаратора и затвором Q3. Это защищает схему от ложных срабатываний из-за наводок на затворе Q3, и стабилизирует ее работу.

Вторая часть компаратора (IC1 2/2) используется для дополнительной регулировки яркости при помощи ШИМ. Для этого управляющий сигнал подается на вход PWM: при подаче логических уровней ТТЛ (+5 и 0 В) схема будет открывать и закрывать Q3. Максимальная частота сигнала на входе PWM — порядка 2 КГц. Также этот вход можно использовать для включения и отключения устройства при помощи пульта ДУ.

D3 представляет собой диод Шоттки, рассчитанный на ток до 1 А. Если не удастся найти именно диод Шоттки, можно использовать импульсный диод, например FR107, но выходная мощность тогда несколько снизится.

Максимальный ток на выходе настраивается подбором R2 и включением или исключением R11. Так можно получить следующие значения:

  • 350 мА (LED мощностью 1 Вт): R2=10K, R11 отключен,
  • 700 мА (3 Вт): R2=10K, R11 подключен, номинал 1 Ом,
  • 1А (5Вт): R2=2,7K, R11 подключен, номинал 1 Ом.

В более узких пределах регулировка производится переменным резистором и ШИМ – сигналом.

Сборка и настройка драйвера

Монтаж компонентов драйвера производится на макетной плате. Сначала устанавливается микросхема LM393, затем самые маленькие компоненты: конденсаторы, резисторы, диоды. Потом ставятся транзисторы, и в последнюю очередь переменный резистор.

Размещать элементы на плате лучше таким образом, чтобы минимизировать расстояние между соединяемыми выводами и использовать как можно меньше проводов в качестве перемычек.

При соединении важно соблюдать полярность подключения диодов и распиновку транзисторов, которую можно найти в техническом описании на эти компоненты. Также диоды можно проверить с помощью мультиметра в режиме измерения сопротивления: в прямом направлении прибор покажет значение порядка 500-600 Ом.

Для питания схемы можно использовать внешний источник постоянного напряжения 5-24 В или аккумуляторы. У батареек 6F22 («крона») и других слишком маленькая емкость, поэтому их применение нецелесообразно при использовании мощных LED.

После сборки нужно подстроить выходной ток. Для этого на выход припаиваются светодиоды, а движок VR1 устанавливается в крайнее нижнее по схеме положение (проверяется мультиметром в режиме «прозвонки»). Далее на вход подаем питающее напряжение, и вращением ручки VR1 добиваемся требуемой яркости свечения.

Список элементов:

Заключение

Первые две из рассмотренных схем очень просты в изготовлении, но они не обеспечивают защиты от короткого замыкания и обладают довольно низким КПД. Для долговременного использования рекомендуется третья схема на LM393, поскольку она лишена этих недостатков и обладает более широкими возможностями по регулировке выходной мощности.

Схема «энергосберегайки» и переделка драйвера в светодиодный

В предыдущих обзорах уже переделывал драйвер от «энергосберегайки» под светодиодный. Думал, что рассмотрел все варианты. Но нет, есть ещё более простой и надёжный, кардинально упрощающий реализацию. Да, он не лишён недостатков. Возможно, для кого-то эти недостатки очень существенны, кому-то пофиг. Если интересно, заходим.
Вот запасы, я их уже показывал.

Нет, это не моё. Просто набрал на работе списанных лампочек на эксперименты.
В первом своём обзоре заказал на пробу только одну «светоматку». После её удачного опробования заказал ещё три (10 Вт и две по 100 Вт холодного и тёплого цвета свечения). Заказал в декабре 2016 года. Через месяц пришли. На дворе 2018-ый год.

Доставка с предысторией.

Трек типа LP00062014671739 отслеживается только до границы.
На тот момент стоваттную матрицу покупал у продавца за US $1.77. За ту цену, что рисует сейчас, покупать не стоит.

Заказал ещё не из-за того, что они такие хорошие, а из-за того, что дешёвые и удобные в использовании. На самом деле «светоматки» ПОСРЕДСТВЕННОГО качества на АЛЮМИНИЕВОЙ подложке. Но если использовать не на всю мощность, то послужат долго.
Стандартный пакет с пупыркой внутри, кинули прямо в ящик. Почта Грузии, однако. Наверное, так удобнее.
Метки маркером это я поставил. Там где заводские метки прицепляться и подпаиваться не очень удобно.

Прозвонил мультиметром и нарисовал.
Все характеристики (размеры в том числе) написаны на странице продавца (магазина).

Извините, что так подробно напоминаю, но многим читателям не нравится, когда я делаю ссылки на свои предыдущие обзоры. Очень неудобно перелистывать туда-сюда. Проще читать последовательным текстом.
Размеры можно «заценить» на фоне более понятных предметов.

Кстати, паяются исключительно.
Вот только радиатор алюминиевый.

А вот и схема «энергосберегайки». Она под номером 1. Схемы у разных производителей несущественно отличаются. Присутствуют упрощения или наоборот добавляются элементы для лучшей и более долговечной работы. Но суть одна.

На первом рисунке (схема №1) собственно схема с элементами (красного цвета), которые нужно убрать. На втором, третьем и четвёртом варианты переделки оконечной части под светодиодный драйвер (схема «допилинга»).
У всех этих схем свои недостатки и достоинства. Но у всех есть одно общее преимущество – ничего сверху дросселя МОТАТЬ НЕ НУЖНО, и один существенный недостаток – НЕТ ГАЛЬВАНИЧЕСКОЙ РАЗВЯЗКИ с электрической сетью.
В схеме №4 пульсации самые минимальные и для глаз и для живучести «светокристаллов», но самые большие потери на выпрямительных диодах.
Схема №2 более экономична в этом плане (потери на выпрямительных диодах в два раза меньше), но требует наличия уже двух «светоматок».
Схема №3 самая простая. Никаких выпрямительных диодов, просто подключаем пару «светоматок» встречно параллельно вместо люминесцентной нагрузки. У этой схемы больше всего побочных эффектов, хотя она самая простая в исполнении и у неё наименьшие потери. Ещё один недостаток этой схемы — в случае порчи одной матрицы, вторая выгорает автоматически из-за высокого обратного напряжения.
Кстати, одновременное использование светодиодов холодного и тёплого свечения позволяет добиться более приятного оттенка.
Уже писал, что поверх обмотки дросселя «энергосберегайки» ничего мотать не нужно. Соответственно не нужно подбирать драйвера с большим окном дросселя. Просто подключаемся к освободившимся контактам на плате драйвера.
В качестве донора использую неисправные люминесцентные лампочки («энергосберегайки»).
Для экспериментов у меня осталось несколько 20-тиваттных драйверов.

Размер окна не позволяет ничего подмотать, использую как есть.

Все драйверы от неисправных лампочек, и не факт, что работают.
Но дефект оказался стандартным – вспухший конденсатор сетевого выпрямителя. Именно поэтому я их давно выпаял у всех четырёх. Ставить лучше заведомо бОльшую ёмкость. Чем больше ёмкость, тем меньше пульсации. Я поставил на 10 мкФ.

Собрал макетку.

Выпрямительный мостик я использовал из позапрошлой лабораторки. Он на КД226-ых. Диоды Шоттки здесь не рулят. Слишком большое обратное напряжение. А они, как правило, низковольтные. У меня есть SR5100, но они только на 100 В.
Включил. Работает.

Проверка на пульсации.

Достал осциллограф. Некоторые моменты лучше отсеять сразу. Посмотрю пульсации. Только факты.
Эта информация чисто ознакомительная, хотя для многих и интересная.
На самих диодах смотреть пульсации бессмысленно.

Проверял по методике из ГОСТа.

Эти пульсации считать бессмысленно, они слишком малы. В данном случае я ловил пульсации частотой 100 Гц. Это НЕ последствия преобразования, там другая частота порядка нескольких десятком кГц. Это результат сглаживания по входу выпрямителя 220 В «энергосберегайки». Не зря поставил такую ёмкость.

Решил глянуть на помехи от преобразователя. Подключил уже другой прибор.


Чисто ознакомительно. Пульсации частотой почти 40 кГц на утомляемость глаз не влияют.

С пульсациями разобрались.
Продолжая традиции своих обзоров, измерил КПД получившейся конструкции.
Для его определения необходимо знать, сколько потребляет от сети, и сколько потребляет «светоматки» по постоянному току. Ничего сложного. Мультиметр и ваттметр мне в помощь.
При напряжении 232 В мощность потребления от сети всего 9,8 Вт. Светильник нагружен лишь на половину своей номинальной мощности. Именно поэтому пульсации оказались настолько малы. Я проверил и других драйверах, других фирм. Приблизительно всё тоже самое.
Я не знаю, как правильно назвать – это свойство или особенность подобных драйверов. Номинальную мощность они отдают при падении напряжения в нагрузке ближе к 100 В. Например, при подключении последовательно двух «светоматок» (падение напряжения около 60 В) мощность возрастает до 14 Вт. Для полноценного использования драйвера с максимальным КПД необходима светодиодная сборка на напряжение никак не менее 100 В.
Продолжаю. Ток через матрицу 0,251 А. Напряжение на «светоматках» я тоже измерил. Оно составило 28,28 В.

Мощность по постоянному току (чисто светодиодная) Р=28,28В*0,251А=7,1Вт.
Ƞ=7,1Вт/9,8Вт*100%=72%
Для самоделки очень даже неплохо. Большая часть полезной энергии теряется на выпрямительных диодах, до 10 %.
По яркости соответствует лампе накаливания 75 Вт. Недогруженные светодиоды поражают своим КПД (об этом напомню чуть позже).
После экспериментирования пощупал самые проблемные места. Транзисторы и дроссель/трансформатор были еле тёплые. За них больше не переживаю. Самым нагретым местом была сама матрица. Но и она не была горячей, рука спокойно терпит. Не мудрено при такой мощности…
Кстати, теплоотводящая подложка светодиодов НЕ соединена ни с каким выводом. Это хорошо с учётом отсутствия гальванической развязкой с сетью.
Повторю ещё один эксперимент. Я его уже проделывал и не один раз.

Зависимость «энергоэффективности» матрицы от мощности (тока).

Принцип прост. Я подаю на матрицу ток через калиброванные промежутки (для удобства восприятия) с блока питания, при этом не забываю про напряжение на матрице (т. к. при увеличении тока, хоть и не намного, оно тоже будет увеличиваться) и освещённость. Все данные свёл в таблицу. Остальные данные в таблице – получены путём расчета (перемножением и делением измеренных величин). Это необходимо для получения более наглядных цифр. Ещё раз повторю, показания люксметра сняты для построения графика, не более того.

Экспериментировал в режиме отсечки по току. Блок питания имеет ограничение по напряжению (30В) и току (10А). В данном случае не хватило напряжения для раскачки матрицы на полную. При этом ток ограничился на величине 0,84А. Напряжение больше не росло. Но динамику понятно и по тем цифрам, что имею.
С помощью полученной таблицы и построю график зависимости «энергоэффективности» матрицы от той мощности (тока), которую через неё пропустил.

Как видно из графика, чем выше мощность, проходящая через матрицу, тем ниже «энергоэффективность». Если постараться сказать проще, чем меньше мощность от номинала, тем бОльшая мощность переходит в свет, а не в тепло.
На этом лабораторную работу можно считать оконченной. Работа проведена, вывод сделан. Перехожу к практическим занятиям.
Напомню, что есть у меня светильник на балконе.

Корпус из жести (сталь), будет служить дополнительным теплоотводом.

Всё лишнее убрал.

Я уже вживлял самодельные светильники. После последней лабораторки даже на место уже повесил. Но вот пришла новая идея, и пришлось всё снова демонтировать.
В качестве радиатора использовать алюминиевый лист (толщиной 2мм) от списанной аппаратуры.

Место крепления матрицы к радиатору необходимо очистить от краски и смазать теплопроводящей смазкой.
Особая красота не требуется. Всё будет скрыто плафоном.
Кроме самого драйвера где-то нужно разместить выпрямитель. Затем подключить всё это через клеммник на балконе. А пока всё выглядит так.

Светит обычно, ничего особенного.

И в сборе.

В заключение немного напомню: паять и клепать лампочки — занятие неблагодарное, хотя и интересное. Заводская пайка конечно же надёжней. Гораздо проще пристроить какую-нибудь готовую светодиодную лампочку. Но самоделки работают намного надёжнее. А если руки чешутся – вообще никто не остановит!
Ещё хотел бы предостеречь. Схема не имеет гальванической развязки с электрической сетью.
В целях безопасности корпус светильника должен быть обязательно заземлён, а все эксперименты должны проводиться с особым вниманием и осторожностью.
Как правильно распорядиться сведениями из моего обзора, каждый решает сам в меру своей испорченности :). Я же при написании своего обзора руководствовался только благими намерениями.
Надеюсь, что хоть кому-то помог. Кому что-то неясно по поводу этой самоделки, задавайте вопросы. С остальным – кидайте в личку, обязательно отвечу.
На этом ВСЁ!
Удачи!

Ремонт драйвера светодиодного светильника своими руками

Содержание статьиПоказать

Светодиоды экономичны и долговечны. Но люстра или фонарь часто перестают гореть, хотя все элементы целы. Чтобы восстановить работоспособность различных устройств, необходим ремонт драйвера светодиодного светильника. В большинстве случаев он и является основной причиной неисправности.

Ремонт драйвера (LED) лампы

Иногда источник света отказывается работать в самый неподходящий момент. Это может произойти из-за его неправильной эксплуатации или по вине производителя (так часто бывает с китайской низкокачественной продукцией).

Самый простой драйвер для светодиодной лампы 220 В часто выполняют на обычных элементах (диодах, резисторах и т. д.). В этой схеме один или несколько светодиодов сразу выходят из строя при пробое конденсатора или одного из диодов моста. Поэтому сначала проверяют эти радиодетали.

Вместо светодиодов временно подключают обычную лампочку на 15-20 ватт (например, от холодильника). Если все детали кроме светодиода целы, она слабо горит.

Второй вариант представляет собой выпрямитель с делителем напряжения, импульсным стабилизатором на микросхеме и разделительным трансформатором. При неисправности люстры проверяют последовательно все элементы. Схема может отличаться от приведенной, но алгоритм поиска такой же.

Схема драйвера светодиодной лампы

Как отремонтировать:

  1. Сначала проверяют, поступает ли на светодиодные матрицы напряжение. Если оно есть, ищут неисправные LED детали и меняют их. Если с напряжением все в порядке, проверяют диоды моста и входные конденсаторы.
  2. Если они тоже целы, измеряют напряжение питания микросхемы (4-я ножка). При его отличии от 15-17 В этот элемент скорее всего неисправен, его следует заменить.
  3. Если микросхема целая и на ее 5 и 6-й ножках есть импульсы (проверяют осциллографом), то «виноваты» трансформатор и его цепи – конденсатор или диоды, подключенные к нему.

Замена электролитических конденсаторов в драйвере для светодиодных светильников.

Многие люди приобретают длинные цепочки светодиодов, укрепленных на гибких подложках. Это LED ленты.

