Драйвер для светодиодов для чего нужен: что это такое, как выбрать и подключить

Содержание

В чём отличия драйвера и трансформатора?

И трансформатор, и драйвер являются блоками питания какой-либо электроники. Даже иногда внешне они очень похожи.

Но отличия между ними есть и очень серьёзные. Чтобы их понять, нужно определиться, что обычно подразумевается под этими терминами.

Что такое трансформатор?

Классический трансформатор — это электромагнитная катушка как минимум с двумя обмотками с разным количеством витков в каждой.

Подавая переменное напряжение на одну из обмоток, с другой можно снимать переменное напряжение, как меньшего, так и большего значения, в зависимости от соотношения количеств витков в обмотках.

Все прочие электронные приборы, питающие какую-либо технику, технически не являются трансформаторами, либо являются ими только в какой-то своей части.

Светодиодный трансформатор на 50 ватт

Но, тем не менее, трансформатор — общепринятое название источника питания, под которым обычно понимается источник постоянного по значению напряжения, тип тока которого может быть как переменным, так и постоянным.

Именно в таком понимании мы используем термин трансформатор.

В нашем каталоге

Что такое драйвер?

Термин драйвер применяется к блокам питания, которые обеспечивают постоянный по значению ток в некотором диапазоне выходных напряжений.

Драйвер поддерживает в цепи постоянный по значению ток при изменении сопротивления подключённой нагрузки. Достигается это изменением выходного напряжения.

Для чего это нужно? Светодиоды нужно питать постоянным по типу и постоянным по значению током. Превышение номинального тока светодиода очень пагубно сказывается на его сроке эксплуатации — он быстро тускнеет, теряет яркость, перегревается и может перегореть.

Казалось бы, в чём проблема подсоединить светодиод к трансформатору постоянного тока? Подсоединяем же мы лампу накаливания — получаем и постоянный ток, и постоянное напряжение.

Можно, но не нужно! Дело в том, что сопротивление лампы накаливания практически не меняется, поэтому через неё и течёт постоянный по значению ток. Совсем другое дело светодиод — его сопротивление сильно «плавает» в зависимости от температуры. Поэтому, подключив его к трансформатору, мы получим на нём постоянное напряжение, но значение тока будет меняться и может превысить номинальный максимум. А от этого сильно страдает срок службы светодиодов.

Для решения этой проблемы и предназначены драйверы. Они меняют напряжение, поддерживая одно и то же значение тока, а светодиоды в этой ситуации чувствуют себя очень комфортно.

Светодиодный драйвер на 50 ватт

Применительно к светодиодным прожекторам термин драйвер идентичен термину блок питания — под ними всегда подразумевается одно и тоже.

Везде ли, где есть светодиоды, стоят драйверы?

Нет, не везде. Например, светодиодные ленты и почти все светодиодные лампы G4 лишены драйверов. При этом и те и другие подключаются к трансформаторам (ленты 220 вольт — к выпрямителям, но в данном контексте это одно и тоже). Также, например, различные светодиоды подсветки во всей технике подключаются явно не к драйверам.

Не имеют драйверов

Светодиодная лента 220 вольтСветодиодная лента 12 вольтСветодиодные лампы с цоколем G4

Но во всех перечисленных случаях светодиоды специально запитываются пониженным током, чтобы избежать перегрева. Т.е. в этих случаях светодиоды светят не в полную яркость, меньше греются и, дополнительно, не получают превышения предельных значений тока при подключении к трансформатору.

Но если мы хотим получить максимальную отдачу, максимальную яркость, как, например, в прожекторе, то неизбежно нужен драйвер для стабилизации тока и хороший теплоотвод в виде радиатора.

Можно ли использовать трансформатор вместо драйвера?

Например, наши светодиодные матрицы для прожекторов в штатном режиме работают примерно на 33 вольтах. Можно ли их подключить к трансформатору постоянного тока напряжением 33 вольта?

Можно, они будут работать. Но их процесс выгорания (потери яркости) будет сильно ускорен. Поэтому

мы категорически не рекомендуем этого делать

В последнее время на рынке появилось очень много дешевых светодиодных прожекторов, у которых в качестве одного из достоинств указано, что они «бездрайверные». Якобы это повышает надежность, т.к. электроники существенно меньше. Но об обратной стороне, указанной выше, продавцы подобных изделий всегда умалчивают.

У Вас есть вопрос? Спросите консультанта.

Позвоните нам.
Или кликните здесь и задайте свой вопрос — подробный ответ Вы получите очень быстро.
Мы всегда стараемся помочь.Каталог продукции

виды, назначение, подключение Почему нужен driver dlya led 3w

Схемы драйверов светодиодов для самостоятельного изготовления, подробное описание. Подробное описание как сделать драйвер питания светодиодов своими руками.

Прежде всего для пайки драйвера понадобятся инструменты и материалы:

Паяльник мощностью 25-40 Вт. Можно использовать и большей мощности, но при этом возрастает опасность перегрева элементов и выхода их из строя. Лучше всего использовать паяльник с керамическим нагревателем и необгораемым жалом, обычное медное жало довольно быстро окисляется, и его приходится чистить.

Припой. Наиболее распространенным является легкоплавкий оловянно-свинцовый припой ПОС-61. Припои без свинца менее вредны при вдыхании паров во время пайки, но обладают более высокой температурой плавления при меньшей текучести и склонностью к деградации шва со временем.

Флюс для пайки (канифоль, глицерин, ФКЭТ, и т.д.). Желательно использовать именно нейтральный флюс, — в отличие от активных флюсов (ортофосфорная и соляная кислоты, хлористый цинк и др.), он со временем не окисляет контакты и менее токсичен. Вне зависимости от используемого флюса после сборки устройства его лучше отмыть с помощью спирта. Для активных флюсов эта процедура является обязательной, для нейтральных — в меньшей степени.

Плоскогубцы для сгибания выводов.

Кусачки для обкусывания длинных концов выводов и проводов.

Монтажные провода в изоляции. Лучше всего подойдут многожильные медные провода сечением от 0.35 до 1 мм2.

Мультиметр для контроля напряжения в узловых точках.

Изоляционная лента.

Небольшая макетная плата из стеклотекстолита. Достаточно будет платы размерами 60х40 мм.

Схема драйвера для светодиода 1 Вт.

Одна из самых простых схем для питания мощного светодиода представлена на рисунке ниже:

Как видно, помимо светодиода в нее входят всего 4 элемента: 2 транзистора и 2 резистора.

В роли регулятора тока, проходящего через led, здесь выступает мощный полевой n-канальный транзистор VT2. Резистор R2 определяет максимальный ток, проходящий через светодиод, а также работает в качестве датчика тока для транзистора VT1 в цепи обратной связи.

Чем больший ток проходит через VT2, тем большее напряжение падает на R2, соответственно VT1 открывается и понижает напряжение на затворе VT2, тем самым уменьшая ток светодиода. Таким образом достигается стабилизация выходного тока.

Питание схемы осуществляется от источника постоянного напряжения 9 — 12 В, ток не менее 500 мА. Входное напряжение должно быть минимум на 1-2 В больше падения напряжения на светодиоде.

Резистор R2 должен рассеивать мощность 1-2 Вт, в зависимости от требуемого тока и питающего напряжения. Транзистор VT2 – n-канальный, рассчитанный на ток не менее 500 мА: IRF530, IRFZ48, IRFZ44N. VT1 – любой маломощный биполярный npn: 2N3904, 2N5088, 2N2222, BC547 и т.д. R1 – мощностью 0.125 — 0.25 Вт сопротивлением 100 кОм.

Ввиду малого количества элементов, сборку можно производить навесным монтажом:

Еще одна простая схема драйвера на основе линейного управляемого стабилизатора напряжения LM317:

Здесь входное напряжение может быть до 35 В. Сопротивление резистора можно рассчитать по формуле:

где I – сила тока в амперах.

В этой схеме на LM317 будет рассеиваться значительная мощность при большой разнице между питающим напряжением и падением на светодиоде. Поэтому ее придется разместить на небольшом . Резистор также должен быть рассчитан на мощность не менее 2 Вт.

Более наглядно эта схема рассмотрена в следующем видео:

Здесь показано, как подключить мощный светодиод, используя аккумуляторы напряжением около 8 В. При падении напряжения на LED около 6 В разница получается небольшая, и микросхема нагревается несильно, поэтому можно обойтись и без радиатора.

Обратите внимание, что при большой разнице между напряжением питания и падением на LED необходимо ставить микросхему на теплоотвод.

Мощный драйвер с входом ШИМ.

Ниже показана схема для питания мощных светодиодов:

Драйвер построен на сдвоенном компараторе LM393. Сама схема представляет собой buck-converter, то есть импульсный понижающий преобразователь напряжения.

Особенности драйвера:

  • Напряжение питания: 5 — 24 В, постоянное;
  • Выходной ток: до 1 А, регулируемый;
  • Выходная мощность: до 18 Вт;
  • Защита от КЗ по выходу;
  • Возможность управления яркостью при помощи внешнего ШИМ сигнала.

Принцип действия.

Резистор R1 с диодом D1 образуют источник опорного напряжения около 0.7 В, которое дополнительно регулируется переменным резистором VR1. Резисторы R10 и R11 служат датчиками тока для компаратора. Как только напряжение на них превысит опорное, компаратор закроется, закрывая таким образом пару транзисторов Q1 и Q2, а те, в свою очередь, закроют транзистор Q3. Однако индуктор L1 в этот момент стремится возобновить прохождение тока, поэтому ток будет протекать до тех пор, пока напряжение на R10 и R11 не станет меньше опорного, и компаратор снова не откроет транзистор Q3.

Пара Q1 и Q2 выступает в качестве буфера между выходом компаратора и затвором Q3. Это защищает схему от ложных срабатываний из-за наводок на затворе Q3, и стабилизирует ее работу.

Вторая часть компаратора (IC1 2/2) используется для дополнительной регулировки яркости при помощи ШИМ. Для этого управляющий сигнал подается на вход PWM: при подаче логических уровней ТТЛ (+5 и 0 В) схема будет открывать и закрывать Q3. Максимальная частота сигнала на входе PWM — порядка 2 КГц. Также этот вход можно использовать для включения и отключения устройства при помощи пульта ДУ.

D3 представляет собой диод Шоттки, рассчитанный на ток до 1 А. Если не удастся найти именно диод Шоттки, можно использовать импульсный диод, например FR107, но выходная мощность тогда несколько снизится.

Максимальный ток на выходе настраивается подбором R2 и включением или исключением R11. Так можно получить следующие значения:

  • 350 мА (LED мощностью 1 Вт): R2=10K, R11 отключен,
  • 700 мА (3 Вт): R2=10K, R11 подключен, номинал 1 Ом,
  • 1А (5Вт): R2=2,7K, R11 подключен, номинал 1 Ом.

В более узких пределах регулировка производится переменным резистором и ШИМ – сигналом.

Сборка и настройка драйвера.

Монтаж компонентов драйвера производится на макетной плате. Сначала устанавливается микросхема LM393, затем самые маленькие компоненты: конденсаторы, резисторы, диоды. Потом ставятся транзисторы, и в последнюю очередь переменный резистор.

Размещать элементы на плате лучше таким образом, чтобы минимизировать расстояние между соединяемыми выводами и использовать как можно меньше проводов в качестве перемычек.

При соединении важно соблюдать полярность подключения диодов и распиновку транзисторов, которую можно найти в техническом описании на эти компоненты. Также диоды можно проверить с помощью мультиметра в режиме измерения сопротивления: в прямом направлении прибор покажет значение порядка 500-600 Ом.

Для питания схемы можно использовать внешний источник постоянного напряжения 5-24 В или аккумуляторы. У батареек 6F22 («крона») и других слишком маленькая емкость, поэтому их применение нецелесообразно при использовании мощных LED.

После сборки нужно подстроить выходной ток. Для этого на выход припаиваются светодиоды, а движок VR1 устанавливается в крайнее нижнее по схеме положение (проверяется мультиметром в режиме «прозвонки»). Далее на вход подаем питающее напряжение, и вращением ручки VR1 добиваемся требуемой яркости свечения.

Список элементов:

Подведём итог.

Первые две из рассмотренных схем очень просты в изготовлении, но они не обеспечивают защиты от короткого замыкания и обладают довольно низким КПД. Для долговременного использования рекомендуется третья схема на LM393, поскольку она лишена этих недостатков и обладает более широкими возможностями по регулировке выходной мощности.

Работали максимально ярко и эффективно, используются специальные модули — драйверы. Собрать самостоятельно схему драйвера для светодиодов сможет каждый, если, конечно, имеются познания в электротехнике. Смысл работы прибора — преобразовать переменное напряжение, протекающее в сети, в постоянное (пониженное). Но прежде чем приступать к сборке, нужно определиться с тем, какие требования к устройству предъявляются — проанализируйте характеристики и виды приборов.

Для чего нужны драйверы?

Основное назначение драйверов — это стабилизация тока, который проходит через светодиод. Причем нужно учесть, что сила тока, который проходит по кристаллу полупроводника, должна быть точно такой же, как и у светодиода по паспорту. Благодаря этому обеспечивается устойчивое освещение. Кристалл в светодиоде намного дольше прослужит. Чтобы узнать напряжение, необходимое для питания светодиодов, нужно воспользоваться вольт-амперной характеристикой. Это график, показывающий зависимость между напряжением питания и током.

Если планируется проводить освещение светодиодными лампами жилого или офисного помещения, то драйвер должен питаться от бытовой сети переменного тока с напряжением 220 В. Если же светодиоды используются в автомобильной или мототехнике, нужно использовать драйверы, питающиеся от постоянного напряжения, значение 9-36 В. В некоторых случаях (если светодиодная лампа небольшой мощности и питается от сети 220 В) допускается убрать схему драйвера светодиода. От сети если запитано устройство, достаточно включить в схему постоянный резистор.

Параметры драйверов

Прежде чем приобрести устройство или самостоятельно его изготовить, нужно ознакомиться с тем, какие у него имеются основные характеристики:

  1. Номинальный ток потребления.
  2. Мощность.
  3. Выходное напряжение.

Напряжение на выходе преобразователя напрямую зависит от того, какой выбран способ подключения источника света, числа светодиодов. Ток имеет прямую зависимость от яркости и мощности элементов.

Преобразователь должен обеспечивать ток, при котором светодиоды будут работать с одинаковой яркостью. На PT4115 схема драйвера светодиодов реализуется довольно просто — это самый распространенный преобразователь напряжения для использования с LED-элементами. Изготовить прибор на его основе можно буквально «на коленке».

Мощность драйвера

Мощность прибора — это самая важная характеристика. Чем мощнее драйвер, тем большее число светодиодов можно подключить к нему (конечно, придется проводить простые расчеты). Обязательное условие — мощность драйвера должна быть больше, чем у всех светодиодов в сумме. Выражается это такой формулой:

Р = Р(св) х N,

где Р, Вт — мощность драйвера;

Р(св), Вт — мощность одного светодиода;

N — количество светодиодов.

Например, при сборке схемы драйвера для светодиода 10W вы можете смело подключать в качестве нагрузки LED-элементы мощностью до 10 Вт. Обязательно нужно иметь небольшой запас по мощности — примерно 25%. Поэтому, если планируется подключение светодиода 10 Вт, драйвер должен обеспечивать мощность не менее 12,5-13 Вт.

Цвета светодиодов

Обязательно нужно учитывать то, какой цвет испускает светодиод. От этого зависит то, какое падение напряжения будет у них при одинаковой силе тока. Например, при токе питания 0,35 А, падение напряжения у красных LED-элементов примерно 1,9-2,4 В. Мощность в среднем 0,75 Вт. Аналогичная модель с зеленым цветом будет уже иметь падение в интервале 3,3-3,9 В, а мощность 1,25 Вт. Поэтому, если вы применяете схему драйвера светодиода 220В с преобразованием в 12 В, к нему можно подключить максимум 9 элементов с зеленым цветом или 16 с красным.

Типы драйверов

Всего можно выделить два типа драйверов для светодиодов:

  1. Импульсные. С помощью таких устройств создаются в выходной части устройства высокочастотные импульсы. Функционирование основывается на принципах ШИМ-модуляции. Среднее значение тока зависит от коэффициента заполнения (отношения длительности одного импульса к частоте его повторения). Ток на выходе меняется за счет того, что коэффициент заполнения колеблется в интервале 10-80%, а частота остается постоянной.
  2. Линейные — типовая схема и структура выполнены в виде генератора тока на транзисторах с р-каналом. С их помощью можно обеспечить максимально плавную стабилизацию питающего тока в случае, если напряжение на входе неустойчиво. Отличаются дешевизной, но у них малая эффективность. При работе выделяется большое количество тепла, поэтому можно использовать только для маломощных светодиодов.

Импульсные получили большее распространение, так как у них КПД намного выше (может достигать 95%). Устройства компактные, диапазон входного напряжения достаточно широкий. Но есть один большой недостаток — высокое влияние различного рода электромагнитных помех.

На что обратить внимание при покупке?

Покупку драйвера обязательно нужно совершать при выборе светодиодов. На PT4115 схема драйвера светодиодов позволяет обеспечить нормальное функционирование Устройства, использующие ШИМ-модуляторы, построенные по схемам с одной микросхемой, применяются по большей части в автомобильной технике. В частности, для подключения подсветки и ламп головного освещения. Но качество у таких простейших приборов довольно низкое — для использования в бытовых системах они не годятся.

Диммируемый драйвер

Практически все конструкции преобразователей позволяют регулировать яркость свечения LED-элементов. С помощью таких устройств можно выполнять следующие действия:

  1. Уменьшать интенсивность освещенности днем.
  2. Скрывать или же подчеркивать определенные элементы интерьера.
  3. Зонировать помещение.

Благодаря этим качествам можно существенно сэкономить на электроэнергии, увеличить ресурс элементов.

Разновидности диммируемых драйверов

Типы диммируемых драйверов:

  1. Подключаются между БП и источником света. Они позволяют управлять энергией, которая поступает на LED-элементы. В основе конструкции находятся ШИМ-модуляторы с микроконтроллерным управлением. Вся энергия идет к светодиодам импульсами. От длины импульсов напрямую зависит энергия, которая поступит на светодиоды. Такие конструкции драйверов применяются в основном для работы модулей со стабилизированным питанием. Например, для лент или бегущих строк.
  2. Второй тип устройств позволяет проводить управление блоком питания. Управление производится при помощи ШИМ-модулятора. Также изменяется величина тока, который протекает через светодиоды. Как правило, такие конструкции применяются для питания тех устройств, которым необходим стабилизированный ток.

Нужно обязательно учесть тот факт, что ШИМ-регулирование плохо влияет на зрение. Лучше всего использовать схемы драйверов для питания светодиодов, в которых регулируется величина тока. Но вот один нюанс — в зависимости от величины тока свечение будет различным. При низком значении элементы будут излучать свет с желтым оттенком, при увеличении — с синеватым.

Какую микросхему выбрать?

Если нет желания искать готовое устройство, можно сделать его самостоятельно. Причем произвести расчет под конкретные светодиоды. Микросхем для изготовления драйверов довольно много. Вам потребуется только умение читать электрические схемы и работать с паяльником. Для простейших устройств (мощностью до 3 Вт) можно использовать микросхему PT4115. Она дешевая, и достать очень просто. Характеристики элемента такие:

  1. Напряжение питания — 6-30 В.
  2. Выходной ток — 1,2 А.
  3. Допустимая погрешность при стабилизации тока — не более 5%.
  4. Защита от отключения нагрузки.
  5. Выводы для диммирования.
  6. КПД — 97%.

Обозначение выводов микросхемы:

  1. SW — подключение выходного коммутатора.
  2. GND — отрицательный вывод источников питания и сигнала.
  3. DIM — регулятор яркости.
  4. CSN — датчик входного тока.
  5. VIN — положительный вывод, соединяемый с источником питания.

Варианты схем драйверов

Варианты исполнения устройств:

  1. Если имеется источник питания с постоянным напряжением 6-30 В.
  2. Питание от переменного напряжения 12-18 В. В схему вводится диодный мост и электролитический конденсатор. По сути, «классическая» схема мостового выпрямителя с отсечением переменной составляющей.

Нужно отметить тот факт, что электролитический конденсатор не сглаживает пульсации напряжения, а позволяет избавиться от переменной составляющей в нем. В схемах замещения (по теореме Кирхгофа) электролитический конденсатор в цепи переменного тока является проводником. А вот в цепи постоянного тока он заменяется разрывом (нет никакого элемента).

Собрать схему драйвера светодиодов 220 своими руками можно только в том случае, если использовать дополнительный блок питания. В нем обязательно задействован трансформатор, которым понижается напряжение до необходимого значения в 12-18 В. Учтите, что нельзя подключать драйверы к светодиодам без электролитического конденсатора в блоке питания. При необходимости установки индуктивности необходимо произвести ее расчет. Обычно величина составляет 70-220 мкГн.

Процесс сборки

Все элементы, которые используются в схеме, нужно подбирать, опираясь на даташит (техническую документацию). Обычно в нем приводятся даже практические схемы использования устройств. Обязательно использовать в схеме выпрямителя низкоимпедансные конденсаторы (значение ESR должно быть низким). Применение иных аналогов снижает эффективность регулятора. Емкость должна быть не менее 4,7 мкФ (в случае использования схемы с постоянным током) и от 100 мкФ (для работы в цепи переменного тока).

Собрать по схеме драйвер для светодиодов своими руками можно буквально за несколько минут, потребуется только наличие элементов. Но нужно знать и особенности проведения монтажа. Катушку индуктивности желательно располагать возле вывода микросхемы SW. Изготовить ее можно самостоятельно, для этого необходимо всего несколько элементов:

  1. Ферритовое кольцо — можно использовать со старых блоков питания компьютеров.
  2. Провод типа ПЭЛ-0,35 в лаковой изоляции.

Старайтесь все элементы располагать максимально близко к микросхеме, это позволит исключить появление помех. Никогда не проводите соединения элементов при помощи длинных проводов. Они не только создают множество помех, но и способны принимать их. В результате микросхема, неустойчивая к этим помехам, будет работать неправильно, нарушится регулировка тока.

Вариант компоновки

Разместить все элементы можно в корпусе от старой лампы дневного света. В ней уже все имеется — корпус, патрон, плата (которую можно повторно использовать). Внутри расположить все элементы блока питания и микросхему можно без особого труда. А с внешней стороны установить светодиод, который планируете запитывать от устройства. Схемы драйверов для светодиодов 220 В можно использовать практически любые, главное — понизить напряжение. Сделать это легко простейшим трансформатором.

Монтажную плату желательно использовать новую. А лучше вообще обойтись без нее. Конструкция очень простая, допустимо применить навесной монтаж. Обязательно удостоверьтесь в том, что на выходе выпрямителя напряжение в допустимых пределах, в противном случае микросхема сгорит. После сборки и подключения произведите замер потребляемого тока. Учтите, что в случае снижения тока питания увеличится ресурс светодиодного элемента.

Тщательно выбирайте схему драйвера для питания светодиодов, рассчитывайте каждый компонент конструкции — от этого зависит срок службы и надежность. При правильном подборе драйверов характеристики светодиодов останутся максимально высокими, а ресурс не пострадает. Схемы драйверов для мощных светодиодов отличаются тем, что в них большее число элементов. Зачастую применяется ШИМ-модуляция, но в домашних условиях, что называется, «на коленке», такие устройства уже сложно собрать.

Светодиодная иллюминация является относительно новым и перспективным направлением в обустройстве интерьеров и экстерьеров. При этом большая ответственность заключается в выборе комплектующих для такого искусственного источника. Правильно выбранная электроника, к которой относится и led driver, обеспечивает долговечную и бесперебойную эксплуатацию всего комплекса приборов.

Особенности работы

Схема светодиодного подключения подразумевает наличие источника тока постоянного типа. Соответственно к имеющимся лентам нужен источник питания не 220 В электросети, а значительно меньший уровень постоянного тока. Привести все к норме помогает led driver — специальный выпрямитель.

Для каждой цепи характерны физические параметры:

  • своя мощность, Вт;
  • сила тока, А;
  • напряжение, В.

Поэтому необходимо рассчитать и выбрать соответствующий светодиодный драйвер. Нередко пользователи сталкиваются с тем, что готов проект схемы подключения, имеются в наличии светодиоды, а подобрать или купить оптимальный драйвер питания светодиодов нет возможности.

Фактически блок питания представляет собой небольшой по габаритам прибор, выдающий на контактах установленное производителями напряжение и силу тока. В идеале эти параметры не зависят от применяемой к нему нагрузки.

Подключение двух резисторов параллельно

Зная законы физики, можно рассчитать, что при подключении к источнику тока с напряжением 12В потребителя с сопротивлением 40 Ом (в качестве последнего может выступать резистор), то по цепи будет протекать 0,3 А. Если же в схеме будет участвовать пара таких параллельных резисторов, то ампераж поднимется до 0,6 А.

Драйвер для светодиода работает на поддержание стабильной силы тока. Значение напряжения в таком случае способно варьироваться. При подключении к нему во время выдачи 0,3 А резистора на 40 Ом, потребитель будет питаться напряжением в 12 В. Если же добавить параллельно второй резистор, то напряжение упадет до 6 В, а сила тока останется 0,3А.

Самые лучшие драйверы светодиодов обеспечивают любой нагрузке установленный производителями параметр тока, ни взирая на значительное падение напряжения. При этом потребители при опускании значения напряжения до 2 В и получении 0,3 А будут такими же яркими, как и при 3 В и 0,3 А.

Параметры для выбора

Грамотно выбрать драйвер для светодиодной ленты помогают технические параметры изделия. Одним из них является мощность. Она рассчитывается для любого источника питания. Мощность напрямую зависит от параметров компонентов и их количества. Допустимое максимальное значение указано на лицевой стороне упаковки или тыльной части самого изделия.

Мощность для силовых источников обязательно подбирается большей, чем имеющееся значение цепи. В противном случае произойдет повышение температуры блока.

Также обращаем внимание на силу тока и напряжение. Каждый завод маркирует свои изделия, указывая номинальный ампераж. Для светодиодов своими силами подбираем соответствующий светодиодный драйвер. Наиболее популярными являются диоды, потребляющие 0,35 А или 0,7 А. При этом ленты производители предлагают 12 В либо 24 В. Маркировка на блоках питания проводится в виде напряжения и мощности.

Так как драйверы для светодиодов могут располагаться сейчас в любых условиях, то важно обратить внимание на влагозащищенность и класс герметичности.

Нередко приходится применять диоды во влажных условиях, например рядом с бассейном или непосредственно в нем. Тогда требуется обращать внимание на показатель IP, который указывает защиту от проникновения влаги. Значение IPX6 демонстрирует возможность временного затопления, а IPX9 позволяет выдерживать значительное давление.

ВИДЕО: Светодиоды — питание (LED-драйверы)

Варианты подключения

Разберем несколько примеров, как подобрать драйвер для светодиодов. Можно разобрать все на схеме из шести диодов. Они могут подключаться несколькими способами, давая нужный результат.

Последовательно

В подобном случае выбираем источник с 12 В напряжения и током 0,3 А. Основное достоинство метода заключено в том, что по всему контуру к потребителям поступает равный ампераж. При этом все элементы испускают одинаковую яркость. Минусом подключения является необходимость при значительном увеличении диодов иметь в наличии источник с большим номинальным напряжением.

Параллельно

В такой ситуации достаточно светодиодного драйвера, выдающего на контактах 6 В. Однако, ток, который потреблять будет схема повысится в два раза до 0,6 А в сравнении с аналогичным последовательным подключением. Минусы заключаются в том, что токи протекающие для каждого участка, физически будут иметь отличия из-за физических параметров диодов. В результате получится небольшая разница в свечении участков.

В данных схемах, собранных своими руками, можно воспользоваться помощью драйверов для светодиодов, аналогичных параллельному соединению. При этом установится яркость равная для каждого участка цепи. В схеме имеется существенный минус. Он очевиден, так как при старте из-за небольших отличий в характеристиках какие-то элементы запустятся раньше других. В это время по ним станет поступать ток удвоенного номинала. Производители допускают кратковременное превышение значения, но применять на практике данную схему все же не рекомендуется. Перед тем, как подобрать драйвер для светодиодов, необходимо оценить все риски.

Соединять подобным образом более двух диодов ни в коем случае нельзя, ведь по каким-то из них пойдет чрезвычайно большой ампераж, что приведет к мгновенному выходу их из строя.

В приведенных примерах светодиодный драйвер брался в каждом случае с мощностью в 3,6 Вт. Это значение не влияло на способы подключения. Исходя из реального примера видно, что подбирать источник питания необходимо в процессе приобретения диодов. Вероятность выбора на следующих этапах существенно снижает шансы найти нужный блок.

Классификация элементов

На прилавках можно обнаружить два основных типа драйверов для светодиодов:

  • импульсный тип
  • линейный.

Первые являются приборами, обеспечивающими на выходе каскад импульсов высокой частоты. Последнее поколение их использует принцип широтно-импульсной модуляции. Фактически усредненный параметр силы тока рассчитывается как отношение ширины импульса к их периоду. Параметр определяется коэффициентом заполнения.

Линейные на выходе обеспечивают значение от генератора тока. Формируется стабилизация тока, а напряжение будет вариабельным. Все настройки проводятся в плавном режиме без образования электромагнитных высокочастотных помех. Даже при относительно небольшом КПД (около 85%) и простоте конструкции их сфера деятельности ограничивается маломощными лентами или светодиодными лампами.

ШИМ-драйверы являются более широко популярными из-за своих позитивных эксплуатационных характеристики:

  • длительный срок работы;
  • КПД до 95%;
  • минимальные габариты.

Минусом для последних является высокий уровень помех, в отличие от линейных.

Дифференцируются драйверы по наличию или отсутствию гальванической развязки. В первом случае обеспечивается больший КПД, повышенная надежность и достаточная безопасность.

Для подключения к стандартной электросети светодиодов могут использоваться и тот, и другой тип драйверов, но преимущественными являются именно те, где есть гальваническая развязка. Именно она отвечает за безопасную эксплуатацию ламп. Если таковой развязки нет, всегда есть риск поражения током.

Срок эксплуатации

Даже сами производители заявляют о том, что драйвер служит меньше, чем оптика. Если последняя рассчитана на 30 тысяч часов, то выпрямитель в лучшем случае проработает 1000 часов. Связан такой разрыв во времени со следующими обстоятельствами:

  • перепады напряжения в электросети как в большую, так и в меньшую сторону более чем на 5%;
  • разница рабочей температуры в процессе работы;
  • повышенная влажность, если речь идет о таких помещениях;
  • интенсивность — чем больше работает и меньше выключается, тем длительнее срок работы.

Первое, что принимает на себя основной удар — сглаживающий конденсатор, у которых при повышенной влажности, температуре и при скачках напряжения начинает интенсивно испаряться электролит. При его недостатке уровень пульсаций увеличивает, что и приводит к выходу из строя лед-драйвера.

Но самое интересное, что сокращает срок работы неполная загруженность. Если вы купили элемент на 150 ватт, а нагрузка не превышает 70, оставшиеся 80 будут возвращаться в сеть и провоцировать ее перегруз. Всегда правильно выбирайте рабочие элементы, чтобы максимально сопоставить эффективность и реальные условия.

ВИДЕО: Простой источник питания для светодиодов

Драйвер тока для светодиодов

Hyundai Elantra когда-то была GL 😉 › Бортжурнал › Перегорают светодиоды? Делаем простейший драйвер своими руками.

…оооооочень много раз мне пришлось столкнуться с проблемой перегоревших светодиодов, установленных где-либо в машине…началось всё это с лампочек в габаритах, потом постоянно горела подсветка приборки, потом подсветка блока отопителя, багажника и т.д…

И вот как-то раз это явление достало меня окончательно и я, бегло пробежавшись глазами по записям в блогах одноклубников, решил сделать подсветку приборки “вечной” линейным стабилизатором напряжения L7812CV, +12в, что, естественно, никакого толка не дало и лента сгорела, как ни в чем не бывало 🙂

Вот он, виновник торжества.

…хотя…его вины тут нет. Виноваты тут далекие от электроники люди и я, человек который слишком мало копал, прежде, чем что-то сделать…Все мы ошибаемся, что поделать, потому и половина бортового журнала — это работа над ошибками… 🙂

Начнем с того, что светодиоды сгорают от скачков тока, а не напряжения.

“Светодиод питается ТОКОМ. Нет у него параметра НАПРЯЖЕНИЕ. Есть параметр — падение напряжения! То есть сколько на нем теряется.
Если написано на светодиоде 20мА 3.4В, то это значить что ему надо не больше 20 миллиампер. И при этом на нем потеряется 3.4 вольта.
Не для питания нужно 3.4 вольта, а просто на нем «потеряется»!
То есть вы можете питать его хоть от 1000 вольт, только если подадите ему не больше 20мА. Он не сгорит, не перегреется и будет светить как надо, но после него останется уже на 3.4 вольта меньше. Вот и вся наука.
Ограничьте ему ток — и он будет сыт и будет светить долго и счастливо.”

Теперь понятно, почему с долбанными линейными стабами типа L7812CV постоянно все перегорает?
Да, стабилизация нужна по току, а не по напряжению и делается это резисторами!

Ладно, поехали дальше.
В связи с тем, что сейчас у меня висит 4 проекта по фарам, которые будут делаться на очень дорогостоящих COB кольцах (которые ещё дороже стали с учетом долбанного курса валют) стабилизация таковых просто жизненно необходима…

Вот как оно выглядит

Вы спросите сейчас, а нафига драйвер, если вон он, уже висит и все стабилизирует.
Ну да, я тоже так думал, а на деле оказалось, что там те же самые стабилизаторы напряжения стоят (у одного из клиентов одно кольцо уже начало моросить). Ну кто ж знал, что Китайцы в плане драйверов решили сэкономить.

Итак, делаем простейший драйвер.

Берем идеальную автомобильную сеть 12 Вольт и считаем какой нам нужен резистор на примере COB кольца, мощностью 5 Вт.