Есть два варианта таких источников:

  • только LED приборы без дополнительных деталей;
  • изделия с подпаянными к каждому элементу или цепочкам из 4-6 светодиодов резисторами, которые рассчитаны так, чтобы при напряжении 12-36 В и номинальном токе осветительные элементы не сгорали.

В обоих случаях часто применяют драйвера, которые уже были рассмотрены выше. Но иногда питание второго варианта LED лент осуществляется с помощью модуля, представляющего собой трансформаторный блок питания.

Cхема простого источника питания.

При ремонте драйвера светодиодного светильника 36 ватт, если ни один светодиод или цепочка не горят, сначала проверяют трансформатор на обрыв. Затем диоды и конденсатор выпрямителя. Детали R1 и C1 в такой схеме портятся очень редко.

Если хоть один или несколько элементов зажглись – напряжение питания поступает. В этом случае проверяют светодиоды и меняют их.

Будет полезно ознакомиться: Ремонт драйвера для светодиодной ленты 12 В 100 Вт.

Читайте также

4 способа ремонта светодиодной ленты

 

Ремонт драйвера (LED) фонарей

Ремонт переносного источника света зависит от его схемотехнического решения. Если фонарь не горит или светит слабо, сначала проверяют элементы питания и меняют их, если это нужно.

После этого в драйверах с аккумуляторами проверяют тестером или мультиметром детали модуля зарядки: диоды моста, входной конденсатор, резистор и кнопку или переключатель. Если все исправно, проверяют светодиоды. Их подключают к любому источнику питания напряжением 2-3 В через резистор 30-100 Ом.

Рассмотрим четыре типичные схемы фонарей и неисправности, возникающие в них. Первые два работают от аккумуляторов, в них вставлен модуль зарядки от сети 220 В.

Схемы аккумуляторного фонарика с вставленным модулем зарядки 220 В.

В первых двух вариантах светодиоды часто перегорают как по вине потребителей, так и из-за неправильного схемотехнического решения. При извлечении фонаря из розетки после зарядки от сети палец иногда соскальзывает и нажимает на кнопку. Если штыри устройства еще не отсоединились от 220 В, возникает бросок напряжения, светодиоды перегорают.

Видео: Как сделать драйвер мощного света.

Во втором варианте при нажатии кнопки аккумулятор подсоединяется к светодиодам напрямую. Это недопустимо, так как они могут выйти из строя при первом же включении.

Ели при проверке выяснилось, что матрицы сгорели – их следует заменить, а фонари доработать. В первом варианте необходимо изменить схему подключения светодиода, показывающего, что аккумулятор заряжается.

Схема драйвера светодиодного фонарика на аккумуляторе с кнопкой.

Во втором варианте вместо кнопки следует установить переключатель, а затем последовательно с каждым источником света припаять по одному добавочному резистору. Но это не всегда возможно, так как часто в фонарях устанавливают светодиодную матрицу. В таком случае к ней следует припаять один общий резистор, мощность которого зависит от типа применяемых LED элементов.

Схема светодиодного фонарика на аккумуляторе с переключателем и последовательно добавленным сопротивлением.

Остальные фонари питаются от батарей. В третьем варианте светодиоды могут сгореть при пробое диода VD1. Если это случилось, надо заменить все неисправные детали и установить дополнительный резистор.

Схема фонарика на батарейках (без добавочного резистора).

Схема фонарика на батарейках (с добавленным в цепь резистором).

Основные элементы последнего варианта фонаря (микросхема, оптрон и полевой транзистор) проверить сложно. Для этого нужны специальные приборы. Поэтому его лучше не ремонтировать, а вставить в корпус другой драйвер.

Читайте также

Разборка и ремонт светодиодного фонарика

 

Ремонт драйвера (LED) светильника

В магазинах можно встретить светодиодные осветительные приборы с регулируемым потоком света. Одна часть таких устройств имеет отдельный пульт. Но почти у всех настольных светильников регулятор ручной, и он встроен в драйвер питания.

Основная схема этих светильников почти ничем не отличается от остальных. Чтобы осуществить ремонт драйвера светодиодной лампы, необходимо действовать по уже указанным алгоритмам.

Рекомендуем к просмотру: Ремонт светодиодного светильника АРМСТРОНГ

LED ДРАЙВЕР

   Мы рассмотрим действительно простой и недорогой мощный светодиодный драйвер. Схема представляет собой источник постоянного тока, что означает, что он сохраняет яркость LED постоянной независимо от того, какое питание вы используете. Ели при ограничении тока небольших сверхярких светодиодов достаточно резистора, то для мощностей свыше 1-го ватта нужна специальная схема. В общем так питать светодиод лучше, чем с помощью резистора. Предлагаемый led драйвер идеально подходит особенно для мощных светодиодов, и может быть использован для любого их числа и конфигурации, с любым типом питания. В качестве тестового проекта, мы взяли LED элемент на 1 ватт. Вы можете легко изменить элементы драйвера на использование с более мощными светодиодами, на различные типы питания — БП, аккумуляторы и др.

Схема электрическая led драйвера

    Технические характеристики led драйвера:

 — входное напряжение: 2В до 18В
 — выходное напряжение: на 0,5 меньше, чем входное напряжение (0.5V падение на полевом транзисторе)
 — ток: 20 ампер 

Детали на схеме:

  R2: приблизительно в 100-омный резистор

   R3: подбирается резистор

   Q2: маленький NPN-транзистор (2N5088BU)

   Q1: большой N-канальный транзистор (FQP50N06L)

   LED: Luxeon 1-ватт LXHL-MWEC

 

Другие элементы драйвера:

   В качестве источника питания использован трансформатор-адаптер, вы можете использовать батареи. Для питания одного светодиода 4 — 6 вольт достаточно. Вот почему эта схема удобна, что вы можете использовать широкий спектр источников питания, и он всегда будет светить одинаково. Радиатор не требуется, так как идёт около 200 мА тока. Если планируется больше тока, вы должны установить LED элемент и транзистор Q1 на радиатор.

Выбор сопротивления R3

 — ток LED устанавливается с помощью R3, он приблизительно равен: 0.5 / R3

 — мощность рассеиваемая на резисторе приблизительно: 0.25 / R3

   В данном случае установлен ток 225 мА с помощью R3 на 2,2 Ом. R3 имеет мощность 0,1 Вт, таким образом, стандартный 0,25 Вт резистор подходит отлично. Транзистор Q1 будет работать до 18 В. Если вы хотите больше, нужно изменить модель. Без радиаторов, FQP50N06L может рассеивать только около 0,5 Вт — этого достаточно для 200 мА тока при 3-х вольтовой разнице между источником питания и светодиодом.

 

 

Функции транзисторов на схеме:

Q1 используется в качестве переменного резистора.
Q2 используется в качестве токового датчика, а R3-это установочный резистор, который приводит к закрыванию Q2, когда течет повышенный ток. Транзистор создаёт обратную связь, которая непрерывно отслеживает текущие параметры тока и держит его точно в заданном значении.

 

   Эта схема настолько проста, что нет смысла собирать её на печатной плате. Просто подключите выводы деталей навесным монтажом.

   Форум по питанию различных светодиодов

 

цепей мощных светодиодных драйверов: 12 шагов (с изображениями)

давайте перейдем к новому!

Первый набор схем представляет собой небольшие вариации сверхпростого источника постоянного тока.

Плюсы:
— стабильная производительность светодиода с любым источником питания и светодиодами
— стоит около $ 1
— всего 4 простых элемента для подключения
— эффективность может быть более 90% (при правильном выборе светодиода и источника питания)
— выдерживает МНОГОЕ мощности, 20 ампер или больше никаких проблем.
— малое падение напряжения — входное напряжение может быть на 0,6 В выше выходного напряжения.
— сверхширокий рабочий диапазон: от 3 В до 60 В на входе

Минусы:
— необходимо заменить резистор для изменения яркости светодиода
— при неправильной настройке он может тратить столько же энергии, сколько метод резистора
— вы должны собрать его самостоятельно (Ой, подождите, это должно быть «профи»).
— ограничение тока немного меняется в зависимости от температуры окружающей среды (также может быть «профи»).

Итак, подведем итог: эта схема работает так же хорошо, как и понижающий импульсный стабилизатор, с той лишь разницей, что она не гарантирует КПД 90%.с другой стороны, это стоит всего 1 доллар.


Сначала простейшая версия:

«Недорогой источник постоянного тока №1»

Эта схема представлена ​​в моем простом проекте с силовыми светодиодами.

Как это работает?

— Q2 (силовой NFET) используется как переменный резистор. Q2 начинается с включения R1.

— Q1 (маленький NPN) используется в качестве датчика перегрузки по току, а R3 — это «чувствительный резистор» или «резистор настройки», который запускает Q1, когда протекает слишком большой ток.

— Основной ток проходит через светодиоды, через Q2 и через R3.Когда через R3 протекает слишком большой ток, Q1 начинает включаться, что начинает отключать Q2. Отключение Q2 уменьшает ток через светодиоды и R3. Поэтому мы создали «петлю обратной связи», которая непрерывно контролирует ток светодиода и постоянно поддерживает его точно на заданном уровне. транзисторы умные, да!

— R1 имеет высокое сопротивление, поэтому, когда Q1 начинает включаться, он легко подавляет R1.

— В результате Q2 действует как резистор, и его сопротивление всегда идеально настроено для поддержания правильного тока светодиода.Любая избыточная мощность сжигается во втором квартале. Таким образом, для максимальной эффективности мы хотим настроить нашу светодиодную цепочку так, чтобы она была близка к напряжению источника питания. Если мы этого не сделаем, все будет нормально, мы просто потратим энергию впустую. это действительно единственный недостаток данной схемы по сравнению с понижающим импульсным стабилизатором!


установка тока!

значение R3 определяет установленный ток.

Расчеты:
— ток светодиода приблизительно равен: 0,5 / R3
— мощность R3: мощность, рассеиваемая резистором, приблизительно равна: 0.25 / R3. выберите номинал резистора, по крайней мере, в 2 раза превышающий расчетную мощность, чтобы резистор не стал горячим.

, поэтому для тока светодиода 700 мА:
R3 = 0,5 / 0,7 = 0,71 Ом. ближайший стандартный резистор 0,75 Ом.
R3 мощность = 0,25 / 0,71 = 0,35 Вт. нам понадобится резистор номиналом не менее 1/2 Вт.


Используемые детали:

R1: малый (1/4 Вт) резистор приблизительно 100 кОм (например, серия Yageo CFR-25JB)
R3: большой (1 Вт +) резистор установки тока. (Хороший 2-ваттный выбор: серия Panasonic ERX-2SJR)
Q2: большой (корпус TO-220) N-канальный полевой транзистор логического уровня (например, Fairchild FQP50N06L)
Q1: маленький (корпус TO-92) NPN транзистор (например: Fairchild 2N5088BU)


Максимальные пределы:

единственное реальное ограничение для цепи источника тока налагается NFET Q2.Q2 ограничивает схему двумя способами:

1) рассеиваемая мощность. Q2 действует как переменный резистор, понижая напряжение источника питания в соответствии с потребностями светодиодов. поэтому Q2 понадобится радиатор, если есть высокий ток светодиода или если напряжение источника питания намного выше, чем напряжение цепочки светодиодов. (Мощность Q2 = падение напряжения * ток светодиода). Q2 может обрабатывать только 2/3 Вт, прежде чем вам понадобится какой-то радиатор. с большим радиатором, эта схема может выдерживать БОЛЬШУЮ мощность и ток — вероятно, 50 Вт и 20 ампер с этим конкретным транзистором, но вы можете просто подключить несколько транзисторов параллельно для большей мощности.

2) напряжение. вывод «G» на Q2 рассчитан только на 20 В, и с этой простейшей схемой, которая ограничивает входное напряжение до 20 В (допустим, 18 В для безопасности). если вы используете другой NFET, обязательно проверьте рейтинг «Vgs».


тепловая чувствительность:

текущая уставка в некоторой степени чувствительна к температуре. это потому, что Q1 является триггером, а Q1 термочувствителен. указанный выше номер i является одним из наименее термочувствительных NPN, которые я смог найти. даже в этом случае, можно ожидать, что текущая уставка снизится на 30% при переходе от -20 ° C до + 100 ° C.Это может быть желаемым эффектом, это может спасти ваш Q2 или светодиоды от перегрева.

Схема светодиодного драйвера 230 В, работа и применение

В этом проекте мы разработали простую схему драйвера светодиодов 230 В, которая может управлять светодиодами непосредственно от сети.

Светодиод — это диод особого типа, используемый в качестве оптоэлектронного устройства. Как и диод с PN-переходом, он проводит при прямом смещении. Однако особенностью этого устройства является его способность излучать энергию в видимой полосе электромагнитного спектра i.е. видимый свет.

Основной задачей при управлении светодиодом является обеспечение почти постоянного тока на входе. Часто светодиод управляется с помощью батарей или устройств управления, таких как микроконтроллеры. Однако у них есть свои недостатки, например — малое время автономной работы и т. Д.

Возможный подход заключается в приведении светодиода в действие с использованием источника питания переменного тока в постоянный. Хотя источник питания переменного тока в постоянный с использованием трансформатора довольно популярен и широко используется для таких приложений, как управление нагрузками, такими как светодиоды, он оказывается довольно дорогостоящим, и, кроме того, невозможно создать слаботочный сигнал с помощью трансформатора.

Принимая во внимание все факторы, здесь мы разработали простую схему, управляющую светодиодом от 230 В переменного тока. Это достигается с помощью источника питания на основе конденсатора. Это недорогая и эффективная схема, которую можно использовать дома.

Связанный пост: Схема биполярного драйвера светодиода

Принцип схемы драйвера светодиода 230 В

Основной принцип, лежащий в основе схемы драйвера светодиода 230 В, — это бестрансформаторный источник питания. Основным компонентом является конденсатор переменного тока класса Х, который может снизить ток питания до подходящей величины.Эти конденсаторы подключаются между линиями и предназначены для цепей переменного тока высокого напряжения.

Конденсатор с номиналом X снижает только ток, а переменное напряжение может выпрямляться и регулироваться в последующих частях схемы. Переменный ток высокого и низкого напряжения преобразуется в постоянный высокий напряжение с помощью мостового выпрямителя. Этот постоянный ток высокого напряжения дополнительно выпрямляется с помощью стабилитрона до постоянного низкого напряжения.

Наконец, на светодиод подается постоянный ток низкого напряжения и низкого тока.

Схема светодиодного драйвера 230 В

Необходимые компоненты

  • 2.Конденсатор из полиэфирной пленки 2 мкФ (225 Дж — 400 В)
  • Резистор 390 кОм (1/4 Вт)
  • Резистор 10 Ом (1/4 Вт)
  • Мостовой выпрямитель (W10M)
  • Резистор 22 кОм (5 Вт)
  • 4,7 мкФ / 400 В Поляризованный конденсатор
  • Резистор 10 кОм (1/4 Вт)
  • Стабилитрон 4,7 В (1N4732A) (1/4 Вт)
  • Поляризованный конденсатор 47 мкФ / 25 В
  • Светодиод 5 мм (красный — рассеянный)

Как спроектировать Схема драйвера светодиода 230 В?

Во-первых, конденсатор 2,2 мкФ / 400 В X-номиналом подключается к источнику питания.Важно выбрать конденсатор с номинальным напряжением выше, чем напряжение питания. В нашем случае напряжение питания 230 В переменного тока. Следовательно, мы использовали конденсатор на 400 В.

Резистор 390 кОм подключен параллельно этому конденсатору для его разряда при отключении питания. Резистор 10 Ом, который действует как предохранитель, подключен между источником питания и мостовым выпрямителем.

Следующая часть схемы — двухполупериодный мостовой выпрямитель. Мы использовали однокристальный выпрямитель W10M.Он способен выдерживать токи до 1,5 Ампер. Выход мостового выпрямителя фильтруется с помощью конденсатора 4,7 мкФ / 400 В.

Для регулирования выхода постоянного тока мостового выпрямителя мы используем стабилитрон. Для этого используется стабилитрон 4,7 В (1N4732A). Перед стабилитроном мы подключили последовательный резистор 22 кОм (5 Вт) для ограничения тока.

Стабилизированный постоянный ток подается на светодиод после его фильтрации с помощью конденсатора 47 мкФ / 25 В.

Как работает схема драйвера светодиода 230 В?

В этом проекте построена простая бестрансформаторная схема драйвера светодиода 230 В.Основными компонентами этого проекта являются конденсатор с номиналом X, стабилитрон и резистор, ограничивающий ток в стабилитроне. Давайте посмотрим, как работает этот проект.

Во-первых, конденсатор 2,2 мкФ с номиналом X (225 Дж — 400 В) ограничивает переменный ток от сети. Чтобы рассчитать этот ток, вы должны использовать емкостное сопротивление конденсатора X-рейтинга.

Формула для расчета емкостного реактивного сопротивления приведена ниже.

Итак, для 2.Конденсатор 2 мкФ, X C можно рассчитать следующим образом.

Итак, согласно закону Ома, ток, который допускает конденсатор, определяется выражением I = V / R.

Следовательно, ток через конденсатор равен = 230 / 1447,59 = 0,158 Ампер = 158 мА.

Это полный ток, который поступает на мостовой выпрямитель. Теперь выходной сигнал мостового выпрямителя фильтруется с помощью конденсатора. Важно выбрать подходящее номинальное напряжение для этого конденсатора.

Вход мостового выпрямителя — 230 В переменного тока, что является среднеквадратичным напряжением.Но максимальное напряжение на входе мостового выпрямителя равно

В MAX = RMS x √2 = 230 x 1,414 = 325,26 В.

Следовательно, вам необходимо использовать конденсатор фильтра с номинальным напряжением 400 В. Выпрямленное напряжение постоянного тока составляет около 305 В. Это должно быть уменьшено до полезного диапазона для включения светодиода. Следовательно, в проекте используется стабилитрон.

Для этого используется стабилитрон 4,7 В. С стабилитроном, который действует как регулятор, связаны три важных фактора: последовательный резистор, номинальная мощность этого резистора и номинальная мощность стабилитрона.

Во-первых, последовательный резистор. Этот резистор ограничивает ток, протекающий через стабилитрон. При выборе последовательного резистора можно использовать следующую формулу.

Здесь V IN — это входное напряжение стабилитрона, равное 305 В.

В Z — это напряжение стабилитрона (которое совпадает с напряжением нагрузки V L ) = 4,7 В.

I L — это ток нагрузки, т.е. ток через светодиод, он равен 5 мА.

I Z — ток через стабилитрон = 10 мА.

Следовательно, значение последовательного резистора R S можно рассчитать следующим образом.

Теперь номинальная мощность этого резистора. Номинальная мощность последовательного резистора очень важна, поскольку она определяет мощность, которую резистор может рассеять. Чтобы рассчитать номинальную мощность последовательного резистора R S , вы можете использовать следующую формулу.

Наконец, номинальная мощность стабилитрона. Вы можете использовать следующую формулу для расчета номинальной мощности стабилитрона.

Основываясь на приведенных выше расчетах, мы выбрали последовательный резистор с сопротивлением 22 кОм с номиналом 5 Вт и стабилитрон 4,7 В с номиналом 1 Вт (на самом деле, стабилитрона на четверть ватта было бы достаточно).

На светодиод подается выпрямленное и регулируемое напряжение с ограниченным током.

Преимущества

  • С помощью этой схемы драйвера светодиодов 230 В мы можем управлять светодиодами непосредственно от основного источника питания.
  • Этот проект основан на безтрансформаторном блоке питания.Следовательно, окончательная сборка не будет большой.
Применение схемы драйвера светодиода 230 В
  1. Эта схема может использоваться для домашних систем освещения.
  2. Может использоваться как индикаторная цепь.
  3. Эту цепь можно зафиксировать с помощью дверного звонка для индикации.
Ограничения цепи драйвера светодиода 230 В
  1. Поскольку здесь напрямую используется источник переменного тока 230 В, эта цепь может быть опасной.
  2. Эта схема лучше всего подходит для бытовых применений с однофазным питанием.Это связано с тем, что в случае трехфазного питания, если какая-либо из фаз случайно касается входной клеммы, это может оказаться довольно опасным.
  3. Конденсатор может вызывать скачки напряжения при колебаниях напряжения в сети.

Усовершенствованная схема управления светодиодным драйвером

Один из первых проектов, которые предпринимают начинающие дизайнеры или инженеры электроники, — это мигание светодиода. Выполнить эту задачу с помощью простого резистора для ограничения тока относительно просто.Многие люди тогда считают, что это стандартное решение для управления светодиодами. Для простых светодиодных индикаторов и освещения с низким энергопотреблением такое линейное управление светодиодами вполне нормально, но для многих приложений требуется другой подход. В этой статье я описываю несколько распространенных альтернативных стратегий и некоторые неортодоксальные методы, которые мы использовали в прошлом для схем светодиодных драйверов. Чтобы узнать, как спроектировать печатную плату для приложений с высокой мощностью, ознакомьтесь с нашей статьей по этой теме здесь.

Основные соображения

Основным соображением при принятии решения о том, как управлять светодиодами, является допустимая потеря мощности.В устройствах с батарейным питанием эта потеря мощности означает сокращение срока службы батареи. В мощных светодиодах это означает выделяемое тепло. Прежде чем выбирать, как управлять светодиодами, имейте представление о том, сколько мощности позволяет рассеивать ваша конструкция. На этом основывается большинство решений.

Еще одно важное соображение — сколько разных светодиодов вы используете. Не только общее количество, но и сколько разных цветов / типов? Чем больше разнообразия, тем сложнее становится согласование прямых напряжений от одной жилы к другой.Понимание общего количества светодиодов также важно для определения управляющего напряжения для их последовательного включения.

Линейный привод

от микроконтроллера

Рисунок 1. Самая упрощенная схема драйвера светодиода. Слаботочным светодиодом можно управлять непосредственно с вывода ввода / вывода микроконтроллера.

Линейная схема привода — это любая цепь, которая рассеивает всю избыточную мощность в виде тепла. Самым простым примером этого является схема светодиод-резистор, о которой говорилось ранее.Если ток, подаваемый на светодиод, минимален, то его обычно можно напрямую управлять выводом микроконтроллера, например Arduino, как показано на рисунке 1. Основным недостатком любой схемы линейного драйвера светодиода является рассеивание избыточной мощности. Также крайне важно обеспечить достаточный запас по напряжению, позволяющий управлять светодиодами.

Рисунок 2: Линейно управляемая светодиодная схема. R1 требуется для рассеивания всей мощности от избыточного напряжения; Выбранный резистор должен обеспечивать безопасное рассеивание мощности.2 * 4 = P = 1W . Рассеивание 1 Вт — это много для одного резистора и требует резистора для поверхностного монтажа размером 2512 или более.

Другой вариант, который мы с большим успехом использовали в схемах линейных светодиодов, — разделение токоограничивающих резисторов. Вместо использования одного резистора 4R, два резистора 2R будут использоваться последовательно, равномерно разделяя рассеиваемую мощность между ними, используя вместо этого резисторы 1210. Это также позволяет стратегически разместить резисторы на плате, равномерно распределяя тепло.На рисунке 6 показано, как разделение резисторов работает с разными светодиодами.

Линейный привод от источника / драйвера постоянного тока

Многие «встроенные» драйверы светодиодов подают постоянный ток на жилу светодиода. Эти драйверы предлагают гораздо больше удобства, чем схемы, управляемые резисторами. Однако важно отметить, что в этих драйверах по-прежнему используется линейная технология. Крайне важно понимать, сколько мощности будет рассеивать драйвер, и убедиться, что она находится в безопасном диапазоне.

Рисунок 3. Линейный драйвер светодиода TI. Хотя эти драйверы добавляют много удобств, они не более эффективны, чем использование стандартной схемы светодиодного резистора.

На рисунке 3 показан пример линейного восьмипроводного драйвера светодиода. Драйвер управляет тремя нитями тех же светодиодов из предыдущей схемы. Температура ограничивает максимальную мощность, которую может рассеять драйвер. При максимальной температуре 100 ° C он может рассеивать около 1 ° C.Максимум 8 Вт. Чип также ограничен максимумом 70 мА на каждую жилу. Чтобы рассчитать мощность, рассеиваемую микросхемой при 70 мА, каждая нить: P = IV, P / 3 = 0,07 * (12-10), P = 0,42 Вт. 0,42 Вт находится в пределах безопасного диапазона для этого чипа, поэтому его можно использовать как есть. Если мощность была слишком высокой, можно установить резистор на каждую жилу. Пока резистор имеет правильный размер, он будет рассеивать часть мощности, в то время как микросхема рассеивает остальную часть. Этот трюк, показанный на рисунке 4, весьма полезен при несбалансированной длине прядей.

Рисунок 4. Линейный драйвер светодиода на основе TI. Микросхема контролирует 8 нитей светодиодов, одна из которых намного короче остальных. Два резистора 100R уравновешивают эту жилу, рассеивая часть избыточного тепла.

Постоянный ток от переключаемого драйвера светодиодов

Импульсный светодиодный драйвер постоянного тока работает аналогично линейному драйверу, за исключением того, что он использует переключаемую топографию. Это переключение позволяет ему работать с КПД выше 80% -90%.Существенным недостатком переключения драйверов является то, что они, как правило, дороги. Наличие на борту любого импульсного источника питания также приводит к нежелательному шуму переключения.

Рис. 5. Схема на базе AL8860 очень эффективно управляет тремя светодиодами.

На рисунке 5 показана схема импульсного драйвера светодиода на основе AL8860. Он питает одножильный светодиод от любого напряжения от 5 до 40 В. В зависимости от подаваемого напряжения и напряжения светодиодов, этот чип может обеспечить до 97% эффективности при токе около 1 А.В идеальных условиях вы можете управлять цепочкой светодиодов с током 1 А, рассеивая при этом менее одной десятой ватта от микросхемы! Это существенное отличие от предыдущих примеров с использованием линейной технологии. Существуют также повышающие-понижающие драйверы, которые принимают 5 В (например) в качестве входа и могут управлять цепями светодиодов до 20 В. Они, как правило, не так эффективны, как выпадающий регулятор, но это все же вариант, который следует рассмотреть.

Пример схемы драйвера светодиодов в реальном мире

Мы с большим успехом использовали необычный метод управления светодиодами.Он сочетает в себе линейный привод и импульсный привод, предлагая преимущества обоих. Это особенно полезно при большом количестве светодиодов разных цветов.

Например, у нас есть 100 светодиодов, каждый из которых работает с током 1 А, с 5 разными цветами. Входное питание — 24 В постоянного тока, цвета регулируются отдельно. Нам нужно запустить 28 красных (прямое напряжение = 2,1 В), 20 желтых (Vf = 2,5 В), 10 желтых (Vf = 2,8 В), 22 зеленых (Vf = 2,5 В) и 20 белых (Vf = 4 В). Да, это крайний пример — как по потребляемой мощности, так и по количеству светодиодов — но недавно мы разработали плату, похожую на эту!

Вот и много драйверов!

При управлении светодиодами с током 1А очевидным первым выбором для их управления является использование схемы импульсного драйвера светодиода.Проблема, возникающая при таком подходе, заключается в том, что при такой высокой мощности переключающие драйверы смогут управлять только одной цепью каждый. Это означает, что нам потребуется много драйверов на этой плате. Чем больше на плате переключающих драйверов, тем больше шума при переключении. Разделение нитей дает:

  1. 11 КРАСНЫЙ, 23,1 В
  2. 11 КРАСНЫЙ, 23,1 В
  3. 6 КРАСНЫЙ, 12,6 В
  4. 9 ЯНТАРНЫЙ, 22,5 В
  5. 9 ЯНТАРНЫЙ, 22,5 В
  6. 2 ЯНТАРНЫЙ, 5 В
  7. 8 ЖЕЛТЫЙ, 22.4V
  8. 2 ЖЕЛТЫЙ, 5,6 В
  9. 8 ЗЕЛЕНЫЙ, 22,5 В
  10. 8 ЗЕЛЕНЫЙ, 22,5 В
  11. 6 ЗЕЛЕНЫЙ, 15 В
  12. 5 БЕЛЫЙ, 20 В
  13. 5 БЕЛЫЙ, 20 В
  14. 5 БЕЛЫЙ, 20 В
  15. , 20V

Мысль о том, что на одной печатной плате установлены 15 различных светодиодных драйверов, работающих в режиме переключения, наверняка вызовет кошмары у любого, кто сталкивается с EMC! Хотя управлять ими в таком виде вполне возможно, для этого потребуется обширная фильтрация, гарантирующая отсутствие связи шума переключения на шинах питания.Для этого проекта на задней стороне платы будет большой радиатор. Хотя мы хотели ограничить выделяемое тепло, у нас была некоторая гибкость в нашем дизайне. Я лучше буду заниматься жарой, чем 15 переключателями!

Линейное питание всех жил от 24 В потребует огромного рассеивания мощности, больше, чем было бы возможно, особенно на коротких жилах. Например, нить номер 6: P = IV = 1A * (24V-5V) = 19W. Удачи вам в поиске стандартного резистора или линейного драйвера для рассеивания 19 Вт мощности!

Альтернативное решение

Мы решили сначала подключить длинные жилы непосредственно от шины 24 В с помощью линейного привода с резисторами.Все цепи 1, 2, 4, 5, 7, 9, 10, 12, 13, 14 и 15 питаются от 24 В. Белые нити рассеивают наибольшую мощность: P = IV = (24-20) * 1 = P = 4W . При использовании резисторов размером 2010 г., каждый из которых может рассеивать 2 Вт (3502, серия CGS), на каждую жилу используются 3 резистора 1,3R, при этом каждый резистор рассеивает около 1,3 Вт. Одна из этих жил показана ниже на рисунке 6.

Рисунок 6. Схема светодиодов с линейным возбуждением, использующая шину 24 В.