Мы можем узнать силу тока, потребляемую электроприбором зная его мощность и напряжение питания.
Потребляемый ток равен мощности деленной на напряжение в сети.
COB кольцо потребляет 5 Вт. Напряжение в идеальном автомобиле 12 Вольт.
Если считать не умеете, то можно посчитать тут
ydoma.info/electricity-zakon-oma.html
Получаем 420 милиампер потребляемого тока таким колечком.
дальше идем сюда
ledcalc.ru/lm317
вводим требуемый ток 420 милиампер и получаем:
Расчетное сопротивление: 2.98 Ом
Ближайшее стандартное: 3.30 Ом
Ток при стандартном резисторе: 379 мА
Мощность резистора: 0.582 Вт.

ЭТО РАСЧЕТ РАБОТАЕТ, КОГДА ВЫ ТОЧНО УВЕРЕНЫ В ХАРАКТЕРИСТИКАХ СВЕТОДИОДА, ЕСЛИ НЕТ, ТО ДЕЛАЕМ ЗАМЕР ПОТРЕБЛЕНИЯ ТОКА МУЛЬТИМЕТРОМ!
КАК ЭТО ДЕЛАТЬ, СМОТРИМ ТУТ!
К слову, выше расчет, где я взял спецификацию диода от китайца, является неверным, ибо при замере фактическое потребление тока оказалось не 420 мА, а 300мА. Потому сразу можно сделать вывод, что пятью ваттами там и не пахнет 🙂

Дальше идем в магазин и покупаем:
-LM317. Внешне как и LM7812. Корпус один, смысл несколько разный.

Драйверы для светодиодов: виды, назначение, подключение

LED-источники должны подключаться к электросети через специальные устройства, стабилизирующие ток – драйверы для светодиодов. Это преобразователи напряжения переменного тока 220 В в постоянный ток с необходимыми для работы световых диодов параметрами. Только при их наличии можно гарантировать стабильную работу, длительный срок эксплуатации LED-источников, заявленную яркость, защиту от короткого замыкания и перегрева. Выбор драйверов небольшой, поэтому лучше сначала приобрести преобразователь, а потом под него подбирать светодиодные источники освещения. Собрать устройство можно самостоятельно по простой схеме. О том, что такое драйвер для светодиода, какой купить и как правильно его использовать, читайте в нашем обзоре.

Мощный светодиод со стабилизатором

Что такое драйверы для светодиодов и зачем они нужны

Светодиоды – это полупроводниковые элементы. За яркость их свечения отвечает ток, а не напряжение. Чтобы они работали, нужен стабильный ток, определенного значения. При p-n переходе падает напряжение на одинаковое количество вольт для каждого элемента. Обеспечить оптимальную работу LED-источников с учетом этих параметров – задача драйвера.

Какая именно нужна мощность и насколько падает напряжение при p-n переходе, должно быть указано в паспортных данных светодиодного прибора. Диапазон параметров преобразователя должен вписываться в эти значения.

По сути, драйвер – это блок питания. Но основной выходной параметр этого устройства – стабилизированный ток. Их производят по принципу ШИМ-преобразования с использованием специальных микросхем или на базе из транзисторов. Последние называют простыми.

Преобразователь питается от обычной сети, на выходе выдает напряжение заданного диапазона, которое указывается в виде двух чисел: минимального и максимального значения. Обычно от 3 В до нескольких десятков. Например, с помощью преобразователя с напряжением на выходе 9÷21 В и мощностью 780 мА можно обеспечить работу 3÷6 светодиодных элементов, каждый из которых создает падение в сети на 3 В.

Таким образом, драйвер – это устройство, преобразующее ток из сети 220 В под заданные параметры осветительного прибора, обеспечивающее его нормальную работу и долгий срок эксплуатации.

Внешний вид LED-драйвера

Где применяют

Спрос на преобразователи растет вместе с популярностью светодиодов. LED-источники освещения – это экономичные, мощные и компактные приборы. Их применяют в разнообразных целях:

  • для фонарей уличного освещения;
  • в быту;
  • для обустройства подсветки;
  • в автомобильных и велосипедных фарах;
  • в небольших фонарях;

При подключении в сеть 220 В всегда нужен драйвер, в случае использования постоянного напряжения допустимо обойтись резистором.

Светодиодные уличные фонари – мощные и экономичные

Как работает устройство

Принцип работы LED-драйверов для светодиодов заключается в поддержании заданного тока на выходе, независимо от изменения напряжения. Ток, проходящий через сопротивления внутри прибора, стабилизируется и приобретает нужную частоту. Затем проходит через выпрямляющий диодный мост. На выходе получаем стабильный прямой ток, достаточный для работы определенного количества светодиодов.

Основные характеристики драйверов

Ключевые параметры приборов для преобразования тока, на которые нужно опираться при выборе:

  1. Номинальная мощность устройства. Она указана в диапазоне. Максимальное значение обязательно должно быть немного больше, чем потребляемая мощность, подключаемого осветительного прибора.
  2. Напряжение на выходе. Значение должно быть больше или равно общей сумме падения напряжения на каждом элементе схемы.
  3. Номинальный ток. Должен соответствовать мощности прибора, чтобы обеспечивать достаточную яркость.

В зависимости от этих характеристик, определяют какие LED-источники можно подключить при помощи конкретного драйвера.

Вся важная информация есть на корпусе устройства

Виды преобразователей тока по типу устройства

Производятся драйверы двух типов: линейные и импульсные. У них одна функция, но сфера применения, технические особенности и стоимость различаются. Сравнение преобразователей разных типов представлено в таблице:

Тип устройства Технические характеристики Плюсы Минусы Сфера применения
Генератор тока на транзисторе с p-каналом, плавно стабилизирует ток при переменном напряженииНе создает помех, недорогойКПД менее 80%, сильно нагреваетсяМаломощные светодиодные светильники, ленты, фонарики
Работает на основе широтно-импульсной модуляцииВысокий КПД (до 95%), подходит для мощных приборов, продлевает срок службы элементовСоздает электромагнитные помехиТюнинг автомобилей, уличное освещение, бытовые LED-источники

Как подобрать драйвер для светодиодов и рассчитать его технические параметры

Драйвер для светодиодной ленты не подойдет для мощного уличного фонаря и наоборот, поэтому необходимо как можно точнее рассчитать основные параметры устройства и учесть условия эксплуатации.

Параметр От чего зависит Как рассчитать
Расчет мощности устройстваОпределяется мощностью всех подключаемых светодиодовРассчитывается по формуле P = P LED-источника × n, где P – это мощность драйвера; P LED-источника – мощность одного подключаемого элемента; n – количество элементов. Для запаса мощности 30% нужно P умножить на 1,3. Полученное значение – это максимальная мощность драйвера, необходимая для подключения осветительного прибора
Расчет напряжения на выходеОпределяется падением напряжения на каждом элементеВеличина зависит от цвета свечения элементов, она указывается на самом устройстве или на упаковке. Например, к драйверу 12 В можно подключить 9 зеленых или 16 красных светодиодов.
Расчет токаЗависит от мощности и яркости светодиодовОпределяется параметрами, подключаемого устройства

Преобразователи выпускаются в корпусе и без. Первые выглядят более эстетичными и имеют защиту от влаги и пыли, вторые используются при скрытом монтаже и стоят дешевле. Еще одна характеристика, которую необходимо учесть – допустимая температура эксплуатации. Для линейных и импульсных преобразователей она разная.

Важно! На упаковке с устройством должны быть указаны его основные параметры и производитель.

Способы подключения преобразователей тока

Светодиоды можно подключить к устройству двумя способами: параллельно (несколькими цепочками с одинаковым количеством элементов) и последовательно (один за одним в одной цепи).

Для соединения 6 элементов, падение напряжения которых составляет 2 В, параллельно в две линии понадобится драйвер 6 В на 600 мА. А при подключении последовательно преобразователь должен быть рассчитан на 12 В и 300 мА.

Последовательное подключение лучше тем, что все светодиоды будут светиться одинаково, тогда как при параллельном соединении яркость линий может различаться. При последовательном соединении большого количества элементов потребуется драйвер с большим выходным напряжением.

Способы соединения светодиодов

Диммируемые преобразователи тока для светодиодов

Диммирование – это регулирование интенсивности света, исходящего от осветительного прибора. Диммируемые драйверы для светодиодных светильников позволяют изменять входные и выходные параметры тока. За счет этого увеличивается или уменьшается яркость свечения светодиодов. При использовании регулирования, возможно изменение цвета свечения. Если мощность меньше, то белые элементы могут стать желтыми, если больше, то синими.

Диммирование светодиодов при помощи пульта ДУ

Китайские драйверы: стоит ли экономить

Драйверы выпускаются в Китае в огромном количестве. Они отличаются низкой стоимостью, поэтому довольно востребованы. Имеют гальваническую развязку. Их технические параметры нередко завышены, поэтому при покупке дешевого устройства стоит это учесть.

Чаще всего это импульсные преобразователи, с мощностью 350÷700 мА. Далеко не всегда они имеют корпус, что даже удобно, если прибор приобретается с целью экспериментирования или обучения.

Недостатки китайской продукции:

  • в качестве основы используются простые и дешевые микросхемы;
  • устройства не имеют защиты от колебаний в сети и перегрева;
  • создают радиопомехи;
  • создают на выходе высокоуровневую пульсацию;
  • служат недолго и не имеют гарантии.

Не все китайские драйверы плохие, выпускаются и более надежные устройства, например, на базе PT4115. Их можно применять для подключения бытовых LED-источников, фонариков, лент.

Срок службы драйверов

Срок эксплуатации лед драйвера для светодиодных светильников зависит от внешних условий и изначального качества устройства. Ориентировочный срок исправной службы драйвера от 20 до 100 тыс. часов.

Повлиять на срок службы могут такие факторы:

  • перепады температурного режима;
  • высокая влажность;
  • скачки напряжения;
  • неполная загруженность устройства (если драйвер рассчитан на 100 Вт, а использует 50 Вт, напряжение возвращается обратно, от чего возникает перегрузка).

Известные производители дают гарантию на драйверы, в среднем на 30 тыс. часов. Но если устройство использовалось неправильно, то ответственность несет покупатель. Если LED-источник не включается или перестал работать, возможно, проблема в преобразователе, неправильном соединении, или неисправности самого осветительного прибора.

Как проверить драйвер для светодиодов на работоспособность смотрите в видео ниже:

Что такое драйвер и для чего он нужен светодиодам

Сейчас уже можно разделить светодиоды на два основных подтипа: индикаторные и осветительные. Осветительные светодиоды – относительно новые элементы светотехники. Первые модели применялись как индикаторы еще лет 30 назад. Но прогресс на месте не стоит. Инженерам удалось получить большую яркость при минимальном размере и потребляемом токе в сравнение с лампами. Кроме того, светодиоды имеют намного большую механическую прочность. Как лампочку их уже не разобьешь.

Светодиодная осветительная продукция серьезно потеснила практически все другие источники света. Светодиоды могут обеспечить освещение не хуже лампового. А их энергоэффективность намного выше. Обычно источники света на основе светодиодов окупаются в течение года. Сейчас их можно встретить в качестве домашнего освещения, уличных фонарей. Они устанавливаются в световое оборудование автомобилей. Даже в мониторах и телевизорах они заменили лампы подсветки .

Назначение.

Светодиод весьма чувствителен к качеству электропитания. Если пониженное напряжение ему не сделает ничего плохого, то повышенные напряжения и токи очень быстро снижают ресурс этих перспективных источников света. Многие видели, наверное, как на автомобилях хаотично моргают огни. Этот светодиод уже отслужил.

Для обеспечения стабильного электропитания (поддержания заданного напряжения и тока) необходима дополнительная электронная схема – блок питания или драйвер питания. Часто его называют led driver.

Принцип работы.

Электронная схема должна обеспечить строго стабилизированные напряжение и ток, подводимые к кристаллу. Небольшое превышение в цепи питания существенно снижает ресурс светоизлучателя.

В простейшем и самом дешевом случае просто ставят ограничительный резистор.

Питание диода через ограничивающий резистор.

Это простейшая линейная схема. Она не способна автоматически поддерживать ток. С ростом напряжения, он будет расти, при превышение допустимого значения произойдет разрушение кристалла от перегрева. В более сложном случае управление реализуется через транзистор. Недостаток линейной схемы – бесполезное рассеивание мощности. С ростом напряжения будут расти и потери. Если для маломощных LED-источников света такой подход еще допустим, то при использовании мощных светоизлучающих диодов такие схемы не используются. Из плюсов только простота реализации, низкая себестоимость, достаточная надежность схемы.

Можно применить импульсную стабилизацию. В простейшем случае схема будет выглядеть так:

Пример.Импульсная стабилизация (упрощенно)

При нажатии на кнопку происходит заряд конденсатора, при отпускании, он отдает накопленную энергию полупроводнику, а тот излучает свет. При росте напряжения время на зарядку сокращается, при падении – увеличивается. Вот так на кнопку и надо нажимать, поддерживая свечение. Естественно, сейчас это все делает электроника. В источниках питания роль кнопки выполняет транзистор, либо тиристор. Это – принцип ШИМ – широтно-импульсная модуляция. Замыкание происходит десятки, а то и тысячи раз в секунду. КПД ШИМ может достигать 95%.

Категорически не стоит путать светодиодный драйвер и ПРА для люминесцентных ламп, у них разные принципы работы.

Характеристики драйверов, их отличия от блоков питания LED ленты.

Если сравнивать драйвер и блок питания, то у них есть различия в работе. Драйвер – это источник тока. Его задача поддерживать именно определенную силу тока через кристалл или светодиодную линейку.

Задача стабилизированного блока питания в выдаче именно стабильного напряжения. Хотя блок питания – понятие обобщенное.

Источник напряжения применяется в основном со светодиодной лентой, где диоды включены в параллель. Соответственно через них должен проходить равный ток, при неизменном напряжении. При использовании одного светодиода важно обеспечить определенную силу тока через него. Отличия есть, но оба выполняют одну и туже задачу – обеспечение стабильного питания.

Для подключения светодиодной ленты необходимы, как правило, блоки питания, выдающие 12, либо 24 В. Второй параметр – это мощность. Блок питания должен выдавать мощность не равную, а несколько большую, чем мощность подключаемой светодиодной линейки. В противном случае, яркость свечения будет недостаточна. Обычно запас по мощности рекомендуется в пределах 20-30 процентов от суммарной мощности.

При выборе драйвера нужно учесть:

Кроме того, существуют и регулируемые источники питания. Их задача – регулировка яркости освещения. Но различаются принципы – регулировка напряжения, либо силы тока.

Для подключения led-линейки потребуется большая сила тока при неизменном напряжении.

Суммарная мощность будет рассчитываться по формуле P = P(led) × n, где Р – мощность, Р(led) – мощность единичного диода в линейке, n – их количество.

Сила тока через линейку будет рассчитываться по аналогичной формуле.

Если есть желание самостоятельно изготовить источник питания для светодиодов, то самый простой вариант – импульсный без гальванической развязки.

Схема простого led-драйвера без гальванической развязки.

Схема проста и надежна. Делитель основан на емкостном сопротивлении. Выпрямление производится при помощи диодного моста. Электролитический конденсатор (перед L7812) сглаживает пульсации после выпрямления. Конденсатор после L7812 сглаживает пульсации на светодиодах. На работу схемы он не влияет. L7812 – собственно сам стабилизатор. Это импортный аналог советских микросхем серии КРЕНхх. Та же самая схема включения. Характеристики несколько улучшены. Однако предельный ток составляет не более 1.2А. Это не позволит создать мощный светильник. Существуют неплохие варианты готовых источников питания.

Как выбрать драйвер для светодиодов.

От выбора драйвера зависит срок службы светодиодов. При этом светодиод достигает своих номинальных характеристик, так как получает необходимую ему мощность.

В зависимости от степени защиты драйвер можно применять либо дома, либо на улице. Внешне драйвер может быть открытым, в корпусе из перфорированного металла, либо – закрытый, размешенный в герметичной металлической коробке. Для дома достаточно негерметизированного пластикового корпуса, в котором расположен электронный блок.

Сразу стоит учесть, что ограничивающий резистор – это не самый лучший вариант. Он не избавит ни от скачков питающей сети, ни от импульсных помех. Любое изменение напряжения приведет в скачку тока. Линейные стабилизаторы также не являются достойным средством запитки светоизлучающих диодов. Его способности ограничиваются низкой эффективностью.

Выбор драйвера производится только после того, как известна суммарная мощность, схема подключения и количество светодиодов.

Сейчас много подделок и одни и те же по типоразмерам диоды могут обеспечивать разные мощности. Лучше использовать только известные марки электротехнической продукции.

На корпусе драйвера для подключения светодиодов, всегда размещена спецификация. Она включает:

  • класс защищенности от пыли и жидкости,
  • мощность,
  • номинальный стабилизированный ток,
  • рабочее входное напряжение,
  • диапазон выходного напряжения.

Достаточно популярны бескорпусные led-драйверы. Плату потребуется разместить в корпусе. Это необходимо для безопасного использования. Платы больше подходят для радиолюбителей-энтузиастов. У них входное напряжение может быть либо 12 В, либо 220 В.

Также стоит продумать о размещении драйвера. Температура и влажность влияют на надежность системы освещения.