Нити 3, 6, 8 и 11 оставлены и слишком короткие для прямого подключения от 24 В.Мы использовали два импульсных понижающих стабилизатора, чтобы понизить напряжение с шины 24 В до шины 6 и 16 В. Шина 16 В напрямую управляет проводами 3 и 11, тогда как шина 6 В управляет 6 и 8.

Рисунок 7. Импульсный регулятор напряжения понижает напряжение до 6 В. Обратите внимание на фильтр CLC на входе, а также на большую выходную емкость. Это предотвращает сопряжение шума переключения с другими регуляторами.

На рис. 7 показана схема импульсного регулятора, понижающего напряжение шины 24 В до 6 В.Эта шина 6 В затем управляет светодиодами точно так же, как шина 24 В. Использование этой комбинации позволяет управлять широким спектром светодиодов с переменным прямым напряжением, сводя к минимуму количество переключаемых регуляторов на плате. Хотя схемы драйвера светодиода рассеивают значительную часть энергии, наше приложение это позволяет.

Заключение

Невозможно иметь универсальный подход к проектированию схем. То же самое и при управлении светодиодами.В этой статье описаны несколько методов, которые можно использовать для управления светодиодами в зависимости от параметров схемы. Если требуется высокая эффективность — как с точки зрения времени автономной работы, так и с точки зрения рассеивания тепла, — очевидным выбором будет импульсный драйвер светодиода с постоянным током. Если простота является ключевой, то подход с линейным приводом может быть хорошим вариантом с использованием резисторов или специального драйвера светодиода. Компания MicroType Engineering имеет многолетний опыт работы со сложными светодиодными приложениями. Свяжитесь с нами, чтобы узнать, как мы можем помочь с вашим следующим дизайном!

Категория:

Схема проектирования

Схема работы и применения светодиодного драйвера

Светоизлучающий диод (LED) — это особый тип диода, который используется в качестве оптоэлектронного устройства.Он проводит при прямом смещении, как диод с p-n переходом. Однако есть особенность этого устройства — способность излучать энергию в видимом диапазоне (видимый свет) электромагнитного спектра.

Сейчас основная проблема заключается в том, что для светодиода требуется постоянное питание, а питание, которое мы получаем, является переменным. Таким образом, чтобы преобразовать источник переменного тока в требуемый вход для светодиода (DC), нам нужна схема драйвера. Часто светодиод приводится в действие батареями или некоторыми управляемыми устройствами, такими как микроконтроллеры.Но у них есть свои недостатки, такие как низкое время автономной работы и т. Д.

Как было сказано ранее, нам нужно преобразовать питание переменного тока в постоянный. Наиболее удобный и распространенный способ сделать это — использовать трансформатор. Но управление нагрузками, такими как светодиоды, было бы дорогостоящим, а также невозможно произвести низкий ток.

Принцип схемы светодиодного драйвера

Принимая во внимание все вышеперечисленные факторы, давайте спроектируем простую и экономичную схему, управляющую светодиодом от бытовой электросети (230 В).Основной принцип, лежащий в основе драйвера светодиода, — это бестрансформаторный источник питания. Основным компонентом является номинальный конденсатор переменного тока, который снижает потребляемый ток до необходимой величины. Эти конденсаторы подключены к высоковольтным цепям переменного тока и, следовательно, линейно.

Конденсатор, используемый здесь, снижает только ток, а затем выпрямление и регулирование напряжения выполняются на более поздней части схемы. Этот высоковольтный переменный ток будет выпрямляться с помощью полноволнового мостового выпрямителя. Полученное постоянное высокое напряжение теперь выпрямляется через стабилитрон при более низком значении напряжения.

Эта выпрямленная и регулируемая комбинация напряжения и тока подается на вход светодиода. Давайте спроектируем схему драйвера для питания 230 вольт, которое приходит к нам домой.

Компоненты, необходимые для схемы драйвера светодиода

  • Резистор 390 кОм
  • Резистор 10 Ом
  • Конденсатор из полиэфирной пленки 2,2 мкФ
  • Мостовой выпрямитель
  • 22 кОм
  • Поляризованный конденсатор 4,7 мкФ / 400 В
  • Резистор 10 кОм
  • Стабилитрон 4,7 В
  • Поляризованный конденсатор 47 мкФ / 25 В
  • 5мм светодиод

Конструкция схемы драйвера светодиода 230 В

Сначала файл 2.Конденсатор номиналом 2 мкФ подключается к сети. Здесь следует отметить, что номинальное напряжение выбранного конденсатора должно быть больше, чем напряжение питания. Так как основное питание дает 230 В, мы взяли конденсатор на 400 В.

Схема драйвера светодиода для сети 230 В

Для разряда конденсатора при отключенном питании параллельно подключен резистор 390кОм. Кроме того, резистор 10 Ом действует как предохранитель, подключенный между источником питания и мостовым выпрямителем.После этого резистора мы подключили двухполупериодный мостовой выпрямитель, способный выдерживать ток 1,5 А. После выпрямления конденсатор 4,7 мкФ используется в качестве фильтра.

Для регулирования выхода постоянного тока мостового выпрямителя мы используем стабилитрон. Используется стабилитрон на 4,7 В (IN4732A). Кроме того, чтобы ограничить значение тока на стабилитроне, мы использовали последовательно включенный резистор 22 кОм. Этот контролируемый постоянный ток подается на светодиод после его фильтрации через конденсаторы емкостью 47 мкФ.

Работа цепи драйвера светодиода 230 В

Здесь сделана простая бестрансформаторная схема драйвера светодиода.Ключевыми компонентами схемы являются номинальный конденсатор, стабилитрон и резистор, уменьшающий ток в стабилитроне.

Во-первых, конденсатор номиналом 2,2 мкФ ограничивает переменный ток от сети. Чтобы рассчитать этот ток, нам нужно использовать емкостное сопротивление конденсатора.

Формула емкостного реактивного сопротивления:

Емкостное реактивное сопротивление X

c = (1 / 2πFC)

Теперь для C = 2,2 мкФ; F = 50 Гц

подставляя значения F&C, получаем

X c = 1447.59

Итак, по закону Ома ток, который допускает конденсатор, равен

.

I = V / R

Следовательно, ток через конденсатор равен

I c = 230 / 1447,59 = 158 мА

Это ток, который поступает в мостовой выпрямитель. Теперь конденсатор используется для фильтрации выхода выпрямителя. Здесь важен выбор соответствующего номинального напряжения этого конденсатора.

Вход мостового выпрямителя — 230 В RMS. Следовательно, максимальное напряжение можно рассчитать как

Vмакс = VRMS x √2

= 230 х 1.414 = 325,26 вольт

Таким образом, мы используем конденсатор фильтра номиналом 400 В. Выход после выпрямления постоянного напряжения составляет около 305 вольт. Чтобы его можно было использовать для освещения светодиода, используется стабилитрон.

Здесь мы используем стабилитрон на 4,7 В. Кроме того, необходимо помнить о трех основных вещах, связанных с стабилитроном, который здесь используется в качестве стабилизатора. Последовательный резистор, номинальная мощность резистора и номинальная мощность стабилитрона.

Во-первых, резистор ограничивает ток, протекающий в стабилитроне.Используемая формула:

R

s = V IN — V Z / (I L + I Z )

Здесь V IN — входное напряжение на стабилитроне = 305 вольт

В Z — напряжение стабилитрона = 4,7 вольт

I L — ток нагрузки, т.е. ток, проходящий через светодиод = 5 мил ампер

I Z — ток стабилитрона = 10 мил Ампер

, поэтому, поместив все вышеуказанные значения в R S , мы получим

R S = 20020 Ом

Давайте теперь вычислим номинальную мощность R S .Это важно для расчета, потому что это говорит о количестве мощности, которое может рассеять сопротивление.

Номинальная мощность R

S = (V IN — V Z ) 2 / R S

= (305-4,7) 2 /20020 = 4,5 Вт

Аналогичным образом мы должны рассчитать номинальную мощность стабилитрона

.

Номинальная мощность стабилитрона = ((V

IN — V Z ) * V Z ) / R S

= ((305-4.7) * 4,7) / 20020 = 0,07 Вт

На основе приведенных выше расчетов можно выбрать резисторы, стабилитрон и т. Д., Чтобы создать эффективную схему драйвера светодиода.

Теперь давайте обсудим несколько преимуществ, недостатков и ограничений схемы, которые обсуждались до сих пор.

Преимущества схемы драйвера светодиода

  • Используя вышеуказанную схему, мы можем управлять светодиодами напрямую от сети.
  • Схема проста и экономична, поскольку представляет собой бестрансформаторный драйвер.

Ограничения цепи драйвера светодиода 230 В

  • Эта цепь может быть опасной, так как здесь используется сеть переменного тока 230 Вольт.
  • Эта схема лучше всего подходит для однофазного питания в домашних условиях. Для трехфазного источника питания, если случайно какая-либо фаза коснется входной клеммы, это может оказаться опасным.
  • В случае колебаний напряжения в сети конденсатор может вызывать скачки напряжения.

Применение схемы драйвера светодиода 230 В

  • Может использоваться в системах домашнего освещения.
  • При необходимости может использоваться как индикаторная цепь.

С помощью этой схемы можно выполнить множество других задач, например, подключить ее к дверному звонку, чтобы было удобно людям, имеющим проблемы со слухом.

Аджай Дирадж

Разработчик технического контента

Нравится:

Нравится Загрузка …

Вы также можете увидеть

Что это и как работает?

Разработка и внедрение технологии светоизлучающих диодов (LED) во всем диапазоне осветительных приложений были захватывающими в последние несколько лет.Несмотря на присущую светодиодам высокую эффективность электрооптического преобразования, светодиодный светильник настолько хорош, насколько хорош его драйвер. Потенциал этой революционной технологии освещения может быть раскрыт только тогда, когда показатели производительности светодиодных драйверов будут последовательно согласованы с электрическими характеристиками светодиодного источника света. Светодиодная система освещения представляет собой синергетическое сочетание источника света, драйверов светодиодов, систем управления температурой и оптики. Поскольку драйверы являются единственным компонентом, который существенно влияет на фотометрические характеристики и качество света светодиодов в системе освещения, они играют решающую роль в более обширных и интенсивных применениях светодиодной технологии.

Что такое светодиодный драйвер?

Драйвер светодиодов — это электронное устройство, регулирующее мощность светодиода или цепочки (или цепочек) светодиодов. Светодиоды представляют собой твердотельные полупроводниковые устройства, пропитанные или легированные слоями для создания p-n-перехода. Когда ток протекает через легированные слои, дырки из p-области и электроны из n-области инжектируются в p-n-переход. Они рекомбинируют, чтобы генерировать фотоны, которые мы воспринимаем как видимый свет. Преобразование тока в световой поток почти линейное, увеличение входного тока позволяет большему количеству электронов и дырок рекомбинировать в p-n-переходе, и, таким образом, генерируется больше фотонов.

В отличие от обычных источников света, которые работают непосредственно от источника переменного тока (AC), светодиоды работают от входа постоянного или модулированного прямоугольного сигнала, поскольку диоды имеют полярность. При вводе сигнала переменного тока светодиод будет гореть только примерно половину времени, когда сигнал переменного тока имеет правильную полярность, и сразу же погаснет при отрицательном смещении. Следовательно, постоянная подача постоянного электрического тока на фиксированный выход или переменный выход в допустимом диапазоне должна применяться к светодиодной матрице для стабильного немигающего освещения.

Драйверы светодиодов

обеспечивают интерфейс между источником питания (линией) и светодиодом (нагрузкой), преобразуя входящую мощность сети переменного тока 50 Гц или 60 Гц при таких напряжениях, как 120 В, 220 В, 240 В, 277 В или 480 В, в регулируемый выходной постоянный ток. Существуют драйверы, предназначенные также для приема других типов источников питания, например, питания постоянного тока от микросетей постоянного тока или питания через Ethernet (PoE). Схема драйвера светодиода должна иметь невосприимчивость к скачкам напряжения и другим помехам в линии переменного тока в пределах заданного расчетного диапазона, а также отфильтровывать гармоники в выходном токе, чтобы они не влияли на качество вывода светодиодного источника света.Драйвер — это не просто преобразователь мощности. Некоторые типы светодиодных драйверов имеют дополнительную электронику для точного управления светоотдачей или для поддержки интеллектуального освещения.

Постоянный ток или постоянное напряжение?

Электрическая цепь, которая регулирует входящую мощность для обеспечения выхода постоянного напряжения, обычно называется источником питания, тогда как драйвер светодиода в строгом смысле слова относится к электрической цепи, которая обеспечивает выход постоянного тока. Сегодня «драйвер светодиода» и «источник питания светодиода» — очень неоднозначные термины, которые используются как синонимы.Несмотря на терминологическую двусмысленность, мы не можем позволить себе игнорировать существенные различия между схемами постоянного тока (CC) и постоянного напряжения (CV) для регулирования нагрузки светодиодов.

Драйверы светодиодов постоянного тока обеспечивают постоянный ток (например, 50 мА, 100 мА, 175 мА, 350 мА, 525 мА, 700 мА или 1 А), независимо от нагрузки по напряжению, на светодиодный модуль в определенном диапазоне напряжений. Драйвер может питать один модуль со светодиодами, подключенными последовательно, или несколько светодиодных модулей, подключенных параллельно.Последовательное соединение является предпочтительным в архитектурах цепей CC, поскольку оно гарантирует, что все светодиоды имеют одинаковый ток, протекающий через их полупроводниковые переходы, а световой поток равномерен через светодиоды. Для параллельного подключения нескольких светодиодных модулей требуется резистор в каждом светодиодном модуле, что приводит к снижению эффективности и плохому согласованию тока. Большинство драйверов CC можно запрограммировать для работы в диапазоне выходного тока для точного сопряжения между драйвером и конкретным светодиодным модулем. Драйверы светодиодов постоянного тока используются, когда световой поток не должен зависеть от колебаний входного напряжения.Они присутствуют во многих типах осветительных приборов общего назначения, таких как потолочные светильники, троферы, настольные / торшеры, уличные фонари и верхние фонари, для которых приоритетными являются высокое качество тока и точный контроль мощности. Драйверы CC поддерживают регулировку яркости как с широтно-импульсной модуляцией (PWM), так и с уменьшением постоянного тока (CCR). Работа источника питания в режиме CC обычно требует защиты от перенапряжения на случай чрезмерного сопротивления нагрузки или при отключении нагрузки.

Драйверы светодиодов постоянного напряжения предназначены для работы светодиодных модулей при фиксированном напряжении, обычно 12 В или 24 В.Каждый светодиодный модуль имеет собственный линейный или импульсный регулятор тока для ограничения тока с целью поддержания постоянного выходного сигнала. Обычно предпочтительно подавать постоянное напряжение на несколько светодиодных модулей или светильников, соединенных параллельно. Максимальное количество светодиодов или светодиодных модулей и прямое напряжение на них не должно превышать мощность источника питания постоянного тока. Цепь CV должна допускать рассеяние мощности при коротком замыкании нагрузки. Ограничители тока обычно имеют тепловое отключение для защиты цепи, когда на ограничитель тока подается напряжение, превышающее максимально допустимое.Драйверы CV часто используются в низковольтных светодиодных осветительных устройствах, которые требуют простоты группового подключения при параллельном управлении, например, для управления светодиодными лентами, светодиодными модулями для световых коробов. Драйверы постоянного напряжения могут быть затемнены только при ШИМ.

Импульсный источник питания (SMPS)

Поскольку светодиоды очень чувствительны к колебаниям тока и напряжения, одна из наиболее важных функций драйвера светодиода заключается в уменьшении колебаний прямого напряжения на полупроводниковом переходе светодиодов.Импульсные источники питания работают путем модуляции электрического сигнала с использованием одного или нескольких переключающих элементов, таких как силовые полевые МОП-транзисторы, на высокой частоте, тем самым генерируя заданную величину мощности постоянного тока при изменении напряжения питания или нагрузки. Импульсные преобразователи, используемые в драйверах светодиодов, требуют, чтобы энергия сохранялась в виде тока с использованием катушек индуктивности и / или в виде напряжения с использованием конденсаторов, чтобы поддерживать выходной ток или напряжение на нагрузке во время цикла включения / выключения. Драйвер светодиодов AC-DC SMPS преобразует мощность переменного тока в мощность постоянного тока, которая затем преобразуется в мощность постоянного тока, способную правильно управлять светодиодами.

Для импульсного преобразования мощности в драйверах светодиодов доступны различные топологии схем для поддержки требований к нагрузке на светодиоды. Среди всех топологий SMPS наиболее часто используются понижающий, повышающий, понижающий-повышающий и обратноходовой типы.

Также известная как понижающий преобразователь, понижающая схема регулирует входное постоянное напряжение до желаемого постоянного напряжения с помощью ряда методов управления током, включая синхронное переключение, гистерезисное управление, управление пиковым током и управление средним током.Понижающая топология предназначена для драйверов светодиодов с питанием от сети, которые необходимы для управления длинной цепочкой светодиодов, при этом напряжение нагрузки поддерживается ниже напряжения питания. Понижающие цепи также часто встречаются в приложениях с низким напряжением, где входное напряжение питания относительно низкое (например, 12 В постоянного тока для автомобильного освещения) и работает только один светодиод. Понижающая топология позволяет создавать схемы с меньшим количеством компонентов, сохраняя при этом высокий КПД (90–95%). Однако напряжение нагрузки понижающей цепи должно быть менее 85% от напряжения питания.Более того, понижающие драйверы светодиодов не обеспечивают изоляцию между входными и выходными цепями.

Повышающий преобразователь предназначен для повышения входного напряжения до более высокого выходного напряжения примерно на 20% или более. Цепи повышения обычно требуют одного индуктора и работают либо в режиме непрерывной проводимости (CCM), либо в режиме прерывистой проводимости (DCM), в зависимости от формы волны тока индуктора. В повышающих преобразователях малой мощности может использоваться накачка заряда, а не катушка индуктивности, в которой используются конденсаторы и переключатели для повышения выходного напряжения выше напряжения питания.Преобразователи на основе индуктивности обладают преимуществом в виде небольшого количества компонентов и высокой эксплуатационной эффективности (более 90%). Недостатком этой топологии является отсутствие изоляции между входными и выходными цепями. Повышающий преобразователь выдает импульсную форму волны, поэтому для уменьшения пульсаций тока требуется большой выходной конденсатор. ШИМ-регулирование яркости является сложной задачей из-за большого выходного конденсатора, а также управления с обратной связью, которое требует большой полосы пропускания для стабилизации преобразователя.

Пониженно-повышающие преобразователи

могут обеспечивать выходное напряжение выше или ниже входного, что делает их идеальными для приложений, в которых входное напряжение растет и падает с большими колебаниями (не более 20%).Колебания входного напряжения такого типа обычно возникают в осветительных устройствах с питанием от аккумуляторных батарей, например, в автомобильном освещении строительной и сельскохозяйственной техники (вилочные погрузчики, тракторы, комбайны, экскаваторы, снегоочистители и т. Д.), А также в грузовых автомобилях и автобусах. Два типа преобразователей, которые часто используются в повышающих понижающих преобразователях, известны как SEPIC (несимметричный преобразователь индуктивности первичной обмотки) и Cuk. Преобразователь SEPIC отличается использованием двух индукторов, предпочтительно двухобмоточного индуктора, который имеет небольшую площадь основания, низкую индуктивность рассеяния и способность увеличивать соединение обмоток для повышения эффективности схемы.В архитектуре SEPIC повышающая секция обеспечивает коррекцию коэффициента мощности (PFC), а понижающая секция выдает напряжение, равное, меньшее или большее, чем входное напряжение, в то время как выходная полярность обеих секций остается одинаковой. Топология Cuk сочетает в себе непрерывный выходной ток понижающего преобразователя и непрерывный входной ток повышающего напряжения, что дает Cuk наилучшие характеристики EMI и позволяет при необходимости уменьшать емкость. Понижающий-повышающий преобразователь представляет собой неизолированную схему драйвера.Как и повышающие преобразователи, повышающие / понижающие преобразователи требуют защиты от перенапряжения для предотвращения повреждений из-за чрезмерно высокого напряжения в случае разомкнутой нагрузки.

Схема обратного переключения — это преобразователь с прерывистой проводимостью, который обеспечивает изоляцию сети переменного тока, накопление энергии и масштабирование напряжения. Он очень похож на повышающий преобразователь, но с разделением индуктивности, образующим трансформатор. Обратный трансформатор с как минимум двумя обмотками не только обеспечивает полную изоляцию между его входной и выходной цепями, но также позволяет подавать более одного выходного напряжения с разной полярностью.Первичная обмотка подключена к входному источнику питания, вторичная обмотка подключена к нагрузке. Магнитная энергия сохраняется в трансформаторе, когда переключатель включен, и в то же время диод имеет обратное смещение (то есть блокируется). Когда переключатель выключен, диод смещен в прямом направлении, и магнитная энергия выделяется током, текущим из вторичной обмотки. В некоторых схемах обратного хода используется третья обмотка, называемая бутстрапом или вспомогательной обмоткой, для питания управляющей ИС. Более точный контроль среднего напряжения на конденсаторе, который используется для поддержания тока в нагрузке светодиода, когда преобразователь находится на первой ступени, требует изолированной обратной связи, обычно через оптрон.Цепи обратного переключения могут быть разработаны для очень широкого диапазона питающих и выходных напряжений с изоляцией от опасно высоких напряжений. Однако эти схемы менее эффективны (75 — 85%, более высокий КПД возможен за счет использования дорогих деталей).

Линейный источник питания

Линейный источник питания использует элемент управления (например, резистивную нагрузку), который работает в своей линейной области для регулирования выхода. В схемах управления светодиодами этого типа напряжение, протекающее через резистор, чувствительный к току, сравнивается с опорным напряжением в контуре обратной связи для создания управляющего сигнала.Контроллер, который работает в линейной области системы обратной связи с обратной связью, регулирует выходное напряжение до тех пор, пока ток, протекающий через чувствительный резистор, не будет соответствовать напряжению обратной связи. Таким образом, ток, подаваемый на цепочку светодиодов, поддерживается до тех пор, пока прямое напряжение не превышает выходное напряжение с ограничением по падению. Линейные драйверы обеспечивают только понижающее преобразование, что означает, что напряжение нагрузки должно поддерживаться ниже, чем напряжение питания. Если напряжение нагрузки выше напряжения питания или напряжение питания сильно колеблется, необходим импульсный стабилизатор.

В приложениях

с питанием от сети переменного тока, которые предъявляют высокие требования к регулированию напряжения, обычно используются переключаемые линейные регуляторы для управления светодиодными лампами с длинной цепочкой светодиодов, соединенных последовательно. Переключаемые линейные регуляторы представляют собой комбинации нескольких линейных регуляторов, которые либо интегрированы, либо каскадированы в модульной форме. Эти линейные регуляторы, обычно разработанные в корпусах ИС для поверхностного монтажа, используются для интеллектуальной регулировки количества подключенных к нагрузке светодиодов в цепочке во время цикла линии питания, чтобы напряжение нагрузки соответствовало мгновенному напряжению сети переменного тока.

Линейные драйверы светодиодов

представляют собой чрезвычайно упрощенное решение, которое устраняет необходимость в громоздких и дорогостоящих катушках, конденсаторах и реактивных (например, индуктивных и / или емкостных) входных фильтрующих элементах EMI / EMC. Значительно небольшое количество деталей и использование твердотельных компонентов позволяет уменьшить размеры переключаемого линейного регулятора до компактной ИС-микросхемы. Это делает линейные драйверы конкурентоспособным кандидатом для светодиодных ламп, стоимость и физические размеры которых являются важными факторами при проектировании.Благодаря способности генерировать резистивную нагрузку диммера, аналогичную лампе накаливания, линейные драйверы светодиодов имеют общую совместимость с существующими диммерами с отсечкой фазы (TRIAC), которые были разработаны для диммирования резистивных нагрузок.

Отличающаяся конкурентоспособностью по цене, невосприимчивостью к электромагнитным помехам / электромагнитным помехам, малой занимаемой площадью и простотой конструкции, топология линейного управления вызывает все больший интерес в отрасли. Однако линейные драйверы борются с присущими им недостатками, которые не позволяют им войти в массовые приложения во многих категориях продуктов.

1. Линейный драйвер светодиода может иметь низкую эффективность, когда напряжение питания значительно превышает напряжение нагрузки.

2. Избыточная мощность выделяется в виде тепловой энергии, что приводит к увеличению тепловой нагрузки на схему драйвера и, скорее всего, на светодиоды, если тепло не рассеивается эффективно.

3. Ограничение необходимости поддерживать напряжение нагрузки ниже, чем напряжение питания в определенном диапазоне, приводит к дополнительному недостатку, заключающемуся в разрешении только ограниченного диапазона напряжения питания.

4. Линейные драйверы, доступные на рынке, представляют собой преимущественно недорогие схемы, которые не уделяют особого внимания устранению мерцания.

5. Неизолированная топология не обеспечивает гальванической развязки от сети переменного тока.

Switched Vs. Линейный

Конструкция драйвера светодиода предполагает множество компромиссов. При выборе между SMPS и линейными драйверами необходимо учитывать стоимость, эффективность, управляемость, срок службы, диммирование, размер, коэффициент мощности, мерцание, вход / выход, изоляцию от сети переменного тока и различные другие факторы.

Импульсные источники питания очевидно более эффективны, чем линейные, из-за их модуляции «0/1» (переключение ВКЛ / ВЫКЛ). Они могут быть разработаны для обеспечения высокой энергоэффективности, а также освещения без мерцания при сохранении высокого коэффициента мощности и низкого общего гармонического искажения (THD). Хотя линейные драйверы светодиодов задумывались как перспективное решение для управления светодиодами, в обозримом будущем SMPS по-прежнему будет предпочтительным решением для управления светодиодами для приложений, где первостепенное значение имеют эффективность, управление освещением, качество света и электрическая безопасность.В частности, цифровая управляемость драйверов SMPS, оснащенных технологией интеллектуальных датчиков и возможностью беспроводного подключения, обещает сделать возможным множество приложений Интернета вещей (IoT). Цифровая модуляция позволяет кодировать данные в двоичном формате для высокоскоростной оптической беспроводной связи (LiFi), что значительно расширяет прикладной потенциал драйверов SMPS.

Тем не менее, привлекательные особенности драйверов SMPS достигаются за счет их зависимости от громоздких, дорогих и ненадежных реактивных компонентов, таких как трансформаторы, катушки индуктивности и конденсаторы.Высокоскоростное переключение вызывает много шума, что приводит к относительно высокому уровню электромагнитных помех, которые необходимо фильтровать и экранировать с помощью дополнительных цепей. Эти дополнительные схемы могут значительно увеличить физические размеры и удвоить общую стоимость драйвера светодиода.

Самым большим недостатком драйверов SMPS, который также является наиболее привлекательной особенностью линейных драйверов, является их надежность. Схема управления SMPS использует большое количество компонентов, включая фильтры, выпрямители, схемы корректора коэффициента мощности (PFC) и т. Д.Сложная конструкция может снизить надежность схемы. Широкое использование алюминиевых электролитических конденсаторов в PFC в качестве компонента накопления энергии вызывает наибольшую озабоченность по поводу надежности драйвера SMPS. Электролитические конденсаторы известны своей высокой емкостью и высоким номинальным напряжением. Тем не менее, электролит в конденсаторе со временем испарится. Скорость испарения линейно зависит от температуры. Высокая температура ускоряет испарение электролита, что вызывает уменьшение емкости и увеличение ESR (эквивалентное последовательное сопротивление).Повышенное ESR приводит к высоким колебаниям выходного напряжения и шуму. А конденсатор в итоге выходит из строя, когда высыхает электролит, что приводит к преждевременному выходу из строя всей системы освещения. Высокоскоростное переключение может вызвать электромагнитные помехи (EMI), которые отрицательно сказываются на окружающих элементах схемы. Это создает дополнительную проблему проектирования, которую необходимо преодолеть. Использование шумового фильтра приводит к увеличению объема и веса, а также стоимости производства.

С другой стороны, линейные драйверы обладают большим потенциалом благодаря ранее упомянутым преимуществам.Как правило, они живут дольше, чем драйверы SMPS, упрощают конструкцию лампы и снижают стоимость, а также значительно сокращают спецификации. Однако сложно разработать линейный драйвер с эффективностью преобразования и подавлением мерцания, сопоставимой со схемами SMPS. Эта технология в настоящее время используется неправомерно. Большинство производителей освещения воспринимают это только как дешевое решение для вождения. Хотя допустимо использовать линейные драйверы в светодиодных светильниках для приложений, где высококачественный свет и изоляция от сети переменного тока не являются главным приоритетом (например,грамм. наружное освещение), некоторые производители пытаются включить это недорогое решение для управления светодиодами в требующие визуального восприятия, чувствительные к безопасности приложения внутреннего освещения без улучшения качества вывода драйвера (контроль мерцания) и повышения электробезопасности и рассеивания тепла в системе освещения.

Бортовой драйвер (DOB)

DOB — это типичная реализация топологии линейного вождения. Светодиодный модуль DOB, также называемый светодиодным двигателем переменного тока, вмещает светодиоды и всю электронику драйвера на печатной плате с металлическим сердечником (MCPCB).Технология DOB использует возможность монтажа микросхем драйвера высокого напряжения (переключаемых линейных регуляторов) на MCPCB. В отличие от схемы драйвера SMPS, которая должна быть установлена ​​на маршрутизируемой печатной плате FR4, эти микросхемы драйвера для поверхностного монтажа могут быть припаяны к монтируемой на светодиоды плате MCPCB без разводки цепи. Это полностью устраняет необходимость в специальной сборке драйверов и, таким образом, обеспечивает компактный форм-фактор. Еще одно преимущество конструкции DOB заключается в том, что отличная теплопроводность MCPCB может способствовать быстрому рассеиванию тепла, выделяемого из-за неэффективного преобразования линейного драйвера.