Зачем нужен драйвер для светодиода и как подобрать

Широкое распространение светодиодов повлекло за собой массовое производство блоков питания для них. Такие блоки называются драйверами. Основной их особенностью является то, что они способны стабильно поддерживать на выходе заданный ток. Другими словами, драйвер для светодиодов (LED) – это источник тока для их питания.

Назначение

Поскольку светодиод — это полупроводниковые элементы, ключевой характеристикой, определяющей яркость их свечения, является не напряжение, а ток. Чтобы они гарантированно отработали заявленное количество часов, необходим драйвер, — он стабилизирует ток, протекающий через цепь светодиодов. Возможно использование маломощных светоизлучающих диодов и без драйвера, в этом случае его роль выполняет резистор.

Применение

Драйверы применяются как при питании светодиода от сети 220В, так и от источников постоянного напряжения 9-36 В. Первые используются при освещении помещений светодиодными лампами и лентами, вторые чаще встречаются в автомобилях, велосипедных фарах, переносных фонарях и т.д.

Принцип работы

Как уже было сказано, драйвер – это источник тока. Его отличия от источника напряжения проиллюстрированы ниже.

Источник напряжения создает на своем выходе некоторое напряжение, в идеале не зависящее от нагрузки.

Например, если подключить к источнику напряжением 12 В резистор 40 Ом, через него пойдет ток 300 мА.

Если подключить параллельно два резистора, суммарный ток составит уже 600 мА при том же напряжении.

Драйвер же поддерживает на своем выходе заданный ток. Напряжение при этом может изменяться.

Подключим так же резистор 40 Ом к драйверу 300 мА.

Драйвер создаст на резисторе падение напряжения 12 В.

Если подключить параллельно два резистора, ток по-прежнему будет 300 мА, а напряжение упадет до 6 В:

Таким образом, идеальный драйвер способен обеспечить нагрузке номинальный ток вне зависимости от падения напряжения. То есть светодиод с падением напряжения 2 В и током 300 мА будет гореть так же ярко, как и светодиод напряжением 3 В и током 300 мА.

Основные характеристики

При подборе нужно учитывать три основных параметра: выходное напряжение, ток и потребляемая нагрузкой мощность.

Напряжение на выходе драйвера зависит от нескольких факторов:

  • падение напряжения на светодиоде;
  • количество светодиодов;
  • способ подключения.

Ток на выходе драйвера определяется характеристиками светодиодов и зависит от следующих параметров:

Мощность светодиодов влияет на потребляемый ими ток, который может варьироваться в зависимости от требуемой яркости. Драйвер должен обеспечить им этот ток.

Мощность нагрузки зависит от:

  • мощности каждого светодиода;
  • их количества;
  • цвета.

В общем случае потребляемую мощность можно рассчитать как

где Pled — мощность светодиода,

N — количество подключаемых светодиодов.

Максимальная мощность драйвера не должна быть меньше .

Стоит учесть, что для стабильной работы драйвера и предотвращения выхода его из строя следует обеспечить запас по мощности хотя бы 20-30%. То есть должно выполняться следующее соотношение:

где Pmax — максимальная мощность драйвера.

Кроме мощности и количества светодиодов, мощность нагрузки зависит еще от их цвета. Светодиоды разных цветов имеют разное падение напряжения при одинаковом токе. Например, красный светодиод CREE XP-E обладает падением напряжения 1.9-2.4 В при токе 350 мА. Средняя потребляемая им мощность таким образом составляет около 750 мВт.

У XP-E зеленого цвета падение 3.3-3.9 В при том же токе, и его средняя мощность составит уже около 1.25 Вт. То есть драйвером, рассчитанным на 10 ватт, можно питать либо 12-13 красных светодиодов, либо 7-8 зеленых.

Как подобрать драйвер для светодиодов. Способы подключения LED

Допустим, имеется 6 светодиодов с падением напряжения 2 В и током 300 мА. Подключить их можно различными способами, и в каждом случае потребуется драйвер с определенными параметрами:

  1. Последовательно. При таком способе подключения потребуется драйвер напряжением 12 В и током 300 мА. Преимущество такого способа в том, что через всю цепь идет один и тот же ток, и светодиоды горят с одинаковой яркостью. Недостаток заключается в том, что для подключения большого числа светодиодов потребуется драйвер с очень большим напряжением.
  2. Параллельно. Здесь уже будет достаточно драйвера на 6 В, но потребляемый ток будет примерно в 2 раза больше, чем при последовательном соединении. Недостаток: токи, текущие в каждой цепи, немного различаются из-за разброса параметров светодиодов, поэтому одна цепь будет светить несколько ярче другой.
  3. Последовательно по два. Тут потребуется такой же драйвер, как и во втором случае. Яркость свечения будет уже более равномерная, но есть один существенный недостаток: при включении питания в каждой паре светодиодов из-за разброса характеристик один может открыться раньше другого, и через него пойдет ток, в 2 раза превышающий номинальный. Большинство светодиодов рассчитаны на такие кратковременные броски тока, но все-таки этот способ наименее предпочтителен.

Соединять таким образом параллельно 3 и более светодиодов недопустимо, так как при этом через них может пойти слишком большой ток, в результате чего они быстро выйдут из строя.

Обратите внимание, что во всех случаях мощность драйвера составляет 3.6 Вт и не зависит от способа подключения нагрузки.

Таким образом, целесообразнее выбирать драйвер для светодиодов уже на этапе закупки последних, предварительно определив схему подключения. Если же сначала приобрести сами светодиоды, а потом подбирать к ним драйвер, это может оказаться нелегкой задачей, поскольку вероятность того, что Вы найдете именно тот источник питания, который сможет обеспечить работу именно этого количества светодиодов, включенных по конкретной схеме, невелика.

В общем случае драйверы для светодиодов можно разделить на две категории: линейные и импульсные.

У линейного выходом служит генератор тока. Он обеспечивает стабилизацию выходного тока при нестабильном входном напряжении; причем подстройка происходит плавно, не создавая высокочастотных электромагнитных помех. Они просты и дешевы, но невысокий КПД (менее 80%) ограничивает сферу их применения маломощными светодиодами и лентами.

Импульсные представляют собой устройства, создающие на выходе серию высокочастотных импульсов тока.

Обычно они работают по принципу широтно-импульсной модуляции (ШИМ), то есть среднее значение выходного тока определяется отношением ширины импульсов к периоду их следования (эта величина называется коэффициентом заполнения).

На диаграмме выше показан принцип работы ШИМ-драйвера: частота импульсов остается постоянной, но изменяется коэффициент заполнения от 10% до 80%. Это ведет к изменению среднего значения тока Icp на выходе.

Такие драйверы получили широкое распространение благодаря компактности и высокому КПД (около 95%). Основным недостатком является больший по сравнению с линейными уровень электромагнитных помех.

Светодиодный драйвер на 220 В

Для включения в сеть 220 В выпускаются как линейные, так и импульсные. Существуют драйверы с гальванической развязкой от сети и без нее. Основными преимуществами первых являются высокий КПД, надежность и безопасность.

Без гальванической развязки обычно дешевле, но менее надежны и требуют осторожности при подключении, поскольку есть вероятность поражения током.

Китайские драйверы

Востребованность драйверов для светодиодов способствует их массовому производству в Китае. Эти устройства представляют собой импульсные источники тока, обычно на 350-700 мА, часто не имеющие корпуса.

Основные их достоинства – низкая цена и наличие гальванической развязки. Недостатки следующие:

  • низкая надежность из-за использования дешевых схемных решений;
  • отсутствие защиты от перегрева и колебаний в сети;
  • высокий уровень радиопомех;
  • высокий уровень пульсаций на выходе;
  • недолговечность.

Срок службы

Обычно срок службы драйвера меньше, чем у оптической части – производители дают гарантию на 30000 часов работы. Это связано с такими факторами, как:

  • нестабильность сетевого напряжения;
  • перепады температур;
  • уровень влажности;
  • загруженность драйвера.

Самым слабым звеном светодиодного драйвера являются сглаживающие конденсаторы, которые имеют тенденцию к испарению электролита, особенно в условиях повышенной влажности и нестабильного питающего напряжения. В результате уровень пульсаций на выходе драйвера повышается, что негативно сказывается на работе светодиодов.

Также на срок службы влияет неполная загруженность драйвера. То есть если он, рассчитан на 150 Вт, а работает на нагрузку 70 Вт, половина его мощности возвращается в сеть, вызывая ее перегрузку. Это провоцирует частые сбои питания. Рекомендуем почитать про срок службы светодиодных ламп.

Схемы драйверов (микросхемы) для светодиодов

Многие производители выпускают специализированные микросхемы драйверов. Рассмотрим некоторые из них.

ON Semiconductor UC3845 – импульсный драйвер с выходным током до 1А. Схема драйвера для светодиода 10w на этой микросхеме приведена ниже.

Supertex HV9910 – очень распространенная микросхема импульсного драйвера. Ток на выходе не превышает 10 мА, не имеет гальванической развязки.

Простой драйвер тока на этой микросхеме представлен ниже.

Texas Instruments UCC28810. Сетевой импульсный драйвер, имеет возможность организовать гальваническую развязку. Выходной ток до 750 мА.

Еще одна микросхема этой фирмы, — драйвер для питания мощных светодиодов LM3404HV — описывается в этом видео:

Устройство работает по принципу резонансного преобразователя типа Buck Converter, то есть функция поддержания требуемого тока здесь частично возложена на резонансную цепь в виде катушки L1 и диода Шоттки D1 (типовая схема приведена ниже). Также имеется возможность задания частоты коммутации подбором резистора RON.

Maxim MAX16800 – линейная микросхема, работает при малых напряжениях, поэтому на ней можно построить драйвер 12 вольт. Выходной ток – до 350 мА, поэтому может использоваться как драйвер питания для мощного светодиода, фонарика, и т.д. Есть возможность диммирования. Типовая схема и структура представлены ниже.

Заключение

Светодиоды гораздо более требовательны к источнику питания, чем другие источники света. Например, превышение тока на 20% для люминесцентной лампы не повлечет за собой серьезного ухудшения характеристик, для светодиодов же срок службы сократится в несколько раз. Поэтому выбирать драйвер для светодиодов следует особенно тщательно.

LED драйвер. Зачем он нужен и как его подобрать?

В последнее время потребители всё чаще интересуются светодиодным освещением. Популярность LED ламп вполне обоснована – новая технология освещения не выделяет ультрафиолетового изучения, экономична, а срок службы таких ламп – более 10 лет. Кроме того, при помощи LED элементов в домашних и офисных интерьерах, на улице легко создать оригинальные световые фактуры.

Если вы решились приобрести для дома или офиса такие приборы, то вам стоит знать, что они очень требовательны к параметрам электросетей. Для оптимальной работы освещения вам понадобится LED — драйвер. Так как строительный рынок переполнен устройствами как различного качества так и ценовой политики, перед тем, как приобрести светодиодные устройства и блок питания к ним, не лишним будет ознакомиться с основными советами, которые дают специалисты в этом деле.

Для начала рассмотрим, для чего нужен такой аппарат как драйвер.

Каково предназначение драйверов?

Драйвер (блок питания) — это устройство, которое выполняет функции стабилизации тока, протекающего через цепь светодиодов, и отвечает за то, чтобы купленный вами прибор отработал гарантированное производителем количество часов. При подборе блока питания необходимо для начала досконально изучить его выходные характеристики, среди которых ток, напряжение, мощность, коэффициент полезного действия (КПД), а также степень его защиты т воздействия внешних факторов.

К примеру, от проходных характеристик тока зависит яркость светодиод. Цифровое обозначение напряжения отражает диапазон, в котором функционирует драйвер при возможных скачках напряжения. Ну и конечно чем выше КПД, тем более эффективно будет работать устройство, а срок его эксплуатации будет больше.

Где применяются LED драйвера?

Электронное устройство – драйвер — обычно питается от электрической сети в 220В, но рассчитан на работу и с очень низким напряжением в10, 12 и 24В. Диапазон рабочего выходного напряжения, в большинстве случаев, составляет от 3В до нескольких десятков вольт. К примеру, вам нужно подключить семь светодиодов напряжением 3В. В этом случае потребуется драйвер с выходным напряжением от 9 до 24В, который рассчитан на 780 мА. Обратите внимание, что, несмотря на универсальность, такой драйвер будет обладать малым коэффициентом полезного действия, если дать ему минимальную нагрузку.

Если вам нужно установить освещение в авто, вставить лампу в фару велосипеда, мотоцикла, в один или два небольших уличных фонаря или в ручной фонарь, питания от 9 до 36В вам будет вполне достаточно.

LED –драйверы по мощнее необходимо будет выбирать, если вы намерены подключить светодиодную систему, состоящую из трех и более устройств, на улице, выбрали её для оформления своего интерьера, или же у вас есть настольные офисные светильники, которые работают не менее 8 часов в день.

Как работает драйвер?

Как мы уже рассказывали, LED — драйвер выступает источником тока. Источник напряжения создает на своем выходе некоторое напряжение, в идеале не зависящее от нагрузки.

Например, подключим к источнику напряжением 12 В резистор 40 Ом. Через него пойдет ток величиной 300мА.

Теперь включим сразу два резистора. Суммарный ток составит уже 600мА.

Блок питания поддерживает на своем выходе заданный ток. Напряжение при этом может изменяться. Подключим так же резистор 40Ом к драйверу 300мА.

Блок питания создаст на резисторе падение напряжения 12В.

Если подключить параллельно два резистора, ток также будет 300мА, а напряжение упадет в два раза.


Каковы основные характеристики LED — драйвера?

При подборе драйвера обязательно обращайте внимание на такие параметры, как выходное напряжение, потребляемая нагрузкой мощность (ток).

— Напряжение на выходе зависит от падения напряжения на светодиоде; количества светодиодов; от способа подключения.

— Ток на выходе блока питания определяется характеристиками светодиодов и зависит от их мощности и яркости, количества и цветового решения.

Остановимся на цветовых характеристиках LED — ламп. От этого, к слову, зависит мощность нагрузки. Например, средняя потребляемая мощность красного светодиода варьирует в пределах 740 мВт. У зеленого цвета средняя мощность составит уже около 1.20 Вт. На основании этих данных можно заранее просчитать, какой мощности драйвер вам понадобится.

Чтобы вам легче было просчитать общую потребляемую мощность диодов, предлагаем использовать формулу.

P=Pled x N

где Pled — это мощность LED, N — количество подключаемых диодов.

Еще одно важное правило. Для стабильной работы блока питания запас по мощности должен быть хотя бы 25%. То есть должно выполняться следующее соотношение:

Pmax ≥ (1.2…1.3)xP

где Pmax — это максимальная мощность блока питания.

Как правильно подсоединять светодиоды-LED?

Подключать светодиоды можно несколькими способами.

Первый способ – это последовательное введение. Здесь потребуется драйвер напряжением 12В и током 300мА. При таком способе светодиоды в лампе или на ленте горят одинаково ярко, но если вы решитесь подключить большее число светодиодов, вам потребуется драйвер с очень большим напряжением.

Второй способ — параллельное подключение. Нам подойдет блок питания на 6В, а тока будет потребляться примерно в два раза больше, чем при последовательном подключении. Есть и недостаток — одна цепь может светить ярче другой.


Последовательно-параллельное соединение – встречается в прожекторах и других мощных светильниках, работающих и от постоянного, и от переменного напряжения.

Четвертый способ — подключение драйвера последовательно по два. Он наименее предпочтителен.

Есть еще и гибридный вариант. Он соединил в себе достоинства от последовательного и параллельного соединения светодиодов.

Специалисты советуют драйвер выбирать перед тем, как вы купите светодиоды, да еще и желательно предварительно определить схему их подключения. Так блок питания будет для вас более эффективно работать.

Линейные и импульсные драйверы. Каковы их принципы работы?

Сегодня для LED ламп и лент выпускают линейные и импульсные драйверы.
У линейного выходом служит генератор тока, который обеспечивает стабилизацию напряжения, не создавая при этом электромагнитных помех. Такие драйверы просты в использовании и не дорогие, но невысокий коэффициент полезного действия ограничивает сферу их применения.


Импульсные драйверы, наоборот, имеют высокий коэффициент полезного действия (около 96%), да еще и компактны. Драйвер с такими характеристиками предпочтительнее использовать для портативных осветительных приборов, что позволяет увеличить время работы источника питания. Но есть и минус – из-за высокого уровня электромагнитных помех он менее привлекателен.

Нужен светодиодный драйвер на 220В?

Для включения в сеть 220В выпускаются линейные и импульсные драйверы. При этом если блоки питания обладают гальванической развязкой (передача энергии или сигнала между электрическими цепями без электрического контакта между ним), они демонстрируют высокий коэффициент полезного действия, надежность и безопасность в эксплуатации.

Без гальванической развязки блок питания обойдется вам дешевле, но будет не столь надежным, потребует осторожности при подсоединении из-за опасности удара током.

При подборе параметров по мощности специалисты рекомендуют останавливать свой выбор на светодиодных драйверах с мощностью, превышающей необходимый минимум на 25%. Такой запас мощности не даст электронному прибору и питающему устройству быстро выйти из строя.

Стоит ли покупать китайские драйверы?

Made in China – сегодня на рынке можно встретить сотни драйверов различных характеристик, произведенных в Китае. Что же они собой представляют? В основном это устройства с импульсным источником тока на 350-700мА. Низкая цена и наличие гальванической развязки позволяют таким драйверам быть в спросе у покупателей. Но есть и недостатки прибора китайской сборки. Зачастую они не имеют корпуса, использование дешевых элементов снижает надежность драйвера, да еще и отсутствует защита от перегрева и колебаний в электросети.

Китайские драйверы, как и многие товары, выпускаемые в Поднебесной, недолговечны. Поэтому если вы хотите установить качественную систему освещения, которая прослужит вам ни один год, лучше всего покупать преобразователь для светодиодов от проверенного производителя.

Каков срок службы led драйвера?

Драйверы, как и любая электроника, имеют свой срок эксплуатации. Гарантийный срок службы LED — драйвера составляет 30 000 часов. Но не стоит забывать, что время работы аппарата будет зависеть еще от нестабильности сетевого напряжения, уровня влажности и перепада температур, влияния на него внешних факторов.

Неполная загруженность драйвера также снижает срок эксплуатации прибора. К примеру, если LED – драйвер рассчитан на 200Вт, а работает на нагрузку 90Вт, половина его мощности возвращается в электрическую сеть, вызывая ее перегрузку. Это провоцирует частые сбои питания и прибор может перегореть, сослужив вам всего год.

Следуйте нашим советам и тогда не придется часто менять светодиодные устройства.

Светодиодный драйвер: принцип работы и правила подбора

Светодиоды получили большую популярность. Главную роль в этом сыграл светодиодный драйвер, поддерживающий постоянный выходной ток определенного значения. Можно сказать, что это устройство представляет собой источник тока для LED-приборов. Такой драйвер тока, работая вместе со светодиодом, обеспечивает долголетний срок службы и надежную яркость. Анализ характеристик и видов этих устройств позволяет понять, какие они выполняют функции, и как их правильно выбирать.

Что такое драйвер и каково его назначение?

Драйвер для светодиодов является электронным устройством, на выходе которого образуется постоянный ток после стабилизации. В данном случае образуется не напряжение, а именно ток. Устройства, которые стабилизируют напряжение, называются блоками питания. На их корпусе указывается выходное напряжение. Блоки питания 12 В применяют для питания LED-линеек, светодиодной ленты и модулей.

Основным параметром LED-драйвера, которым он сможет обеспечивать потребителя длительное время при определенной нагрузке, является выходной ток. В качестве нагрузки применяются отдельные светодиоды или сборки из аналогичных элементов.

КПД импульсного драйвера для светодиодов достигает 95%

Драйвер для светодиода обычно питается от сети напряжением 220 В. В большинстве случаев диапазон рабочего выходного напряжения составляет от трех вольт и может достигать нескольких десятков вольт. Для подключения светодиодов 3W в количестве шести штук потребуется драйвер с выходным напряжением от 9 до 21 В, рассчитанный на 780 мА. При своей универсальности он обладает малым КПД, если на него включить минимальную нагрузку.

При освещении в автомобилях, в фарах велосипедов, мотоциклов, мопедов и т. д., в оснащении переносных фонарей используется питание с постоянным напряжением, значение которого варьируется от 9 до 36 В. Можно не применять драйвер для светодиодов с небольшой мощностью, но в таких случаях потребуется внесение соответствующего резистора в питающую сеть напряжением 220 В. Несмотря на то, что в бытовых выключателях используется этот элемент, подключить светодиод к сети 220 В и рассчитывать на надежность достаточно проблематично.

Основные особенности

Мощность, которую эти устройства способны отдавать под нагрузкой, является важным показателем. Не стоит перегружать его, пытаясь добиться максимальных результатов. В результате таких действий могут выйти из строя драйверы для светодиодов или же сами LED-элементы.

Дешевый светодиодный драйвер

На электронную начинку устройства влияет множество причин:

  • класс защиты аппарата;
  • элементная составляющая, которая применяется для сборки;
  • параметры входа и выхода;
  • марка производителя.

Изготовление современных драйверов выполняется при помощи микросхем с использованием технологии широтно-импульсного преобразования, в состав которых входят импульсные преобразователи и схемы, стабилизирующие ток. ШИМ-преобразователи запитываются от 220 В, обладают высоким классом защиты от коротких замыканий, перегрузок, а так же высоким КПД.

Технические характеристики

Перед приобретением преобразователя для светодиодов следует изучить характеристики устройства. К ним относятся следующие параметры:

  • выдаваемая мощность;
  • выходное напряжение;
  • номинальный ток.

Схема подключения LED-драйвера

На выходное напряжение влияет схема подключения к источнику питания, количество в ней светодиодов. Значение тока пропорционально зависит от мощности диодов и яркости их излучения. Светодиодный драйвер должен выдавать столько тока для светодиодов, сколько потребуется для обеспечения постоянной яркости. Стоит помнить, что мощность необходимого устройства должна быть более потребляемой всеми светодиодами. Рассчитать ее можно, используя следующую формулу:

P(led) – мощность одного LED-элемента;

n — количество LED-элементов.

Для обеспечения длительной и стабильной работы драйвера следует учитывать запас мощности устройства в 20–30% от номинальной.

Подключение светодиодов к драйверу

Выполняя расчет, следует учитывать цветовой фактор потребителя, так как он влияет на падение напряжения. У разных цветов оно будет иметь отличающиеся значения.

Срок годности

Светодиодные драйверы, как и вся электроника, обладают определенным сроком службы, на который сильно влияют эксплуатационные условия. LED-элементы, изготовленные известными брендами, рассчитаны на работу до 100 тысяч часов, что намного дольше источников питания. По качеству рассчитанный драйвер можно классифицировать на три типа:

  • низкого качества, с работоспособностью до 20 тысяч часов;
  • с усредненными параметрами — до 50 тысяч часов;
  • преобразователь, состоящий из комплектующих известных брендов — до 70 тысяч часов.

Многие даже не знают, зачем обращать внимание на этот параметр. Это понадобится для выбора устройства для длительного использования и дальнейшей окупаемости. Для использования в бытовых помещениях подойдет первая категория (до 20 тысяч часов).

Как подобрать драйвер?

Насчитывается множество разновидностей драйверов, используемых для LED-освещения. Большинство из представленной продукции изготовлено в Китае и не имеет нужного качества, но выделяется при этом низким ценовым диапазоном. Если нужен хороший драйвер, лучше не гнаться за дешевизной китайского производства, так как их характеристики не всегда совпадают с заявленными, и редко когда к ним прилагается гарантия. Может быть брак на микросхеме или быстрый выход из строя устройства, в таком случае не удастся совершить обмен на более качественное изделие или вернуть средства.

Светодиодный драйвер без корпуса

Наиболее часто выбираемым вариантом является бескорпусный драйвер, питающийся от 220 В или 12 В. Различные модификации позволяют использовать их для одного или более светодиодов. Эти устройства можно выбрать для организации исследований в лаборатории или же проведения экспериментов. Для фито-ламп и бытового применения выбирают драйверы для светодиодов, находящиеся в корпусе. Бескорпусные устройства выигрывают в ценовом плане, но проигрывают в эстетике, безопасности и надежности.

Виды драйверов

Устройства, осуществляющие питание светодиодов, условно можно разделить на:

  • импульсные;
  • линейные.

Импульсный драйвер

Устройства импульсного типа производят на выходе множество токовых импульсов высокой частоты и работают по принципу ШИМ, КПД у них составляет до 95%. Импульсные преобразователи имеют один существенный недостаток — во время работы возникают сильные электромагнитные помехи. Для обеспечения стабильного выходного тока в линейный драйвер установлен генератор тока, который играет роль выхода. Такие устройства имеют небольшой КПД (до 80%), но при этом просты в техническом плане и стоят недорого. Такие устройства не получится использовать для потребителей большой мощности.

Из вышеперечисленного можно сделать вывод, что источник питания для светодиодов следует выбирать очень тщательно. Примером может послужить люминесцентная лампа, на которую подается ток, превышающий норму на 20%. В ее характеристиках практически не произойдет изменений, а вот работоспособность светодиода уменьшится в несколько раз.

виды, назначение, подключение. Блок питания для led ленты

Светодиоды продолжают форсировать очередные рубежи в мире искусственного освещения, подтверждая своё превосходство целым рядом преимуществ. Большая заслуга в успешном развитии LED-технологий принадлежит источникам питания. Работая в тандеме, драйвер и светодиод открывают новые горизонты, гарантируя потребителю стабильную яркость и заявленный срок службы.

Что собой представляет светодиодный драйвер, и какая функциональная нагрузка на него возложена? На что обратить внимание при выборе и есть ли альтернатива? Попробуем разобраться.

Что такое драйвер для светодиода и для чего он нужен?

Выражаясь по-научному, LED-драйвером называют электронное устройство, основным выходным параметром которого является стабилизированный ток. Именно ток, а не напряжение. Устройство со стабилизацией напряжения принято именовать «блоком питания» с указанием номинального выходного напряжения. Его используют для запитки светодиодных лент, модулей и LED-линеек. Но речь пойдет не о нём.

Главный электрический параметр драйвера для светодиода – выходной ток, который он может длительно обеспечивать при подключении соответствующей нагрузки. В роли нагрузки выступают отдельные светодиоды или сборки на их основе. Для стабильного свечения необходимо, чтобы через кристалл светодиода протекал ток, указанный в паспортных данных. В свою очередь, напряжение на нём упадёт ровно столько, сколько потребуется p-n переходу при данном значении тока. Точные значения протекающего тока и прямого падения напряжения можно определить из вольта-мперной характеристики (ВАХ) полупроводникового прибора. Питание драйвер получает, как правило, от постоянной сети 12 В или переменной сети 220 В. Его выходное напряжение указывается в виде двух крайних значений, между которыми гарантируется стабильная работа. Как правило, рабочий диапазон может быть от трёх вольт до нескольких десятков вольт. Например, драйвер с U вых =9-12 В, I вых =350 мА, как правило, предназначен для последовательного подключения трёх белых светодиодов мощностью 1 Вт. На каждом элементе упадёт примерно 3,3 В, что в сумме составит 9,9 В, а значит это попадает в указанный диапазон.

К стабилизатору с разбросом напряжений на выходе 9-21 В и током 780 мА можно подключить от трех до шести светодиодов по 3 Вт каждый. Такой драйвер считается более универсальным, но имеет меньший КПД при включении с минимальной нагрузкой.

Немаловажным параметром светодиодного драйвера является мощность, которую он может отдать в нагрузку. Не стоит пытаться выжать из него максимум. Особенно это касается радиолюбителей, которые мастерят последовательно-параллельные цепочки из светодиодов с выравнивающими резисторами, а потом этой самодельной матрицей перегружают выходной транзистор стабилизатора.

Электронная часть драйвера для светодиода зависит от многих факторов:

  • входных и выходных параметров;
  • класса защиты;
  • применяемой элементной базы;
  • производителя.

Современные драйверы для светодиодов изготавливают по принципу ШИМ-преобразования и с помощью специализированных микросхем. Широтно-импульсные преобразователи состоят из импульсного трансформатора и схемы стабилизации тока. Они питаются от сети 220 В, имеют высокий КПД и защиту от короткого замыкания и перегрузки.

Драйверы на базе одной микросхемы более компактны, так как рассчитаны на питание от низковольтного источника постоянного тока. Они также обладают высоким КПД, но их надёжность ниже из-за упрощенной электронной схемы. Такие устройства очень востребованы при светодиодном тюнинге автомобиля. В качестве примера можно назвать ИМС PT4115, о готовом схемотехническом решении на основе этой микросхемы можно прочесть в .

Критерии выбора

Сразу хочется отметить, что резистор – это не альтернатива драйверу для светодиода. Он никогда не защитит от импульсных помех и перепадов в питающей сети. Любое изменение входного напряжения пройдёт через резистор и приведет к скачкообразному изменению тока из-за нелинейности ВАХ светодиода. Драйвер, собранный на базе линейного стабилизатора – тоже не лучший вариант. Низкая эффективность сильно ограничивает его возможности.

Выбирать LED-драйвер нужно только после того, как будет точно известно количество и мощность подключаемых светодиодов.

Помните!
Чипы одного типоразмера могут иметь различную мощность потребления ввиду большого количества подделок. Поэтому старайтесь приобретать светодиоды только в проверенных магазинах.

Касаемо технических параметров, то на корпусе LED-драйвера обязательно должно быть указано:

  • мощность;
  • рабочий диапазон входного напряжения;
  • рабочий диапазон выходного напряжения;
  • номинальный стабилизированный ток;
  • степень защиты от влаги и пыли.

Очень привлекательны бескорпусные драйверы с питанием от 12 В и 220 В. Среди них существуют разные модификации, в которых можно подключать как один, так и несколько мощных светодиодов. Такие устройства удобны для проведения лабораторных исследований и экспериментов. Для домашнего использования всё равно придётся поместить изделие в корпус. В итоге денежная экономия на плате драйвера открытого типа достигается в ущерб надежности и эстетики.

Кроме подбора драйвера для светодиода по электрическим параметрам, потенциальный покупатель должен четко представлять условия его будущей эксплуатации (место размещения, температура, влажность). Ведь оттого, где и как будет установлен драйвер, зависит надёжность всей системы.

Читайте так же

Лидирующую позицию среди наиболее эффективных источников искусственного света занимают сегодня светодиоды. Это во многом является заслугой качественных источников питания для них. При работе совместно с правильно подобранным драйвером, светодиод длительно сохранит устойчивую яркость света, а срок службы светодиода окажется очень-очень долгим, измеряемым десятками тысяч часов.

Таким образом, правильно подобранный драйвер для светодиодов — залог долгой и надежной работы источника света. И в этой статье мы постараемся раскрыть тему того, как правильно выбрать драйвер для светодиода, на что обратить внимание, и какие вообще они бывают.

Драйвером для светодиодов называют стабилизированный источник питания постоянного напряжения или постоянного тока. Вообще, изначально, светодиодный драйвер — это , но сегодня даже источники постоянного напряжения для светодиодов называют светодиодными драйверами. То есть можно сказать, что главное условие — это стабильные характеристики питания постоянным током.

Электронное устройство (по сути — стабилизированный импульсный преобразователь) подбирается под необходимую нагрузку, будь то набор отдельных светодиодов, собранных в последовательную цепочку, или параллельный набор таких цепочек, либо может быть лента или вообще один мощный светодиод.

Стабилизированный источник питания постоянного напряжения хорошо подойдет , LED-линеек, или для запитки набора из нескольких мощных светодиодов, соединенных по одному параллельно, — то есть когда номинальное напряжение светодиодной нагрузки точно известно, и достаточно только подобрать блок питания на номинальное напряжение при соответствующей максимальной мощности.

Обычно это не вызывает проблем, например: 10 светодиодов на напряжение 12 вольт, по 10 ватт каждый, — потребуют 100 ваттный блок питания на 12 вольт, рассчитанный на максимальный ток в 8,3 ампера. Останется подрегулировать напряжение на выходе при помощи регулировочного резистора сбоку, — и готово.

Для более сложных светодиодных сборок, особенно когда соединяется несколько светодиодов последовательно, необходим не просто блок питания со стабилизированным выходным напряжением, а полноценный светодиодный драйвер — электронное устройство со стабилизированным выходным током. Здесь ток является главным параметром, а напряжение питания светодиодной сборки может автоматически варьироваться в определенных пределах.

Для ровного свечения светодиодной сборки, необходимо обеспечить номинальный ток через все кристаллы, однако падение напряжения на кристаллах может у разных светодиодов отличаться (поскольку немного различаются ВАХ каждого из светодиодов в сборке), — поэтому напряжение не будет на каждом светодиоде одним и тем же, а вот ток должен быть одинаковым.

Светодиодные драйверы выпускаются в основном на питание от сети 220 вольт или от бортовой сети автомобиля 12 вольт. Выходные параметры драйвера указываются в виде диапазона напряжений и номинального тока.

Например, драйвер с выходом на 40-50 вольт, 600 мА позволит подключить последовательно четыре 12 вольтовых светодиода мощностью по 5-7 ватт. На каждом светодиоде упадет приблизительно по 12 вольт, ток через последовательную цепочку составит ровно по 600 мА, при этом напряжение 48 вольт попадает в рабочий диапазон драйвера.

Драйвер для светодиодов со стабилизированным током — это универсальный блок питания для светодиодных сборок, причем эффективность его получается довольно высокой и вот почему.

Мощность светодиодной сборки — критерий важный, но чем обусловлена эта мощность нагрузки? Если бы ток был не стабилизированным, то значительная часть мощности рассеялась бы на выравнивающих резисторах сборки, то есть КПД оказался бы низким. Но с драйвером, обладающим стабилизацией по току, выравнивающие резисторы не нужны, вот и КПД источника света получится в результате очень высоким.

Драйверы разных производителей отличаются между собой выходной мощностью, классом защиты и применяемой элементной базой. Как правило, в основе — , со стабилизацией выхода по току и с защитой от короткого замыкания и перегрузки.

Питание от сети переменного тока 220 вольт или постоянного тока с напряжением 12 вольт. Самые простые компактные драйверы с низковольтным питанием могут быть выполнены на одной универсальной микросхеме, но надежность их, про причине упрощения, ниже. Тем не менее, такие решения популярны в автотюнинге.