Энергопотребление

Обработка мощности, которая происходит внутри SMPS, обычно приводит к неравномерному потреблению мощности из-за токовой импульсной модуляции. Способ, которым импульсные регуляторы потребляют импульсы тока из энергосистемы общего пользования, может вызывать изгибы и искажения формы волны тока в линии электропередачи, а также срабатывание предохранителей и автоматических выключателей при уровнях мощности ниже допустимой для линии электропередачи. Наличие этих гармонических искажений и нелинейных нагрузок может привести к различным проблемам, таким как перегрев нейтральных проводников и распределительных трансформаторов, отказ или неисправность оборудования для выработки и распределения электроэнергии, а также помехи в цепях связи и т. Д.С точки зрения энергопотребления, эти вредные помехи от нисходящего электрического оборудования должны быть запрещены. Поэтому коммунальные предприятия предъявляют нормативные требования к коэффициенту мощности (PF) и общему коэффициенту гармонических искажений (THD) электрического оборудования, включая светодиодные светильники с питанием от сети.

Коэффициент мощности — это отношение потребляемой мощности к поставляемой мощности и выражается числом от 0 до 1. У чисто резистивных нагрузок коэффициент мощности равен 1, потому что ток потребляется точно по фазе с линейным напряжением.Тем не менее, реактивные элементы, такие как конденсаторы и катушки индуктивности драйвера светодиода, потребляют дополнительный реактивный ток, который трудно измерить и, следовательно, невозможно для коммунальных предприятий получить прибыль. Что наиболее важно, эта реактивная мощность приведет к тому, что передаваемая мощность (полная мощность) будет больше, чем мощность, фактически необходимая светодиодному светильнику. Это может привести к тому, что инфраструктура коммунального предприятия будет работать с превышением мощности и может привести к потенциальному ущербу, если не будут приняты меры для защиты инфраструктуры от перегрузки дополнительной реактивной мощностью.Чем ближе коэффициент мощности к 1, тем точнее совпадают формы сигналов тока и напряжения. По мере уменьшения коэффициента мощности теряется больше мощности в виде реактивной мощности. В коммерческом и промышленном секторах коммунальные предприятия часто взимают дополнительную плату с конечных пользователей, которые работают с электрооборудованием с низким коэффициентом мощности, чтобы компенсировать возросшие затраты на генерацию и передачу.

Коэффициент мощности светодиодной лампы или светильника стал требованием спецификаций на многих рынках. Директива ЕС требует, чтобы светодиодный продукт с потребляемой мощностью более 25 Вт имел коэффициент мощности выше 0.9. В США и Design Light Consortium (DLC), и Energy Star имеют правила PF, аналогичные европейским. Штат Калифорния имеет четкие правила для значения коэффициента мощности, которое должно быть выше 0,9 для всех уровней мощности светодиодного освещения жилых и коммерческих помещений. Чтобы соответствовать нормативным значениям коэффициента мощности, драйверы светодиодов с питанием от сети, разработанные для сетей переменного тока, должны использовать некоторую форму коррекции коэффициента мощности для поддержания высокого коэффициента мощности в широком диапазоне входных напряжений. Схема коррекции коэффициента мощности (PFC) обычно используется для минимизации реактивной мощности и максимизации доступной мощности от источника и распределительных кабелей.Цепи PFC, которые включают в себя активные и пассивные PFC, формируют и синхронизируют по времени входной ток в синусоидальную форму волны, которая находится в фазе с линейным напряжением.

Общие гармонические искажения (THD) часто возникают одновременно с проблемой низкого коэффициента мощности. THD — это измерение искажения формы волны тока, вызванного нелинейными электрическими нагрузками, такими как нагрузки выпрямителя. Искаженные формы волны тока могут снизить коэффициент мощности и также создать гармонические искажения. Гармонические искажения также возникают, когда нагрузка потребляет ток, не похожий на истинную синусоиду.THD представлен в процентах. Чем ниже значение, тем лучше. Высокий коэффициент нелинейных искажений может вызвать проблемы в оборудовании распределения питания. Поэтому важно, чтобы драйверы светодиодов соответствовали нормативным значениям THD (обычно менее 20%) во всем диапазоне входного напряжения. THD подавляется схемой коррекции коэффициента мощности, которая должна эффективно формировать входной ток, чтобы генерировать минимальную энергию на более высоких частотах.

Регулировка яркости может влиять как на коэффициент мощности, так и на коэффициент нелинейных искажений. Следовательно, необходимо измерять коэффициенты мощности и нелинейные искажения на выходах с полной и низкой яркостью.

Регулятор яркости

Переход от традиционной технологии освещения к твердотельному освещению вызван необходимостью повышения эффективности, контроля и взаимодействия. В основе управления освещением лежит технология затемнения, которая является неотъемлемой функцией систем управления освещением. Одним из преимуществ светодиодов является их способность мгновенно реагировать на изменения потребляемой мощности, которые регулируются драйвером светодиода. Эффективность регулирования яркости светодиодного драйвера становится все более важной, поскольку освещение становится более связным и адаптируемым к потребностям и предпочтениям пользователя.Наиболее часто используемые элементы управления диммером-драйвером включают симистор (триод для переменного тока), 0-10 В и DALI (интерфейс цифрового адресного освещения). Широтно-импульсная модуляция (PWM) и уменьшение постоянного тока (CCR) являются наиболее распространенными методами, используемыми для уменьшения яркости светодиодных нагрузок от драйвера.

Диммеры с фазовым управлением работают путем отключения частей цикла переменного напряжения для управления светоотдачей. Цепи управления фазой включают в себя 2-проводное управление прямой фазой (передний фронт), 2-проводное управление обратной фазой (задний фронт) и 3-проводное управление прямой фазой (передний фронт).Регулировка яркости с управлением фазой часто используется в модернизируемых приложениях, где протягивание новой или дополнительной проводки ответвленной цепи или внутренней проводки управления может быть сложным и дорогим. Однако драйвер светодиода должен быть спроектирован так, чтобы распознавать сигналы напряжения от схемы регулирования яркости и реагировать на них. Неспособность интерпретировать выходной сигнал переменного фазового угла при регулировке яркости может вызвать мерцание и уменьшить диапазон регулировки яркости.

0-10 В — это 4-проводный (горячий и нейтральный, плюс 2 низковольтных управляющих провода) метод диммирования, который иногда называют диммированием 1-10 В, поскольку наиболее типичные диммируемые драйверы 0-10 В могут диммировать только от 100% ( 10 В) до 10% (1 В), а 0 В выключает лампу.В этом методе драйвер является источником тока для сигнала постоянного тока и, таким образом, надежен при диммировании, происходящем в драйвере. Схема управления отправляет управляющие сигналы низкого напряжения для настройки входа на драйвер, изменяя напряжение от 1 В до 10 В постоянного тока. Поскольку управляющий сигнал представляет собой небольшое аналоговое напряжение, длинные участки проводов могут вызвать падение напряжения и вызвать падение уровня сигнала. 0-10V — это универсальный протокол управления в осветительной отрасли, который широко используется в коммерческих осветительных приборах.Однако стандарты диммирования 0-10 В для архитектурных приложений в США не определяют значение минимальной светоотдачи и не учитывают форму кривой диммирования. Это может вызвать несовместимость элементов управления и устройств от разных производителей.

DALI, способный обеспечивать адресацию отдельных устройств и обратную связь по состоянию от нагрузок, обеспечивает большую гибкость в управлении освещением через 4-проводную систему (горячий и нейтральный плюс 2 низковольтных канала передачи данных без топологии).DALI обычно используется там, где стратегия управления требует, чтобы осветительный прибор реагировал более чем на один контроллер (например, переключатель ручного управления и датчик присутствия). DALI — это двунаправленный протокол, и система освещения DALI может управлять до 64 контрольными точками (драйверы, диммеры, реле) без использования центрального блока управления. Протокол DALI использует логарифмическое затемнение, которое обеспечивает 256 шагов яркости со стандартизированной кривой затемнения в диапазоне от 0,1% до 100%.

PWM управляет яркостью светодиода, изменяя рабочий цикл постоянного тока с частотой импульсов, достаточно высокой, чтобы быть незаметным для человеческого глаза.Отношение времени включения к времени выключения определяет воспринимаемую интенсивность света. Широтно-импульсная модуляция поддерживает постоянный прямой ток, что устраняет проблему смещения цвета и, таким образом, является преимуществом для приложений, требующих постоянного CCT в широком диапазоне диммирования. ШИМ-регулировка яркости обычно используется как для статической, так и для динамической регулировки интенсивности с источниками белого света, а также светодиодами RGB. В приложениях для смешивания цветов RGB, затемнение с ШИМ позволяет точно отрегулировать яркость отдельных источников для получения желаемого цвета.Однако переключение на высокой скорости может создавать электромагнитные помехи. Драйверы PWM не могут быть установлены удаленно от источника света, потому что увеличенное расстояние передачи от драйвера к источнику света может мешать высокочастотным, чувствительным ко времени рабочим циклам.

CCR или аналоговое регулирование яркости регулирует интенсивность света путем изменения тока привода постоянного тока, протекающего через светодиод. Поскольку ток изменяется линейно, CCR практически не мерцает. Диммирование с постоянным током также может работать в более широком диапазоне светового потока, чем обычное диммирование с отсечкой фазы.К недостаткам CCR относятся низкая производительность при низких токах (ниже 10%), изменение цвета светодиодов при уменьшении яркости светодиодов до 20% от номинальной мощности и асинхронный отклик при более высоких токах из-за эффекта спада. Схема диммирования CCR может управляться с помощью различных протоколов, таких как 0–10 В, DALI и ZigBee. CCR и PWM могут быть объединены для обеспечения гибридного затемнения, так что можно использовать преимущества обоих методов.

Подавление мерцания

Мерцание — это амплитудная модуляция светового потока, которая может быть вызвана колебаниями напряжения в сети переменного тока, остаточной пульсацией выходного тока, подаваемого на нагрузку светодиода, или несовместимым взаимодействием между схемами диммирования и источниками питания светодиодов.Мерцание может вызывать другие временные световые артефакты (TLA), в том числе стробоскопический эффект (неправильное восприятие движения) и фантомный массив (узор появляется при движении глаз). TLA бывают как видимыми, так и невидимыми. Мерцание, возникающее на частотах 80 Гц и ниже, непосредственно видно глазу, а невидимое мерцание — это временные изменения, возникающие на частотах 100 Гц и выше. Стробоскопический эффект и фантомная матрица обычно возникают в диапазоне частот от 80 Гц до 2 кГц, их видимость варьируется в зависимости от населения.Хотя невидимые TLA не воспринимаются человеческим глазом, они все же могут иметь ряд негативных последствий.

Мерцание и другие TLA — это нежелательные временные паттерны светового потока, которые могут вызывать напряжение глаз, нечеткое зрение, зрительный дискомфорт, снижение зрительной способности и, в некоторых случаях, даже мигрень и светочувствительные эпилептические припадки. Поэтому они являются одними из ключевых факторов при оценке качества света. Целевое использование искусственного освещения играет роль. Различные сценарии освещения могут допускать разный уровень временных световых артефактов.TLA могут быть менее важны для проезжей части, парковки и наружного архитектурного освещения или других приложений, где продолжительность воздействия искусственного света ограничена. Искусственный свет с высоким процентом мерцания не следует использовать как для внешнего, так и для рабочего освещения в домах, офисах, классных комнатах, гостиницах, лабораториях и промышленных помещениях. Освещение без мерцания имеет решающее значение не только для визуальных задач, требующих точного позиционирования глаз и среды, в которой уязвимые группы населения проводят много времени, но и для телевещания высокой четкости, цифровой фотографии и замедленной записи в студиях, стадионах и спортзалах.Видеокамеры могут улавливать TLA так же, как человеческий глаз улавливает эти эффекты.

Ключ к уменьшению мерцания заключается в драйвере светодиода, который предназначен для преобразования коммерческой мощности переменного тока в мощность постоянного тока и фильтрации любых нежелательных пульсаций тока. Достаточно большие пульсации, которые обычно возникают при частоте, в два раза превышающей напряжение сети переменного тока, в постоянном токе, подаваемом на светодиодную нагрузку, приводят к мерцанию и другим визуальным аномалиям с частотой 100/120 Гц. Таким образом, допустимый уровень пульсаций тока в светодиодах, например пульсация ± 15% (всего 30%), должен быть определен в драйверах светодиодов для различных приложений, где мерцание имеет значение.Пульсации можно сгладить, используя конденсатор фильтра. Одной из основных проблем при разработке драйверов является фильтрация пульсаций и гармоник без использования громоздких короткоживущих высоковольтных электролитических конденсаторов на первичной стороне. Светодиодные двигатели переменного тока по своей природе восприимчивы к явлению мерцания, потому что светодиоды фактически работают от того, что по сути является промежуточным напряжением постоянного тока, которое было бы в системе светодиодного освещения на основе SMPS. Быстрое изменение полярности вызывает мерцание интенсивности на частоте, вдвое превышающей синусоидальную частоту переменного тока.Несмотря на простоту конструкции схемы, требуются дополнительные схемы для эффективного уменьшения временных изменений источника питания.

Стандарты ограничения мерцания для различных приложений еще не установлены. IES установила две метрики для количественной оценки мерцания. Процент мерцания измеряет относительное изменение модуляции света (глубину модуляции). Индекс мерцания — это показатель, который характеризует изменение интенсивности по всей периодической форме волны (или скважности для прямоугольных сигналов).Процент мерцания лучше известен обычным потребителям. В целом, 10-процентное мерцание или меньше при 120 Гц или 8-процентное мерцание или меньше при 100 Гц приемлемо для большинства людей, за исключением групп риска, 4-процентное мерцание или меньше при 120 Гц или 3-процентное мерцание или меньше при 100 Гц считается безопасным для всех слоев населения и очень востребованным в приложениях с интенсивным зрением. К сожалению, большое количество светодиодных ламп и светильников, представленных в настоящее время на рынке, имеют высокий процент мерцания. В частности, светодиодные фонари переменного тока имеют мерцание, обычно превышающее 30 процентов при 120 Гц.

Защита цепи

В зависимости от топологии драйвера, конструкции схемы и условий применения драйверы светодиодов могут работать в условиях аномалий нагрузки и ненормальных условий эксплуатации, таких как перегрузка по току, перенапряжение, пониженное напряжение, короткое замыкание, обрыв цепи, неправильная полярность, потеря нейтрали, перегрев и т. Д. Следовательно, драйверы светодиодов должны включать механизмы защиты для решения этих проблем.

Выходное напряжение некоторых драйверов постоянного тока, особенно импульсных повышающих преобразователей, может слишком сильно превышать номинальное напряжение привода из-за отключения нагрузки или чрезмерного сопротивления нагрузки.Защита от разомкнутой цепи или защита от перенапряжения на выходе (OOVP) обеспечивает механизм отключения, который использует стабилитрон для обеспечения обратной связи и проведения выходного тока на землю, когда выходное напряжение превышает определенный предел. Более предпочтительным методом защиты от обрыва цепи является использование схемы активной обратной связи по напряжению для отключения источника питания при достижении точки срабатывания по перенапряжению.