Выбирая драйвер для светодиодов следует понимать, что применение резисторов не спасает от помех, как и применение упрощенных схем с гасящими конденсаторами. Любые скачки напряжения проходят через резисторы и конденсаторы, и нелинейная ВАХ светодиода обязательно отразится в виде скачка тока через кристалл, а это вредно для полупроводника. Линейные стабилизаторы — тоже не лучший вариант в плане защищенности от помех, к тому же эффективность таких решений ниже.

Лучше всего, если точное количество, мощность, и схема включения светодиодов будут заранее известны, и все светодиоды сборки будут одинаковой модели и из одной партии. Затем выбирают драйвер.

На корпусе обязательно указывается диапазон входных напряжений, выходных напряжений, номинальный ток. Исходя из этих параметров выбирают драйвер. Обратите внимание на класс защиты корпуса.

Для исследовательских задач подходят, например, бескорпусные светодиодные драйверы, такие модели широко представлены сегодня на рынке. Если потребуется поместить изделие в корпус, то корпус может быть изготовлен пользователем самостоятельно.

Андрей Повный

У каждого диода, в свою очередь, в описании указано падение напряжения при разных токах. Например, для красного диода 660 нм при токе 600 мА оно составит 2,5 В:

Количество диодов, которое можно подключить на драйвер, суммарным падением напряжения должно укладываться в пределы выходного напряжения драйвера. То есть на драйвер 50Вт 600 мА с выходным напряжением 60-83 В можно подключить от 24 до 33 красных диодов 660 нм. (То есть 2,5*24 = 60, 2,5*33 = 82,5).

Другой пример:
Хотим собрать биколорную лампу красный + синий. Выбрали соотношение красного к синему 3:1 и хотим рассчитать, какой драйвер нужно взять для 42 красных и 14 синих диодов. Считаем: 42*2,5 + 14*3,5 = 154 В. Значит, нам потребуется два драйвера 50 Вт 600 мА, на каждый будет приходиться 21 красных и 7 синих диодов, суммарное падение напряжения на каждом получится по 77 В, что попадает в его выходное напряжение.

Теперь несколько важных пояснений:

1) Не стоит искать драйвер мощностью более 50 Вт: они есть, но они менее эффективны, чем аналогичный набор драйверов меньшей мощности. Более того, они будут сильно греться, что потребует от Вас дополнительных расходов на более мощное охлаждение. Кроме тго, драйвера мощностью более 50Вт как правило сильно дороже, например драйвер на 100Вт может быть дороже чем 2 драйвера по 50Вт. Поэтому гнаться за ними не стоит. Да и надежнее когда цепи светодиодов разделены на секции, если вдруг что-то перегорит — то сгорит не все а только чать. Поэтому выгодно разделять на несколько драйверов, а не стремиться все повесить на один. Вывод: 50Вт — оптимальный вариант, не больше.

2) Ток у драйверов бывает разный: 300 мА, 600 мА, 750 мА — это ходовые. Других вариантов довольно много.
По большому счету, более эффективным с точки зрения КПД на 1 Вт будет использование драйвера на 300 мА, также он не будет сильно нагружать светодиоды, и они будут меньше греться и дольше прослужат. Но главный минус таких драйверов, что диоды будут работать «вполсилы», и поэтому их потребуется примерно в два раза больше, чем для аналога с 600 мА.
Драйвер с током 750 мА будет питать диоды на пределе возможностей, поэтому диоды будут очень сильно греться, и им потребуется очень мощное, хорошо продуманное охлаждение. Но даже несмотря на это, они в любом случае деградируют от перегрева раньше среднего срока «жизни» светодиодных ламп работающих например на 500-600 мА токе.
Поэтому мы рекомендуем использовать драйверы с током 600 мА. Они получаются самым оптимальным решением с точки зрения соотношения цена-эффективность-срок службы.

3) Мощность диодов указывается номинальная, то есть максимально возможная. Но на максимум они никогда не запитываются (почему — см. п.2). Реальную мощность диода рассчитать очень просто: необходимо ток используемого драйвера умножить на падение напряжения диода. Например, при подключении драйвера на 600 mA к красному диоду 660 нм мы получим реальное напряжение на диоде: 0,6(А) * 2,5(В) = 1,5 Вт.

Светодиоды, в последние годы серьезно потеснившие все остальные источники света, сегодня можно встретить повсеместно. Они используются в квартирах и офисах, освещают улицы, украшают здания и интерьеры. Но для правильной работы полупроводникового источника света необходим качественный и надежный драйвер для светодиодов. Сегодня мы поговорим об этом исключительно важном узле и разберемся, почему этот драйвер так необходим, как он работает, и даже попытаемся сделать led driver своими руками.

Что такое драйвер и зачем он нужен

Если заглянуть в англо-русский словарь, то можно узнать, что драйвер – это буквально «водитель» (driver – водитель, англ.). Откуда такое странное название и что он водит? Для того чтобы в этом разобраться, немного отвлечемся и поговорим о светодиодах.

Светодиод (led) – полупроводниковый прибор, способный излучать свет под воздействием приложенного к нему напряжения. Причем для правильной работы полупроводника напряжение, обеспечивающее оптимальный ток через кристалл, должно быть постоянным и строго стабилизированным. Особенно это касается мощных светодиодов, которые крайне критически относятся к всевозможным перепадам и скачкам питающего тока. Стоит питанию диода чуть снизиться, как упадет ток и, как следствие, уменьшится светоотдача. При малейшем превышении нормальной величины тока полупроводник мгновенно перегревается и сгорает.

Основное назначение драйвера – обеспечить светоизлучающий диод необходимым для его нормальной работы током. Таким образом, led драйвер – это, по сути, блок питания для светодиодов, их «водитель», обеспечивающий длительную и качественную работу полупроводникового осветителя.

Мнение эксперта

Алексей Бартош

Задать вопрос эксперту

Ты не встретишь ни одного осветительного прибора, имеющего в своем составе мощный светодиод, который бы не имел драйвера. Поэтому так важно разобраться, какими бывают драйверы, как они работают и какими характеристиками должны обладать.

Виды светодиодных драйверов

Все драйверы для светодиодов можно разделить по принципу стабилизации тока. На сегодняшний день таких принципов два:

  1. Линейный.
  2. Импульсный.

Линейный стабилизатор

Предположим, в нашем распоряжении мощный светодиод, который нужно зажечь. Соберем простейшую схему:

Схема, поясняющая линейный принцип регулировки тока

Выставляем резистором R, выполняющим роль ограничителя, нужное значение тока – светодиод горит. Еcли напряжение питания изменилось (к примеру, батарея садится), поворачиваем движок резистора и восстанавливаем необходимый ток. Если увеличилось, то таким же образом ток уменьшаем. Именно это и делает простейший линейный стабилизатор: следит за током через светодиод и при необходимости “крутит ручку” резистора. Только делает он это очень быстро, успевая реагировать на малейшее отклонение тока от заданной величины. Конечно, никакой ручки у драйвера нет, ее роль выполняет транзистор, но суть пояснения от этого не меняется.

В чем недостаток линейной схемы стабилизатора тока? Дело в том, что через регулирующий элемент тоже течет ток и бесполезно рассеивает мощность, которая просто греет воздух. Причем чем входное напряжение больше, тем выше потери. Для светодиодов с небольшим рабочим током такая схема годится и успешно используется, но мощные полупроводники линейным драйвером питать себе дороже: драйверы могут съедать больше энергии, чем сам осветитель.

К преимуществам такой схемы питания можно отнести относительную простоту схемотехники и невысокую стоимость драйвера, сочетающуюся с высокой надежностью.

Линейный драйвер для питания светодиода в карманном фонаре

Импульсная стабилизация

Перед нами тот же светодиод, но схему питания соберем несколько иную:

Схема, поясняющая принцип работы широтно-импульсного стабилизатора

Теперь вместо резистора у нас кнопка КН и добавлен накопительный конденсатор С. Подаем напряжение на схему и нажимаем кнопку. Конденсатор начинает заряжаться, и при достижении на нем рабочего напряжения светодиод загорается. Если продолжать держать кнопку нажатой, то ток превысит допустимую величину, и полупроводник сгорит. Отпускаем кнопку. Конденсатор продолжает питать светодиод и постепенно разряжается. Как только ток опустится ниже допустимого для светодиода значения, снова нажимаем кнопку, подпитывая конденсатор.

Вот так сидим и периодически жмем кнопку, поддерживая нормальный режим работы светодиода. Чем выше питающее напряжение, тем нажатия будут короче. Чем напряжение ниже, тем кнопку придется держать нажатой дольше. Это и есть принцип широтно-импульсной модуляции. Драйвер следит за током через светодиод и управляет ключом, собранным на транзисторе или тиристоре. Делает он это очень быстро (десятки и даже сотни тысяч нажатий в секунду).

С первого взгляда работа утомительная и сложная, но только не для электронной схемы. Зато КПД импульсного стабилизатора может достигать 95%. Даже при питании потери энергии минимальны, а ключевые элементы драйвера не требуют мощных теплоотводов. Конечно, импульсные стабилизаторы несколько сложнее по конструкции и дороже, но все это окупается высокой производительностью, исключительным качеством стабилизации тока и отличными массогабаритными показателями.

Этот импульсный драйвер способен выдать ток до 3 А безо всяких радиаторов

Как подобрать драйвер для светодиодов

Разобравшись с принципом работы led driver, осталось научиться их правильно выбирать. Если ты не забыл основ электротехники, полученных в школе, то дело это нехитрое. Перечислим основные характеристики преобразователя для светодиодов, которые будут участвовать в выборе:

  • входное напряжение;
  • выходное напряжение;
  • выходной ток;
  • выходная мощность;
  • степень защиты от окружающей среды.

Прежде всего, необходимо решить, от какого источника будет питаться твой светодиодный светильник. Это может быть сеть 220 В, бортовая сеть автомобиля или любой другой источник как переменного, так и постоянного тока. Первое требование: то напряжение, которое ты будешь использовать, должно укладываться в диапазон, указанный в паспорте на драйвер в графе «входное напряжение». Кроме величины, нужно учесть и род тока: постоянный или переменный. Ведь в розетке, к примеру, ток переменный, а в автомобиле – постоянный. Первый принято обозначать аббревиатурой АС, второй DC. Почти всегда эту информацию можно увидеть и на корпусе самого прибора.

Этот драйвер рассчитан для работы от сети переменного тока напряжением от 100 до 265 В

Далее переходим к выходным параметрам. Предположим, у тебя есть три светодиода на рабочее напряжение 3.3 В и ток 300 мА каждый (указано в сопроводительной документации). Ты решил сделать настольную лампу, схема соединения диодов последовательная. Складываем рабочие напряжения всех полупроводников, получаем падение напряжения на всей цепочке: 3.3 * 3 = 9.9 В. Ток при таком соединении остается тем же – 300 мА. Значит, тебе нужен драйвер с выходным напряжением 9.9 В, обеспечивающий стабилизацию тока на уровне 300 мА.

Мнение эксперта

Алексей Бартош

Специалист по ремонту, обслуживанию электрооборудования и промышленной электроники.

Задать вопрос эксперту

Важно! Все полупроводники, работающие от одного драйвера, должны быть однотипными и желательно из одной партии. В противном случае, неизбежен разброс параметров светодиодов, в результате которого один из них будет светить вполнакала, а второй быстро сгорит.

Конечно, именно на это напряжение прибор найти не удастся, но это и не нужно. Все драйверы рассчитаны не на конкретное напряжение, а на некоторый диапазон. Твоя задача – уложить свое значение в этот диапазон. А вот выходной ток должен точно соответствовать 300 мА. В крайнем случае он может быть несколько меньше (лампа будет светить не так ярко), но никогда не больше. Иначе твоя самоделка сгорит сразу либо через месяц.

Идем дальше. Выясняем, какой мощности драйвер нам нужен. Этот параметр должен как минимум совпадать с потребляемой мощностью нашей будущей лампы, а лучше превышать это значение на 10-20%. Как рассчитать мощность нашей «гирлянды» из трех светодиодов? Вспоминаем: электрическая мощность нагрузки – это ток, идущий через нее, умноженный на приложенное напряжение. Берем калькулятор и перемножаем общее рабочее напряжение всех светодиодов на ток, предварительно переведя последний в амперы: 9.9 * 0.3 = 2.97 Вт.

Последний штрих. Конструктивное исполнение. Прибор может быть как в корпусе, так и без него. Первый, естественно, боится пыли и влаги, и в плане электробезопасности он не лучший вариант. Если ты решил встроить драйвер в лампу, корпус которой является хорошей защитой от окружающей среды, тогда подойдет. Но если корпус лампы имеет кучу вентиляционных отверстий (светодиоды должны охлаждаться), а само устройство будет стоять в гараже, то лучше выбрать источник питания в собственном корпусе.

Итак, нам нужен светодиодный драйвер со следующими характеристиками:

  • питающее напряжение – сеть 220 В переменного тока;
  • выходное напряжение – 9.9 В;
  • выходной ток – 300 мА;
  • выходная мощность – не менее 3 Вт;
  • корпус – пылевлагозащитный.

Отправляемся в магазин и смотрим. Вот он:

Драйвер для питания светодиодов

Причем не просто подходящий, а идеально соответствующий запросам. Слегка пониженный выходной ток продлит жизнь светодиодов, но на яркости их свечения это абсолютно никак не отразится. Потребляемая мощность упадет до 2.7 Вт – будет запас мощности драйвера.

Мнение эксперта

Алексей Бартош

Специалист по ремонту, обслуживанию электрооборудования и промышленной электроники.

Задать вопрос эксперту

Если у тебя очень большое количество светодиодов, то при последовательном включении их общее напряжение может превысить максимально возможное для существующих драйверов. В этом случае обратись к разделу Схема подключения драйвера к светодиодам, который находится в конце этой статьи.

В чем отличия между драйвером для светодиодов и блоком питания для LED ленты

Бытует мнение, что блоки питания для – нечто другое, чем обычный led драйвер. Попробуем прояснить этот вопрос, а заодно научимся правильно выбирать драйвер для светодиодной ленты. Светодиодная лента – это гибкая подложка, на которой расположены все те же светодиоды. Они могут стоять в 2, 3, 4 ряда, это не так важно. Важнее разобраться, как они соединены между собой.

Все полупроводники на ленте разбиты на группы по 3 светодиода, соединенных последовательно через токоограничивающий резистор. Все группы, в свою очередь, соединены параллельно:

Электрическая схема одной секции (слева) и всей светодиодной ленты

Лента продается в бобинах обычно длиной по 5 м и рассчитана на рабочее напряжение 12 или 24 В. В последнем случае в каждой группе будет не 3, а 6 светодиодов. Предположим, ты купил ленту на 12 В с удельной потребляемой мощностью 14 Вт/м. Таким образом, общая мощность, потребляемая всей бобиной, составит 14 * 5 = 70 Вт. Если тебе не нужна такая длинная, ты можешь отрезать ненужную часть с условием, что будешь резать ее между секциями. Например, ты отрезал половину. Какие характеристики при этом изменятся? Только потребляемая мощность: она уменьшится вдвое.

Мнение эксперта

Алексей Бартош

Специалист по ремонту, обслуживанию электрооборудования и промышленной электроники.

Задать вопрос эксперту

Важно! Не забывай, что разрезать светодиодную ленту можно только между секциями по 3 светодиода (для 24-х вольтовой их будет 6), которые хорошо видны. На рисунке ниже я пометил их стрелками.

Места разделения секций хорошо видны и даже помечены пиктограммами ножниц

Надо ли ограничивать и стабилизировать ток через обычный светодиод? Безусловно, иначе он сгорит. Но мы совсем забыли о резисторе, установленном в каждой секции ленты. Он служит для ограничения тока и подобран таким образом, что при подаче на секцию ровно 12-ти вольт ток через светодиоды будет оптимальным. В задачу драйвера светодиодной ленты входит удержание питающего напряжение строго на уровне 12 В. Все остальное берет на себя токоограничивающий резистор.

Таким образом, главное отличие блока питания led ленты от обычного led драйвера – четко фиксированное выходное напряжение 12 или 24 В. Здесь уже не получится использовать обычный драйвер с выходным напряжением, скажем, от 9 до 14 В.

Остальные критерии выбора блока питания для светодиодной ленты следующие:

  • входное напряжение
    . Методика выбора та же, что и для обычного драйвера: прибор должен быть рассчитан на то входное напряжение и тот род тока, которым ты будешь питать светодиодную ленту;
  • выходная мощность
    . Мощность блока питания должна быть минимум на 10% выше мощности ленты. При этом слишком большой запас брать не стоит: снижается КПД всей конструкции;
  • класс защиты от окружающей среды
    . Методика та же, что и для светодиодного драйвера (см. выше): в прибор не должны попадать пыль и влага.

Драйвер для светодиодной ленты – не что иное, как высококачественный, но обычный стабилизатор напряжения. Он выдает строго фиксированное напряжение, но абсолютно не следит за выходным током. При желании и для эксперимента вместо него ты можешь использовать, к примеру, блок питания от ПК (шина 12 В). Яркость и долговечность ленты от этого не пострадают.

Схема подключения драйвера к светодиодам

Подключить драйвер к светодиодам просто, с этим справится каждый. Вся маркировка нанесена на его корпус. На входные провода (INPUT) подаешь входное напряжение, к выходным (OUTPUT) подключаешь линейку светодиодов. Единственно, необходимо соблюдать полярность, и на этом я остановлюсь подробнее.

Полярность входа (INPUT)

Если питающее драйвер напряжение постоянное, то вывод, помеченный знаком «+» необходимо подключить к положительному полюсу источника питания. Если напряжение переменное, то обрати внимание на маркировку входных проводов. Возможны следующие варианты:

  1. Маркировка «L» и «N»: на вывод «L» нужно подать фазу (находится при помощи индикаторной отвертки), на вывод «N» – ноль.
  2. Маркировка «~», «АС» или отсутствует: полярность соблюдать не нужно.

Полярность выхода (OUTPUT)

Здесь полярность соблюдается всегда! Плюсовой провод подключается к аноду первого светодиода, минусовой – к катоду последнего. Сами светодиоды соединяются между собой: анод последующего к катоду предыдущего.

Схема подключения драйвера к гирлянде из трех последовательно включенных светодиодов

Если у тебя очень много светодиодов (скажем, 12 шт.), то их придется разбить на несколько одинаковых групп, а эти группы соединить параллельно. При этом учти, что общая потребляемая светильником мощность составит сумму мощностей всех групп, а рабочее напряжение будет соответствовать напряжению одной группы.

Самым оптимальным способом подключения к 220В, 12В является использование стабилизатора тока, светодиодного драйвера. На языке предполагаемого противника пишется «led driver». Добавив к этому запросу желаемую мощность, вы легко найдёте на Aliexpress или Ebay подходящий товар.

  • 1. Особенности китайских
  • 2. Срок службы
  • 3. ЛЕД драйвер на 220В
  • 4. RGB драйвер на 220В
  • 5. Модуль для сборки
  • 6. Драйвер для светодиодных светильников
  • 7. Блок питания для led ленты
  • 8. Led драйвер своими руками
  • 9. Низковольтные
  • 10. Регулировка яркости

Особенности китайских

Многие любят покупать на самом большом китайском базаре Aliexpress. цены и ассортимент радуют. LED driver чаще всего выбирают из-за низкой стоимости и хороших характеристик.

Но с повышением курса доллара покупать у китайцев стало невыгодно, стоимость сравнялась с Российской, при этом отсутствует гарантия и возможность обмена. Для дешевой электроники характеристики бывают всегда завышены. Например, если указана мощность в 50 ватт, в лучшем случае то это максимальная кратковременная мощность, а не постоянная. Номинальная будет 35W — 40W.

К тому же сильно экономят на начинке, чтобы снизить цену. Кое где не хватает элементов, которые обеспечивают стабильную работу. Применяются самые дешевые комплектующие, с коротким сроком службы и невысокого качества, поэтому процент брака относительно высокий. Как правило, комплектующие работают на пределе своих параметров, без какого либо запаса.

Если производитель не указан, то ему не надо отвечать за качество и отзыв про его товар не напишут. А один и тот же товар выпускают несколько заводов в разной комплектации. Для хороших изделий должен быть указан бренд, значит он не боится отвечать за качество своей продукции.

Одним из лучших является бренд MeanWell, который дорожит качеством своих изделий и не выпускает барахло.

Срок службы

Как у любого электронного устройства у светодиодного драйвера есть срок службы, который зависит от условий эксплуатации. Фирменные современные светодиоды уже работают до 50-100 тысяч часов, поэтому питание выходит из строя раньше.

Классификация:

  1. ширпотреб до 20.000ч.;
  2. среднее качество до 50.000ч.;
  3. до 70.000ч. источник питания на качественных японских комплектующих.

Этот показатель важен при расчёте окупаемости на долгосрочную перспективу. Для бытового пользования хватает ширпотреба. Хотя скупой платит дважды, и в светодиодных прожекторах и светильниках это отлично работает.

ЛЕД драйвер на 220В

Современные светодиодные драйвера конструктивно выполняются на ШИМ контроллере, который очень хорошо может стабилизировать ток.

Основные параметры:

  1. номинальная мощность;
  2. рабочий ток;
  3. количество подключаемых светодиодов;
  4. степень защиты от влаги и пыли
  5. коэффициент мощности;
  6. КПД стабилизатора.

Корпуса для уличного использования выполняются из металла или ударопрочного пластика. При изготовлении корпуса из алюминия он может выступать в качестве системы охлаждения для электронной начинки. Особенно это актуально при заполнении корпуса компаундом.

На маркировке часто указывают, сколько светодиодов можно подключить и какой мощности. Это значение может быть не только фиксированным, но и в виде диапазона. Например, возможно от 4 до 7 штук по 1W. Это зависит от конструкции электрической схемы светодиодного драйвера.

RGB драйвер на 220В

..

Трёхцветные светодиоды RGB отличаются от одноцветных тем, что содержат в одном корпусе кристаллы разных цветов красный, синий, зелёный. Для управления ими каждый цвет необходимо зажигать отдельно. У диодных лент для этого используется RGB контроллер и блок питания.

Если для RGB светодиода указана мощность 50W, то это общая на всё 3 цвета. Чтобы узнать примерную нагрузку на каждый канал, делим 50W на 3, получим около 17W.

Кроме мощных led driver есть и на 1W, 3W, 5W, 10W.

Пульты дистанционного управления (ДУ) бывают 2 типов. С инфракрасным управлением, как у телевизора. С управлением по радиоканалу, ДУ не надо направлять на приёмник сигнала.

Модуль для сборки

Если вас интересует лед driver для сборки своими руками светодиодного прожектора или светильника, то можно использовать led driver без корпуса.

Прежде чем делать led driver 50W своими руками, стоит немного поискать, например есть в каждой диодной лампе. Если у вас есть неисправная лампочка, у которой неисправность в диодах, то можно использовать driver из неё.

Низковольтные

Подробно разберем виды низковольтных лед драйверов работающих от напряжения до 40 вольт. Наши китайские братья по разуму предлагают множество вариантов. На базе ШИМ контроллеров производятся стабилизаторы напряжения и стабилизаторы тока. Основное отличие, у модуля с возможностью стабилизации тока на плате находится 2-3 синих регулятора, в виде переменных резисторов.

В качестве технических характеристик всего модуля указывают параметры ШИМ микросхемы, на которой он собран. Например устаревший но популярный LM2596 по спецификациям держит до 3 Ампер. Но без радиатора он выдержит только 1 Ампер.

Более современный вариант с улучшенным КПД это ШИМ контроллер XL4015 рассчитанный на 5А. С миниатюрной системой охлаждения может работать до 2,5А.

Если у вас очень мощные сверхяркие светодиоды, то вам нужен led драйвер для светодиодных светильников. Два радиатора охлаждают диод Шотки и микросхему XL4015. В такой конфигурации она способна работать до 5А с напряжением до 35В. Желательно чтобы он не работал в предельных режимах, это значительно повысить его надежность и срок эксплуатации.

Если у вас небольшой светильник или карманный прожектор, то вам подойдет миниатюрный стабилизатор напряжения, с током до 1,5А. Входное напряжение от 5 до 23В, выход до 17В.

Регулировка яркости

Для регулирования яркости светодиода можно использовать компактные светодиодный диммеры, которые появились недавно. Если его мощности будет недостаточно, то можно поставить диммер побольше. Обычно они работают в двух диапазонах на 12В и 24В.

Управлять можно с помощью инфракрасного или радиопульта дистанционного управления (ДУ). Они стоят от 100руб за простую модель и от 200руб модель с пультом ДУ. В основном такие пульты используют для диодных лент на 12В. Но его с лёгкостью можно поставить к низковольтному драйверу.

Диммирование может быть аналоговым в виде крутящейся ручки и цифровым в виде кнопок.

Драйверы светодиодов: назначение и функциональные возможности

Какие характеристики необходимы для драйверов светодиодов?

Хотя светодиодные светильники в 8 раз эффективнее ламп накаливания, они сильно греются из-за внутреннего рассеивания тепла. Если драйвер светодиодов смонтирован рядом с группой светодиодных ламп, он может работать в условиях высокой окружающей температуры, до +80 °С. Поэтому, например, компания Aimtec при разработке своего семейства драйверов светодиодов AMLDL-Z с выходными токами до 1000 мА предприняла все меры для повышения КПД до 95% и расширения рабочего диапазона температур до +85 °С при полной нагрузке.

Задача была решена путем применения неизолированной, понижающей топологии преобразования, которая позволила создать весьма компактную конструкцию в корпусе DIP14 (20,3×10,2×6,9 мм, модели с выходными токами 300–700 мА) и в корпусе DIP16 (23,4×14×10,2 мм для модели AMLDL-30100Z с выходным током 1000 мА).

Рис. 1. Схема подключения одной цепочки светодиодов

Основные характеристики светодиодных драйверов серии AMLDL-Z приведены в таблице 1.

Таблица 1. Основные характеристики светодиодных драйверов серии AMLDL-Z
НаименованиеВходное напряжение, В DCВыходное напряжение, В DCВыходной ток, мА
AMLDL-3030Z7–302–28300
AMLDL-3035Z350
AMLDL-3050Z500
AMLDL-3060Z600
AMLDL-3070Z700
AMLDL-30100Z1000

Необходимо отметить, что серия светодиодных драйверов AMLDL-Z очень проста в применении. Драйверы имеют вход включения-выключения и возможность регулировки яркости свечения светодиодов.

 

Подключение драйверов

Если не требуется регулировка яркости свечения светодиодов, то схема включения драйверов крайне проста. Вход управления можно оставить неподключенным. Одна цепочка последовательно включенных светодиодов (от 1 до 7–8 шт.) просто подключается на выход драйвера (рис. 1). Так как драйвер — это источник постоянного тока, а не напряжения, то токоограничивающий резистор не нужен. Напряжение на выходе драйвера установится автоматически, в соответствии с числом светодиодов в цепочке. При необходимости подключить более 8 светодиодов, можно организовать параллельное подключение нескольких последовательных цепочек из светодиодов, но при этом потребуется токоограничивающий резистор в каждой цепочке (рис. 2).

Рис. 2. Схема подключения более 8 светодиодов

Например, чтобы подключить до 9–16 светодиодов с рабочими токами 350 мА, необходимо выбрать драйвер AMLDL-3070Z с выходным током 700 мА и подключить на его выход две последовательные цепочки светодиодов. На выход драйвера AMLDL-30100Z с выходным током 1000 мА можно подключить три такие последовательные цепочки (то есть до 24 светодиодов с рабочим током 350 мА).

В случае отсутствия источника напряжения постоянного тока можно включить драйверы светодиодов по схеме, приведенной на рис. 3. Очевидно, что так как в этих драйверах используется понижающая топология преобразования, то входное напряжение должно быть, как минимум, на 2–3 В выше выходного падения напряжения на цепочке последовательно подключенных светодиодов.

Рис. 3. Подключение драйверов при питании от переменного тока напряжением 5–21 В АС

С точки зрения эффективности, чем больше последовательно соединенных светодиодов подключено на выход драйвера, тем выше КПД преобразования. Это отчетливо видно на рис. 4, где показана зависимость КПД драйвера AMLDL3070-Z от входного напряжения и числа подключенных светодиодов.

Рис. 4. Зависимость КПД преобразования от входного напряжения и числа светодиодов

 

Регулировка яркости свечения светодиодов

Все драйверы серии AMLDL-Z имеют вход управления, с помощью которого можно включать-выключать устройство и регулиро-вать яркость свечения светодиодов.

Есть два способа регулировки яркости:

  • аналоговый — изменением напряжения на входе управления;
  • цифровой — с помощью широтно-импульсномодулированного (ШИМ) сигнала на том же входе.

Сначала рассмотрим самый простой способ регулировки яркости — аналоговый. Изменение напряжения на входе управления должно быть в пределах 0,3–1,25 В DC. Схема включения при использовании для регулировки яркости стабильного напряжения приведена на рис. 5. Расчет элементов схемы можно провести по формуле, приведенной на этом же рисунке.

Рис. 5. Схема регулировки яркости при наличии стабильного напряжения управления

Схема включения при использовании для регулировки яркости нестабильного напряжения приведена на рис. 6.

Рис. 6. Схема регулировки яркости при наличии нестабильного напряжения управления

Величину выходного тока драйвера в зависимости от величины управляющего напряжения Vadj можно рассчитать по формуле:

Iout = (0,08Vadj)/X.

Значение коэффициента Х выбирается из таблицы 2 для соответствующей модели драйвера. Зависимость выходного тока драйверов от величины напряжения управления (Vadj) имеет практически линейный характер и сходна для всех моделей. В качестве примера на рис. 7 приведена эта зависимость для модели AMLDL-3035Z (с максимальным выходным током 350 мА). Характеристики для остальных моделей приведены в документации на эту серию.

Рис. 7. Зависимость выходного тока драйвера AMLDL-3035Z от управляющего напряжения

Существует еще более простая схема (рис. 8) аналоговой регулировки выходного тока драйвера (и, следовательно, яркости светодиодов), не требующая внешнего источника напряжения.

Рис. 8. Схема регулировки яркости с помощью переменного резистора

Как видно из схемы, регулировка яркости светодиодов осуществляется с помощью переменного резистора, подключенного между входом управления Vadj и минусом входа. Конденсатор Cadj предназначен для снижения воздействия наводок и ВЧ-помех на вход управления. Рекомендуется установить керамический конденсатор с номиналом 0,22 мкФ. Выходной ток драйвера в зависимости от напряжения управления можно рассчитать по формуле:

Iout = ((0,08/X)Radj)/(Radj+200),

где Х — параметр, специфический для каждой модели драйвера (см. табл. 2), Iout в А, Radj в кОм

Таблица 2. Значение коэффициента Х для расчета выходного тока драйвера в зависимости от управляющего напряжения
 Наименование  Х 
  AMLDL-3030Z  0,327 
  AMLDL-3035Z  0,280 
  AMLDL-3050Z  0,197 
  AMLDL-3060Z  0,165 
  AMLDL-3070Z  0,139 
  AMLDL-30100Z  0,095 

 

Регулировка выходного тока драйвера с помощью ШИМ-сигнала управления

ШИМ-сигнал с длительностью рабочего цикла DPWM можно подать непосредственно на вход управления, как показано на рис. 9. Выходной ток драйвера в зависимости от длительности рабочего цикла DPWM можно рассчитать по простой формуле:

Iout = (0,1 DPWM)/Х, для 0 ‹ DPWM ‹ 1,

где Х также выбирается из таблицы 2 для соответствующей модели драйвера.

Рис. 9. Схема регулировки яркости светодиодов с помощью ШИМ-сигнала

Возможно управление яркостью светодиодов ШИМ-сигналом от выхода с открытым коллектором (или стоком) микроконтроллера, как показано на рис. 10.

Рис. 10. Управление яркостью светодиодов ШИМ-сигналом микроконтроллера

Резистор 10 кОм и диод необходимы для подавления выбросов отрицательной полярности на входе Vadj из-за емкости сток-исток (коллекторэмиттер) полевого (или биполярного) транзистора на выходе микроконтроллера. Любые выбросы отрицательной полярности будут вносить погрешности и/или нестабильность в выходной ток драйвера.

При отсутствии микроконтроллера в устройстве можно сформировать ШИМ-сигнал на очень популярном таймере NE555 (рис. 11). Необходимо помнить, что частота ШИМ-сигнала не должна быть меньше 100 Гц — чтобы не было видимых глазу мерцаний, и не более 1000 Гц: это максимально допустимая частота ШИМ-сигнала на входе Vadj. Компонент AMSR-7805Z представляет собой ультракомпактный DC/DC-преобразователь в корпусе SIP3 без гальванической развязки, с широким входом (6,5–34 В DC) и стабилизированным выходом 5 В/0,5 A для питания схемы от нестабилизированного входного напряжения.

Рис. 11. Схема формирования ШИМ-сигнала для управления яркостью на основе таймера NE555

Когда возникает необходимость использовать режим «вспышек» (например, в дорожных знаках — указателях поворота), можно с незначительными изменениями применить эту же схему (она приведена в документации на эту серию драйверов).

 

Фильтрация помех на входе драйвера

Драйвер светодиодов, как и любой импульсный преобразователь, создает радиопомехи в сети питания. Чтобы снизить уровень помех до величины, соответствующей классу В (EN55022), необходимо установить входной фильтр, приведенный на рис. 12. Т. к. на входе драйвера стоит конденсатор, то вместе с внешними компонентами получается классический «П-образный» фильтр, который достаточно успешно подавляет импульсные помехи.

Рис. 12. Схема входного фильтра для снижения уровня помех до класса В EN55022

Таблица 3. Значение индуктивности L для различных драйверов
 Наименование  Индуктивность L, мкГн 
 AMLDL-3030Z  68 
 AMLDL-3035Z  68 
 AMLDL-3050Z  27 
 AMLDL-3060Z  27 
 AMLDL-3070Z   27 
 AMLDL-30100Z  27 

 

Термокомпенсация выходного тока драйвера светодиодов

Как уже отмечалось выше, несмотря на достаточно высокий КПД, светодиоды, особенно сверхъяркие, сильно нагреваются при работе, что заметно сокращает срок их службы и может привести к внезапному отказу.