Защита от перенапряжения на входе (IOVP) предназначена для снятия напряжения в цепи управления от перенапряжения в результате операций переключения / изменения нагрузки в электросети, ударов молнии поблизости, ударов молнии непосредственно в систему освещения или электростатического разряда.В линиях переменного тока небольшое, но продолжительное перенапряжение может вызвать высокие токи (импульсы энергии) в драйвере светодиодов и светодиодах, что может привести к выходу из строя драйвера светодиода и интерфейсов управления, а также к преждевременному старению светодиодов. Металлооксидный варистор (MOV) или ограничитель переходного напряжения (TVS) может быть помещен напротив входа для поглощения энергии путем ограничения напряжения. Конденсатор с пластиковой пленкой, который обычно подключается к линии переменного тока, чтобы уменьшить эмиссию электромагнитных помех, также помогает поглощать часть энергии в импульсных импульсах.

Драйверы светодиодов

обычно имеют ограниченный уровень защиты от перенапряжения за счет встроенных схем защиты от перенапряжения. В некоторых приложениях, таких как уличное освещение, к драйверу должны быть добавлены дополнительные устройства защиты от перенапряжения, способные выдерживать многократные скачки или удары, чтобы защитить компоненты, расположенные ниже по потоку, от сильных скачков напряжения. УЗИП должен быть рассчитан на снижение или разрядку высокой энергии импульса минимум 10 кВ и 10 кА в соответствии с ANSI C136.2.

Короткое замыкание на нагрузке линейного источника питания может привести к перегреву, но не влияет на ток, подаваемый на каждый светодиод, поскольку цепи ограничения тока обеспечивают автоматическую защиту от короткого замыкания.Однако в импульсном понижающем стабилизаторе короткое замыкание приведет к выходу из строя светодиода или всего модуля в зависимости от конструкции схемы. Выход из строя одного светодиода обычно минимально влияет на общую светоотдачу. Изменение напряжения можно уравновесить с помощью саморегулирующейся схемы распределения тока, которая по-прежнему распределяет ток равномерно. С другой стороны, короткое замыкание на нагрузке светодиодной цепочки может существенно повлиять на общий световой поток. Механизм обнаружения отказов защиты от короткого замыкания может быть реализован путем контроля рабочего цикла.Короткое замыкание обычно приводит к очень короткому рабочему циклу.

Защита от перегрева для светодиодных систем включает температурную защиту модуля (MTP) и ограничение температуры драйвера (DTL). DTC использует резистор с отрицательным температурным коэффициентом (NTC) для уменьшения выходного тока, когда максимальная температура в точке корпуса драйвера в приложении превышает заранее установленный предел. MTC контролирует температуру светодиодного модуля и взаимодействует с драйвером, который автоматически снижает ток, подаваемый на светодиоды, когда MTC определяет пороговую температуру.DTL также может использоваться в качестве альтернативы MTP, если точка TC драйвера и температура светодиодного модуля могут быть коррелированы.

EMI и EMC

Электромагнитные помехи (EMI), также называемые радиочастотными помехами (RFI), влияют на другие электрические цепи в результате либо электромагнитной проводимости, либо электромагнитного излучения, излучаемого электроникой, такой как драйверы светодиодов, радиоприемники CB и сотовые телефоны. Любой драйвер светодиодов, подключенный к сети переменного тока, должен соответствовать стандартам излучения, таким как определено в IEC 61000-6-3.В схеме управления светодиодами переключение MOSFET обычно является основным источником электромагнитных помех. Компоновка печатной платы с короткими и компактными путями для коммутирующих токов также важна для ограничения электромагнитных помех. В некоторых приложениях требуется входной фильтр для уменьшения высокочастотных гармоник, и конструкция этой схемы имеет решающее значение для поддержания низкого уровня электромагнитных помех. Заземляющий слой на печатной плате должен оставаться сплошным, чтобы избежать создания токовой петли, вызывающей излучение высоких уровней электромагнитных помех. Металлический экран может быть установлен над зоной переключения, чтобы обеспечить защиту от электромагнитного излучения.

Электромагнитная совместимость (ЭМС) — это способность устройства или системы работать в своей электромагнитной среде, не создавая электромагнитных помех, мешающих соседнему оборудованию, или не подвергаясь влиянию электромагнитных помех, излучаемых соседним оборудованием. Эффективность ЭМС драйвера светодиода часто автоматически обеспечивается хорошей схемой защиты от электромагнитных помех. Однако электростатический разряд (ESD) и устойчивость к скачкам напряжения, которые не учитываются в практике EMI, также влияют на характеристики EMC.

Меры безопасности

Безопасность всегда должна оставаться приоритетом номер один при оценке водителя и системы освещения, с которой он работает.Очень желателен светодиодный драйвер с питанием от сети с диэлектрической изоляцией, например, 1500 В RMS (50 или 60 Гц) от входа до выхода. Изоляцию входной / выходной цепи можно выполнить только с помощью трансформатора с первичной и вторичной обмотками с хорошей гальванической развязкой. Выходное напряжение должно быть ниже предела безопасного сверхнизкого напряжения (SELV) 60 В постоянного тока согласно IEC 61140. Однако растет число светодиодных осветительных приборов, которые реализуют неизолированную топологию с целью сокращения затрат.Риск поражения электрическим током является серьезной проблемой для светодиодной продукции, управляемой недорогими линейными регуляторами. Эти цепи не обеспечивают развязку между входными и выходными цепями, а электрическая изоляция систем освещения может быть недостаточно проверена.

Для продуктов с питанием от переменного тока необходимо учитывать вопросы длины пути утечки и зазоров. Длина пути утечки между первичной и вторичной цепями должна соответствовать требованиям к расстоянию, в противном случае возможно поражение электрическим током или возгорание.Необходимо учитывать зазор, который определяется как кратчайшее расстояние между двумя проводящими частями, чтобы предотвратить искрение между электродами, вызванное ионизацией воздуха. Поскольку размеры электронных схем продолжают уменьшаться, хорошая конструкция печатной платы имеет важное значение для схемы драйвера, чтобы не только уменьшить эмиссию электромагнитных помех, но также уменьшить проблемы утечки и зазоров.

Все электропроводящие и прикосновенные части драйвера светодиода класса защиты I с питанием от сети должны быть заземлены.Драйверы светодиодов, предназначенные для работы с системами светодиодного освещения для жилых и коммерческих помещений, обычно относятся к Классу II. Для драйверов светодиодов класса II нет заземления корпуса, но все проводники внутри драйверов класса II должны иметь двойную или усиленную изоляцию, чтобы обеспечить хорошую изоляцию между цепью питания от сети и выходной стороной или металлическим корпусом драйвера.

Температурные характеристики

Драйвер светодиода сконфигурирован для преобразования сетевого напряжения переменного тока в выходное напряжение постоянного тока с максимальной эффективностью, и любая энергия, потерянная в процессе преобразования, будет преобразована в тепло.Это означает, что драйвер светодиода с КПД 90% требует входной мощности 100 Вт / 0,9 = 111 Вт для управления нагрузкой 100 Вт. Среди входной мощности 11 Вт — потери мощности, которые уходят в виде тепла. Это создает высокую тепловую нагрузку на схему драйвера светодиода. Когда драйвер размещен в корпусе светильника, тепловая нагрузка от светодиодов приведет к дополнительному увеличению температуры драйвера. Помимо использования компонентов, рассчитанных на высокие температуры, драйвер должен быть спроектирован так, чтобы отводить тепло от термочувствительных компонентов.Избыточное тепловыделение вызовет проблемы с надежностью компонентов, включая электролитические конденсаторы, которые высыхают под воздействием тепла. Поэтому температура, при которой работает светодиодный драйвер, принципиально важна для определения срока его службы. Для облегчения отвода тепла в драйверах светодиодных светильников высокой мощности используются алюминиевые корпуса, которые могут поставляться с ребрами высокой плотности и теплопроводящей заливкой.

Защита от проникновения

Драйверы светодиодов

для освещения проезжей части, улицы, наружного и ландшафтного освещения должны быть герметизированы для защиты от попадания пыли, влаги, воды и других предметов, которые могут проникнуть внутрь продукции.Высокая степень защиты от проникновения (IP) для светодиодных драйверов имеет решающее значение для использования в помещениях, таких как автомойки, чистые помещения, разливочные и консервные заводы, предприятия пищевой промышленности, фармацевтические предприятия или любое промышленное применение, требующее ежедневного мытья под высоким давлением. Автономные драйверы светодиодов для влажных помещений обычно залиты силиконом, чтобы улучшить целостность корпуса, а также облегчить электрическую изоляцию и управление температурой. Эти драйверы обычно имеют степень защиты IP65, IP66 или IP67.

Место воздействия

Драйверы светодиодов

могут быть установлены удаленно или совместно с корпусами ламп или светильников. В совместно расположенных системах без DOB драйвер должен быть термически изолирован от светодиодов, которые выделяют огромное количество тепла. При проектировании корпуса светильника необходимо учитывать техническое обслуживание драйвера. В удаленных системах драйверы ШИМ могут терять производительность на большом расстоянии. Таким образом, CCR является предпочтительным методом диммирования для удаленных систем.

Описание драйвера автомобильного светодиодного освещения

— Блог о пассивных компонентах

TDK выпустила инструкцию по применению в автомобильном светодиодном освещении, касающуюся использования индукторов.

По мере развития электрификации автомобилей контроль энергопотребления становится все более важным фактором. Технология светодиодного освещения снижает энергопотребление, увеличивает жизненный цикл, обеспечивает свободу дизайна и полный контроль. Теперь он используется в автомобильных функциях, включая фары и внутреннее освещение.TDK Group предлагает обширную линейку силовых индукторов для использования в драйверах светодиодов, оптимизированных для различных систем, включая повышающие, понижающие и повышающие / понижающие типы.

Основная схема Типы, используемые в драйверах светодиодов

Для работы светодиодов необходимы цепи постоянного тока. Преобразователи постоянного тока в постоянный необходимы для обеспечения стабильной подачи электроэнергии от аккумуляторной батареи переменного тока. Обычно используемые преобразователи постоянного тока в постоянный (драйверы светодиодов) подразделяются на повышающие, понижающие и повышающие / понижающие типы в зависимости от количества светодиодов и выбранной системы.Предположим, что напряжение батареи упадет примерно до 6 В, типичное прямое напряжение для одного обычного белого светодиода составляет всего 3,5 В, будет использоваться преобразователь понижающего типа. Если от двух до четырех светодиодов подключены последовательно, используется повышающий / понижающий тип. Когда пять или более светодиодов подключены последовательно, используется повышающий тип. В системе с множеством функций, включая фары, дневные ходовые огни и указатели поворота, эти цепи затем используются в комбинации.

Таблица 1. Типы драйверов светодиодов

Типы схем для высокопроизводительных светодиодных фар

Как правило, в высокопроизводительных светодиодных фарах используются функции переменного светораспределения для изменения диапазона освещения и яркости.
Для изменения яркости и диапазона освещения используются несколько светодиодов. Затем яркость каждого светодиода регулируется для достижения яркости и диапазона освещения. На рисунке 1 показана базовая структура схемы. Напряжение аккумулятора увеличивается примерно до 40-60 В, и понижающий преобразователь подает ток на светодиод.

Рисунок 1. Структура цепи светодиодного освещения для фар

Несколько светодиодов подключены последовательно и параллельно за понижающим преобразователем (Рисунок 2).Ток, протекающий к каждому светодиоду, регулируется индивидуально для изменения яркости, и в крайних случаях загорается только один светодиод, а на выходную катушку индуктивности понижающего преобразователя подается напряжение, близкое к 60 В. В результате при использовании в этом приложении выбирается более высокая сравнительная индуктивность (например, 100 мкГн). Сглаживающий конденсатор, используемый с повышающим преобразователем во входном каскаде, должен поддерживать ток против внезапных переходов, чтобы мгновенно изменять диапазон освещения.Обычно требуемый диапазон емкости для этого сглаживающего конденсатора составляет от 1 мкФ до 10 мкФ при выдерживаемом напряжении 100 В.

Рис. 2. Пример схемы в случае, когда несколько светодиодов подключены последовательно и параллельно

Цепи привода светодиодных фар

Типы

с одной лампой используют один преобразователь и драйвер повышающего / понижающего или повышающего типа. Они используются для однофункционального внешнего освещения автомобилей, внутреннего освещения, информационно-развлекательных систем и т. Д.В многолучевых типах используются два преобразователя: повышающая цепь на переднем конце и понижающая схема или схема постоянного тока на заднем конце. Для внешнего освещения автомобиля, в случае фар, эта конструкция используется для переключения между дальним и ближним светом. Также могут быть добавлены дневные ходовые огни (ДХО). Адаптивные системы переднего освещения также используют два преобразователя: повышающую схему на передней панели и понижающую схему или схему постоянного тока на задней панели. Они используются в системах светодиодных фар, включая основные фары, ДХО, указатели поворота и т. Д.

Таблица 2. Цепи привода светодиодных фар

Примеры схем повышающего преобразователя

Светодиодные фары с одной лампой обладают простыми функциями и используются для переключения между дальним и ближним светом. В этом случае используется повышающий преобразователь мощностью от 15 до 30 Вт. Типичная структура схемы показана ниже. Выходное напряжение определяется в соответствии с количеством последовательно включенных светодиодов и находится в диапазоне примерно от 20 В до 30 В. В случае повышающей схемы потери переключения высоки по сравнению с понижающей схемой и увеличиваются. частота сложная.Наиболее распространенный частотный диапазон составляет от 200 до 400 кГц.

Рисунок 3. Пример схемы повышающего преобразователя

Светодиоды для ДХО и компактного освещения (малой мощности)

В системах с относительно низкой мощностью, включая ДХО, внутреннее освещение, заднее освещение и указатели поворота, используется цепь постоянного тока или схема повышения / понижения. Схема повышения / понижения, используемая в схемах светодиодов, обычно использует схемы SEPIC.

Рисунок 4.Пример цепи SEPIC

На рисунке 4 показан пример схемы SEPIC. Используются две катушки индуктивности (L1 и L2) и конденсатор постоянного тока (C1). Выход регулируется таким же образом, как и обычный повышающий / понижающий преобразователь, и определяется по следующей формуле. В случае обычного повышающего / понижающего преобразователя (схема B) полярности входа и выхода меняются местами, но в случае схемы SEPIC полярности одинаковы. Формула фундаментального отношения показана ниже, а выходное напряжение совпадает с входным напряжением конденсатора (C1).