Чтобы избежать этого, можно использовать схему термокомпенсации, приведенную на рис. 13. Выбор компонентов термокомпенсирующей обратной связи зависит от номиналов резисторов R2 и R3 и от эффективности радиатора светодиодов. Чтобы оптимизировать регулировку яркости светодиодов при высокой температуре окружающей среды, светодиоды должны иметь хороший радиатор для отвода тепла, иначе регулировка управляющего тока не будет оптимальной. Пороговые точки слежения за температурой устанавливаются регулировкой резистора R2. Предлагаются три температурные пороговые точки, ориентировочно — 25, 40 и 60 °С. Необходимо помнить, что ток через светодиоды не будет плавно уменьшаться до нуля: схема регулировки, подающая напряжение управления на вход управления Vadj, обеспечивает пределы изменения выходного тока в диапазоне примерно 5:1. Как только напряжение управления упадет ниже порога отключения (примерно 200 мВ), ток через светодиоды упадет до нуля и они перестанут светиться. Крутизна уменьшения выходного тока драйвера зависит от температурного коэффициента сопротивления (ТКС) термистора. Чем больше ТКС, тем выше крутизна изменения выходного тока. Наклон характеристики регулировки тока светодиодов будет также зависеть от изменений напряжения база-эмиттер транзистора Q1, вызванных изменением окружающей температуры.

Рис. 13. Схема термокомпенсации тока питания светодиодов

 

Особенности параллельного включения драйверов светодиодов

Довольно часто встает задача параллельного питания нескольких драйверов от одного источника и одновременного управления яркостью светодиодов, подключенных к этим драйверам. Возможное решение данной задачи приведено на рис. 14. В этом применении важно, чтобы каждая группа светодиодов, подключенных к одному драйверу, не имела электрического контакта с другими светодиодами и входным источником питания. Это необходимо для того, чтобы избежать повреждения драйверов и интерференции между группами светодиодов. Кроме того, при питании нескольких драйверов (как и любых DC/DC-преобразователей) от одного источника необходима развязка входа каждого драйвера с помощью малогабаритного дросселя (до 47 мкГн), чтобы устранить взаимное влияние внутренних генераторов драйверов друг на друга. В противном случае, при совпадении частот генераторов драйверов возможно разрушение внутренних компонентов входной цепи драйвера и их выход из строя вследствие резонанса на частоте преобразования.

Рис. 14. Параллельное управление несколькими группами светодиодов одновременно

 

Иные применения драйверов светодиодов

Как уже указывалось выше, драйверы светодиодов AMLDL-Z представляют собой компактные источники стабильного тока, которые можно использовать в любом применении, где требуется стабильный выходной ток до 1 А. Например, в схемах питания соленоидов, электрохимических процессах, да, в конце концов, даже в схемах заряда аккумуляторов с внешними устройствами контроля заряда.

Светодиодное освещение имеет огромные перспективы вследствие огромной экономии электроэнергии и значительно более высокой надежности по сравнению с любыми другими осветительными технологиями. Это особенно важно в связи с принятыми решениями о свертывании в ближайшее время производства и применения ламп накаливания как по всему миру, так и в России. В этом процессе драйверы светодиодов играют особую роль как необходимое средство обеспечения развития современных осветительных технологий и их успешного применения как в промышленности, так и в быту.

Маркировка драйвера для светодиодов. Драйверы для светодиодов: виды, назначение, подключение

Недавно один знакомый попросил меня помочь с проблемой. Он занимается разработкой LED ламп, попутно ими приторговывая. У него скопилось некоторое количество ламп, работающих неправильно. Внешне это выражается так – при включении лампа вспыхивает на короткое время (менее секунды) на секунду гаснет и так повторяется бесконечно. Он дал мне на исследование три таких лампы, я проблему решил, неисправность оказалась очень интересной (прямо в стиле Эркюля Пуаро) и я хочу рассказать о пути поиска неисправности.

LED лампа выглядит вот так:

Рис 1. Внешний вид разобранной LED лампы

Разработчик применил любопытное решение – тепло от работающих светодиодов забирается тепловой трубкой и передается на классический алюминиевый радиатор. По словам автора, такое решение позволяет обеспечить правильный тепловой режим для светодиодов, минимизируя тепловую деградацию и обеспечивая максимально возможный срок службы диодов. Попутно увеличивается срок службы драйвера питания диодов, так как плата драйвера оказывается вынесенной из теплового контура и температура платы не превышает 50 градусов Цельсия.

Такое решение – разделить функциональные зоны излучения света, отвода тепла и генерации питающего тока – позволило получить высокие эксплуатационные характеристики лампы по надежности, долговечности и ремонтопригодности.
Минус таких ламп, как ни странно, прямо вытекает из ее плюсов – долговечная лампа не нужна производителям:). Историю о сговоре производителей ламп накаливания о максимальном сроке службы в 1000 часов все помнят?

Ну и не могу не отметить характерный внешний вид изделия. Мой «госконтроль» (жена) не разрешил мне ставить эти лампы в люстру, где они видны.

Вернемся к проблемам драйвера.

Вот так выглядит плата драйвера:

Рис 2. Внешний вид платы LED драйвера со стороны поверхностного монтажа

И с обратной стороны:

Рис 3. Внешний вид платы LED драйвера со стороны силовых деталей

Изучение ее под микроскопом позволило определить тип управляющей микросхемы – это MT7930. Это микросхема контроля обратноходового преобразователя (Fly Back), обвешанная разнообразными защитами, как новогодняя елка – игрушками.

В МТ7930 встроены защиты:

От превышения тока ключевого элемента
понижения напряжения питания
повышения напряжения питания
короткого замыкания в нагрузке и обрыва нагрузки.
от превышения температуры кристалла

Декларирование защиты от короткого замыкания в нагрузке для источника тока носит скорее маркетинговый характер:)

Принципиальной схемы на именно такой драйвер добыть не удалось, однако поиск в сети дал несколько очень похожих схем. Наиболее близкая приведена на рисунке:

Рис 4. LED Driver MT7930. Схема электрическая принципиальная

Анализ этой схемы и вдумчивое чтение мануала к микросхеме привело меня к выводу, что источник проблемы мигания – это срабатывание защиты после старта. Т.е. процедура начального запуска проходит (вспыхивание лампы – это оно и есть), но далее преобразователь выключается по какой-то из защит, конденсаторы питания разряжаются и цикл начинается заново.

Внимание! В схеме присутствуют опасные для жизни напряжения! Не повторять без должного понимания что вы делаете!

Для исследования сигналов осциллографом надо развязать схему от сети, чтобы не было гальванического контакта. Для этого я применил разделительный трансформатор. На балконе в запасах были найдены два трансформатора ТН36 еще советского производства, датированные 1975 годом. Ну, это вечные устройства, массивные, залитые полностью зеленым лаком. Подключил по схеме 220 – 24 – 24 -220. Т.е. сначала понизил напряжение до 24 вольт (4 вторичных обмотки по 6.3 вольта), а потом повысил. Наличие нескольких первичных обмоток с отводами дало мне возможность поиграть с разными напряжениями питания – от 110 вольт до 238 вольт. Такое решение конечно несколько избыточно, но вполне пригодно для одноразовых измерений.

Рис 5. Фото разделительного трансформатора

Из описания старта в мануале следует, что при подаче питания начинает заряжаться конденсатор С8 через резисторы R1 и R2 суммарным сопротивлением около 600 ком. Два резистора применены из требований безопасности, чтобы при пробое одного ток через эту цепь не превысил безопасного значения.

Итак, конденсатор по питанию медленно заряжается (это время порядка 300-400 мс) и когда напряжение на нем достигает уровня 18,5 вольт – запускается процедура старта преобразователя. Микросхема начинает генерировать последовательность импульсов на ключевой полевой транзистор, что приводит к возникновению напряжения на обмотке Na. Это напряжение используется двояко – для формирования импульсов обратной связи для контроля выходного тока (цепь R5 R6 C5) и для формирования напряжения рабочего питания микросхемы (цепь D2 R9). Одновременно в выходной цепи возникает ток, который и приводит к зажиганию лампы.

Почему же срабатывает защита и по какому именно параметру?

Первое предположение

Срабатывание защиты по превышению выходного напряжения?

Для проверки этого предположения я выпаял и проверил резисторы в цепи делителя (R5 10 ком и R6 39 ком). Не выпаивая их не проверить, поскольку через обмотку трансформатора они запараллелены. Элементы оказались исправны, но в какой-то момент схема заработала!

Я проверил осциллографом формы и напряжения сигналов во всех точках преобразователя и с удивлением убедился, что все они – полностью паспортные. Никаких отклонений от нормы…

Дал схеме поработать часок – все ОК.

А если дать ей остыть? После 20 минут в выключенном состоянии не работает.

Очень хорошо, видимо дело в нагреве какого-то элемента?

Но какого? И какие же параметры элемента могут уплывать?

В этой точке я сделал вывод, что на плате преобразователя имеется какой-то элемент, чувствительный к температуре. Нагрев этого элемента полностью нормализует работу схемы.
Что же это за элемент?

Второе предположение

Подозрение пало на трансформатор. Проблема мыслилась так – трансформатор из-за неточностей изготовления (скажем на пару витков недомотана обмотка) работает в области насыщения и из-за резкого падения индуктивности и резкого нарастания тока срабатывает защита по току полевого ключа. Это резистор R4 R8 R19 в цепи стока, сигнал с которого подается на вывод 8 (CS, видимо Current Sense) микросхемы и используется для цепи ОС по току и при превышении уставки в 2.4 вольта отключает генерацию для защиты полевого транзистора и трансформатора от повреждений. На исследуемой плате стоит параллельно два резистора R15 R16 с эквивалентным сопротивлением 2,3 ома.

Но насколько я знаю, параметры трансформатора при нагреве ухудшаются, т.е. поведение системы должно быть другим – включение, работа минут 5-10 и выключение. Трансформатор на плате весьма массивный и тепловая постоянная у него ну никак не менее единиц минут.
Может, конечно в нем есть короткозамкнутый виток, который исчезает при нагреве?

Перепайка трансформатора на гарантированно исправный была в тот момент невозможна (не привезли еще гарантированно рабочую плату), поэтому оставил этот вариант на потом, когда совсем версий не останется:). Плюс интуитивное ощущение – не оно. Я доверяю своей инженерной интуиции.

К этому моменту я проверил гипотезу о срабатывании защиты по току, уменьшив резистор ОС по току вдвое припайкой параллельно ему такого же – это никак не повлияло на моргание лампы.

Значит, с током полевого транзистора все нормально и превышения по току нет. Это было хорошо видно и по форме сигнала на экране осциллографа. Пик пилообразного сигнала составлял 1,8 вольта и явно не достигал значения в 2,4 вольта, при котором микросхема выключает генерацию.

К изменению нагрузки схема также оказалась нечувствительна – ни подсоединение второй головки параллельно, ни переключение прогретой головы на холодную и обратно ничего не меняло.

Третье предположение

Я исследовал напряжение питания микросхемы. При работе в штатном режиме все напряжения были абсолютно нормальными. В мигающем режиме тоже, насколько можно было судить по формам сигналов на экране осциллографа.

По прежнему, система мигала в холодном состоянии и начинала нормально работать при прогреве ножки трансформатора паяльником. Секунд 15 погреть – и все нормально заводится.

Прогрев микросхемы паяльником ничего не давал.

И очень смущало малое время нагрева… что там может за 15 секунд измениться?

В какой-то момент сел и методично, логически отсек все гарантированно работающее. Раз лампа загорается — значит цепи запуска исправны.
Раз нагревом платы удается запустить систему и она часами работает — значит и силовые системы исправны.
Остывает и перестает работать — что-то зависит от температуры…
Трещина на плате в цепи обратной связи? Остывает и сжимается, контакт нарушается, нагревается, расширяется и контакт восстанавливается?
Пролазил тестером холодную плату — нет обрывов.

Что же еще может мешать переходу от режима запуска в рабочий режим?!!!

От полной безнадеги интуитивно припаял параллельно электролитическому конденсатору 10 мкф на 35 вольт по питанию микросхемы такой же.

И тут наступило счастье. Заработало!

Замена конденсатора 10 мкф на 22 мкф полностью решило проблему.

Вот он, виновник проблемы:

Рис 6. Конденсатор с неправильной емкостью

Теперь стал понятен механизм неисправности. Схема имеет две цепи питания микросхемы. Первая, запускающая, медленно заряжает конденсатор С8 при подаче 220 вольт через резистор в 600 ком. После его заряда микросхема начинает генерировать импульсы для полевика, запуская силовую часть схемы. Это приводит к генерации питания для микросхемы в рабочем режиме на отдельной обмотке, которое поступает на конденсатор через диод с резистором. Сигнал с этой обмотки также используется для стабилизации выходного тока.

Пока система не вышла в рабочий режим — микросхема питается запасенной энергией в конденсаторе. И ее не хватало чуть-чуть — буквально пары-тройки процентов.
Падения напряжения оказалось достаточно, чтобы система защиты микросхемы срабатывала по пониженному питанию и отключала все. И цикл начинался заново.

Отловить эту просадку напряжения питания осциллографом не получалось — слишком грубая оценка. Мне казалось, что все нормально.

Прогрев же платы увеличивал емкость конденсатора на недостающие проценты — и энергии уже хватало на нормальный запуск.

Понятно, почему только некоторая часть драйверов отказала при полностью исправных элементах. Сыграло роль причудливое сочетание следующих факторов:

Малая емкость конденсатора по питанию. Положительную роль сыграл допуск на емкость электролитических конденсаторов (-20% +80%), т.е. емкости номиналом 10 мкф в 80% случаев имеют реальную емкость около 18 мкф. Со временем емкость уменьшается из-за высыхания электролита.
Положительная температурная зависимость емкости электролитических конденсаторов от температуры. Повышенная температура на месте выходного контроля — достаточно буквально пары-тройки градусов и емкости хватает для нормального запуска. Если предположить, что на месте выходного контроля было не 20 градусов, а 25-27, то этого оказалось достаточно для практически 100% прохождения выходного контроля.

Производитель драйверов сэкономил конечно, применив емкости меньшего номинала по сравнению с референс дизайн из мануала (там указано 22 мкф) но свежие емкости при повышенной температуре и с учетом разброса +80% позволили партию драйверов сдать заказчику. Заказчик получил вроде бы работающие драйверы, которые со временем стали отказывать по непонятной причине. Интересно было бы узнать – инженеры производителя учли особенности поведения электролитических конденсаторов при повышении температуры и естественный разброс или это получилось случайно?

Светодиоды получили большую популярность. Главную роль в этом сыграл светодиодный драйвер, поддерживающий постоянный выходной ток определенного значения. Можно сказать, что это устройство представляет собой источник тока для LED-приборов. Такой драйвер тока, работая вместе со светодиодом, обеспечивает долголетний срок службы и надежную яркость. Анализ характеристик и видов этих устройств позволяет понять, какие они выполняют функции, и как их правильно выбирать.


Что такое драйвер и каково его назначение?

Драйвер для светодиодов является электронным устройством, на выходе которого образуется постоянный ток после стабилизации. В данном случае образуется не напряжение, а именно ток. Устройства, которые стабилизируют напряжение, называются блоками питания. На их корпусе указывается выходное напряжение. Блоки питания 12 В применяют для питания LED-линеек, светодиодной ленты и модулей.

Основным параметром LED-драйвера, которым он сможет обеспечивать потребителя длительное время при определенной нагрузке, является выходной ток. В качестве нагрузки применяются отдельные светодиоды или сборки из аналогичных элементов.

Драйвер для светодиода обычно питается от сети напряжением 220 В. В большинстве случаев диапазон рабочего выходного напряжения составляет от трех вольт и может достигать нескольких десятков вольт. Для подключения светодиодов 3W в количестве шести штук потребуется драйвер с выходным напряжением от 9 до 21 В, рассчитанный на 780 мА. При своей универсальности он обладает малым КПД, если на него включить минимальную нагрузку.

При освещении в автомобилях, в фарах велосипедов, мотоциклов, мопедов и т. д., в оснащении переносных фонарей используется питание с постоянным напряжением, значение которого варьируется от 9 до 36 В. Можно не применять драйвер для светодиодов с небольшой мощностью, но в таких случаях потребуется внесение соответствующего резистора в питающую сеть напряжением 220 В. Несмотря на то, что в бытовых выключателях используется этот элемент, подключить светодиод к сети 220 В и рассчитывать на надежность достаточно проблематично.

Основные особенности

Мощность, которую эти устройства способны отдавать под нагрузкой, является важным показателем. Не стоит перегружать его, пытаясь добиться максимальных результатов. В результате таких действий могут выйти из строя драйверы для светодиодов или же сами LED-элементы.

На электронную начинку устройства влияет множество причин:

  • класс защиты аппарата;
  • элементная составляющая, которая применяется для сборки;
  • параметры входа и выхода;
  • марка производителя.

Изготовление современных драйверов выполняется при помощи микросхем с использованием технологии широтно-импульсного преобразования, в состав которых входят импульсные преобразователи и схемы, стабилизирующие ток. ШИМ-преобразователи запитываются от 220 