V0 = Vin D / (1-D) (D: рабочий)
VC1 = Vin
VL2 = VL1
IL2ave = IL1ave (1-D) / D

На основе приведенной выше формулы зависимости теоретически напряжения, подаваемые на L1 и L2 (VL1 и VL2), одинаковы, и можно использовать комбинированную двойную катушку с соотношением обмоток 1: 1 (схема C). В случаях, когда используется двойная катушка, нагрузка на сердечник в два раза больше, чем при использовании одиночной катушки, и требуется индуктор с низкими потерями в сердечнике и высоким наложением постоянного тока. Подходит серия индукторов TDK B82477D *.В этих продуктах используются материалы с низкими потерями в сердечнике DR и контроле в области теплового генерирования.

Драйвер светодиодов

: функции, типы и применение

Драйвер светодиодов

относится к электронному устройству регулировки мощности, которое управляет светодиодной подсветкой или компонентами светодиодного модуля, работающими нормально. Из-за характеристик проводимости PN перехода светодиода диапазон напряжения и тока источника питания, к которому он может адаптироваться, очень узок, и небольшое отклонение может не позволить зажечь светодиод, или световая отдача будет серьезно снижена, или срок службы может сократиться, или чип может сгореть.

I Что такое светодиодный драйвер?

Светодиодный драйвер относится к электронному устройству регулировки мощности, которое управляет светодиодным освещением или компонентами светодиодного модуля, работающими нормально. Из-за характеристик проводимости PN перехода светодиода диапазон напряжения и тока источника питания, к которому он может адаптироваться, очень узок, и небольшое отклонение может не позволить зажечь светодиод, или световая отдача будет серьезно снижена, или срок службы может сократиться, или чип может сгореть.

Объяснение драйверов светодиодов

Каталог

II Что делает светодиодный драйвер?

Текущий источник питания промышленной частоты и обычный аккумуляторный источник питания не подходят для прямого питания светодиодов. Драйверы светодиодов — это такие электронные компоненты, которые могут управлять светодиодами для работы в наилучшем состоянии напряжения или тока.

Поскольку светодиоды практически универсальны в различных областях применения электроники, изменения его силы света, цвета света и управления включением-выключением практически непредсказуемы.Таким образом, драйверы светодиодов становятся практически однозначными сервоустройствами s, благодаря чему члены этого семейства становятся разнообразными.

Простейший драйвер светодиода (если его можно так назвать) может быть одним или несколькими последовательно-параллельными резисторно-конденсаторными компонентами, которые делят ток и делят напряжение в контуре. Это вообще не самостоятельный продукт.

Для более общих коммерческих приложений, требующих стабильного постоянного тока и постоянного выходного напряжения, был сформирован ряд системных решений с возможностью точной регулировки мощности.Реализация этих решений обычно требует более сложной конструкции схемы драйвера светодиодов, ядром которой является интегрированное применение микросхем драйвера светодиодов.

Устанавливая различные вспомогательные схемы на периферии ИС драйвера светодиодов, мы можем создавать решения для различных светодиодных приложений, от подсветки дисплея мобильного телефона и драйверов подсветки кнопок до мощных светодиодных уличных фонарей и больших уличных светодиодных дисплеев.

Рисунок 1.Светодиодный драйвер

Разработкой и поставкой обычных мощных плат драйверов светодиодов обычно занимаются профессиональные компании. Эти компании переупаковывают их в модули и поставляют производителям продукции для светодиодных терминалов. Конструкцию светодиодного драйвера для менее распространенных продуктов для светодиодных терминалов, возможно, придется разработать самостоятельно.

Драйвер светодиодов стал важной частью уникального технического содержания этого прикладного продукта для светодиодных терминалов.Поскольку светодиоды как упакованный продукт находятся на передовом уровне, его технические характеристики были закреплены в светодиодном продукте, и для создания уникального продукта для конечных светодиодных приложений для источника света не так много мест, с которыми мы можем работать, кроме управления светодиодами. функция.

Из-за важности драйвера светодиода в светодиодных прикладных продуктах и ​​широких потребностей пользователей, драйвер светодиода IC , который является сердцем драйвера светодиода, стал ключевым элементом всего технического звена.Таким образом, многие производители или даже перечисленные компании делают драйверы светодиодов в качестве своих основных продуктов для поставки большого количества микросхем драйверов светодиодов для последующих отраслей. Есть много ведущих американских производителей светодиодных драйверов, таких как National Semiconductor, Maxim, Texas Instruments, ON Semiconductor, Linear Technology, Fairchild Semiconductor и так далее.

Источник питания привода светодиода — это преобразователь напряжения, который преобразует источник питания в определенное напряжение и ток, чтобы заставить светодиод излучать свет.В нормальных условиях входная мощность привода светодиода включает в себя высоковольтный переменный ток промышленной частоты (т. Е. Сеть), низковольтный постоянный ток, высоковольтный постоянный ток, низковольтный высокочастотный переменный ток (например, выход электронного трансформатора). и т. д. Выходной сигнал источника питания светодиодного света в основном представляет собой источник постоянного тока, который может изменять напряжение с изменением прямого падения напряжения светодиода.

III Характеристики

В соответствии с правилами энергоснабжения электросети и характеристическими требованиями источника питания светодиодного привода при выборе и проектировании источника питания светодиодного привода необходимо учитывать следующие моменты:

1. Высокая надежность

В особенности, как и у светодиодных уличных фонарей, его неудобно и дорого обслуживать при установке на большой высоте.

2. Высокая эффективность

Светодиоды

являются энергосберегающими продуктами, поэтому КПД источника питания привода должен быть высоким. Для установки блока питания особенно важна структура блока питания привода светодиода в лампе. Кроме того, поскольку световая отдача светодиода уменьшается по мере увеличения температуры светодиода, рассеивание тепла светодиода очень важно.Если эффективность источника питания высока, его энергопотребление невелико, а количество тепла, выделяемого в лампе, мало, что снижает повышение температуры лампы, что способствует задержке затухания света светодиода.

3. Высокий коэффициент мощности

Коэффициент мощности — это требование электросети к нагрузке. Как правило, для электроприборов мощностью ниже 70 Вт обязательных показателей нет. Хотя более низкий коэффициент мощности одного электроприбора с малой мощностью мало влияет на электросеть, если все светятся ночью, аналогичные нагрузки будут слишком сконцентрированными, что вызовет серьезное загрязнение электросети.

Сообщается, что в ближайшем будущем могут появиться определенные требования к индексам для коэффициентов мощности источников питания светодиодов от 30 до 40 Вт.

4. Способы вождения

Существует два распространенных способа вождения:

(1) Источник постоянного напряжения для нескольких источников постоянного тока, и каждый источник постоянного тока индивидуально подает питание на каждый светодиод. Таким образом, комбинация является гибкой, и выход из строя одного светодиода не повлияет на работу других светодиодов, но стоимость будет немного выше.

(2) Прямой Источник постоянного тока , со светодиодами, включенными последовательно или параллельно. Его преимущество в том, что стоимость немного ниже, но гибкость низкая, и он должен решать проблему отказа определенного светодиода, не влияя на работу других светодиодов.

Рисунок 2. Драйвер светодиода постоянного напряжения

Эти две формы сосуществуют некоторое время. Режим питания с многоканальным выходом постоянного тока будет лучше с точки зрения стоимости и производительности, что может стать основным направлением в будущем.

5. Защита от перенапряжения

Способность светодиодов противостоять скачкам напряжения относительно низкая, особенно способность противостоять обратному напряжению. Итак, важно усилить защиту в этой области.

Некоторые светодиодные фонари устанавливаются на открытом воздухе, например, светодиодные уличные фонари. Из-за появления нагрузки на сеть и возникновения ударов молнии в систему электросети будут проникать различные скачки, а некоторые выбросы вызовут повреждение светодиода. Следовательно, источник питания привода светодиодов должен обладать способностью подавлять проникновение скачков напряжения и защищать светодиод от повреждений.

6. Функция защиты

В дополнение к общей функции защиты источника питания светодиодов, лучше добавить отрицательную обратную связь по температуре светодиода к выходному постоянному току, чтобы предотвратить слишком высокую температуру светодиода.

7. С точки зрения защиты лампа устанавливается снаружи, конструкция источника питания должна быть водонепроницаемой и влагонепроницаемой, а внешняя оболочка должна быть светостойкой.

8. Срок службы источника питания привода должен соответствовать сроку службы светодиода.

9. Требования техники безопасности и электромагнитной совместимости

С расширением применения светодиодов мощность привода светодиода будет все более подходить для требований светодиодов.

IV Типы драйверов светодиодов

1. Согласно режиму привода

(1) Драйвер постоянного тока

1) Выходной ток схемы возбуждения светодиода постоянного тока постоянный, но выходное постоянное напряжение изменяется в определенном диапазоне с изменением сопротивления нагрузки.Чем меньше сопротивление нагрузки, тем ниже выходное напряжение. Чем больше сопротивление нагрузки, тем выше выходное напряжение;

2) Допускается короткое замыкание нагрузки в цепи постоянного тока, но нагрузка не может быть полностью отключена.

3) Идеально подходит для схемы драйвера светодиода с постоянным током для управления светодиодами, но это относительно дорого.

4) Обратите внимание на максимально допустимые значения тока и напряжения, которые ограничивают количество используемых светодиодов;

(2) Регулируемый светодиодный драйвер

1) Когда определены различные параметры в цепи регулятора напряжения, выходное напряжение фиксируется, но выходной ток изменяется с увеличением или уменьшением нагрузки;

2) В цепи регулятора напряжения отключение нагрузки допускается, но категорически запрещается замыкать нагрузку полностью.

3) Светодиод приводится в действие схемой управления светодиодами, стабилизирующей напряжение, и каждая цепочка должна быть дополнена подходящим резистором, чтобы сделать яркость каждой цепочки светодиодов средней;

4) На яркость влияют изменения напряжения из-за выпрямления.

2. В соответствии со схемой

(1) Метод понижения конденсатора

Когда конденсатор используется для снижения напряжения из-за эффекта зарядки и разрядки, мгновенный ток через светодиод чрезвычайно велик, и микросхема легко повреждается.На метод легко влияют колебания напряжения сети, а источник питания имеет низкий КПД и низкую надежность.

(2) Метод понижения резистора

На понижение резистора сильно влияет изменение напряжения сети , и сделать регулируемый источник питания непросто. Понижающий резистор потребляет большую часть энергии, поэтому этот способ питания имеет низкий КПД, а система — невысокую надежность.

(3) Обычный метод понижения трансформатора

Блок питания небольшой, тяжелый и имеет низкий КПД источника питания, обычно от 45% до 60%, поэтому он обычно имеет низкую надежность и редко используется.

(4) Метод понижения электронного трансформатора

Эффективность источника питания низкая, а диапазон напряжений невелик, обычно 180–240 В, с большими пульсациями помех.

(5) понижающий импульсный источник питания RCC

Диапазон регулирования напряжения относительно широк, эффективность источника питания относительно высока, обычно достигает 70–80%, и область применения также широка. Поскольку частота колебаний этого метода управления не является непрерывной, частоту переключения нелегко контролировать.Коэффициент пульсаций напряжения нагрузки также относительно велик, и адаптируемость к аномальным нагрузкам оставляет желать лучшего.

(6) Импульсный источник питания с ШИМ-управлением

Драйвер светодиода

PWM в основном состоит из четырех частей: часть фильтрации входного выпрямления, часть фильтрации выходного выпрямления, часть управления стабилизацией напряжения PWM, часть преобразования энергии переключения.

Рис. 3. Драйвер светодиодов высокой мощности 1 Вт с ШИМ

Основной принцип работы импульсного регулятора PWM заключается в том, что при изменении входного напряжения, внутренних параметров и внешней нагрузки схема управления выполняет обратную связь с обратной связью через разницу между управляемым сигналом и опорным сигналом для регулировки ширины импульса устройство переключения главной цепи.Это делает выходное напряжение или ток импульсного источника питания стабильным (то есть соответствующего регулируемого источника питания или источника постоянного тока).

Эффективность источника питания чрезвычайно высока, обычно составляет от 80% до 90%, а выходное напряжение и ток стабильны. Как правило, такая схема имеет идеальные меры защиты и является надежным источником питания.

3. Согласно месту установки

В зависимости от места установки мощность привода можно разделить на внешний источник питания и встроенный источник питания.

(1) Внешний источник питания

Как следует из названия, внешний источник питания предназначен для источника питания, установленного снаружи. Как правило, для цепей с относительно высоким напряжением, опасным для безопасности человека, требуется внешний источник питания. Отличие его от встроенного блока питания в том, что блок питания имеет корпус , а уличные фонари — обычные.

(2) Встроенный блок питания

Предназначен для установки блока питания в лампу.Как правило, напряжение относительно низкое, от 12 до 24 В, и опасности для людей нет. Это обычная лампочка.

В Приложение

Давайте посмотрим на основной рынок применения мощных светодиодов ландшафтный свет , чтобы проанализировать рынок мощных светодиодов.

Рисунок 4. Пейзажное освещение

В Китае, как крупнейшем рынке применения светодиодного освещения, рынок ландшафтного освещения составляет около 43%.Его новый виток быстрого роста, несомненно, приведет к быстрому развитию индустрии светодиодного освещения в целом.

Ландшафтное освещение некоторых крупных и средних городов, таких как Шанхай, Сямынь, Пекин, Далянь, Наньчан и др., Уже достигло значительных масштабов, и значительная часть демонстрационных проектов светодиодного освещения была завершена. Успешное завершение этих демонстрационных проектов в крупных и средних городах и успешное использование на олимпийских объектах свидетельствует о том, что технология светодиодного освещения в ландшафтном освещении постепенно развивается.

Будь то дома или за границей, городской пейзаж является знаковым строительным продуктом города. И неоновые огни, как ландшафтное освещение, постепенно заменяются светодиодными ландшафтными огнями во всем мире из-за энергии, энергосбережения, защиты окружающей среды и других проблем.

В мире около 700 тысяч городов, и если предположить, что в городе 5 000 ламп, а стоимость лампы составляет около 1 000 юаней, огромные экономические выгоды, получаемые только от них, непредсказуемы.

Драйвер — это основной компонент светодиодного освещения.С развитием технологии светодиодных чипов качество светодиодных источников света было очень надежным. Во многих случаях выход из строя светодиодных ламп исходит от водителя. Мощные двигатели для светодиодов — это развивающаяся отрасль, которая еще не сформировала концентрированный отраслевой кластер, поэтому региональность не очевидна. Кроме того, в отрасль входит не так много компаний, поэтому конкуренция относительно невысока.

VI Недостатки

1. Технический персонал компании, производящей светодиодное освещение и сопутствующие товары, недостаточно разбирается в импульсных источниках питания.Источник питания может работать нормально, но некоторые ключевые оценки и электромагнитная совместимость не учитываются в недостаточной степени, что создает определенные скрытые опасности;

2. Большинство производителей светодиодных источников питания переходят с обычных импульсных источников питания на светодиодные источники питания, и у них недостаточно знаний характеристик и использования светодиодов;

3. Нет почти стандартов на светодиоды, большинство из них относятся к стандартам импульсных источников питания и электронных выпрямителей;

4. Большинство светодиодных источников питания не унифицированы , поэтому количество их относительно невелико.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *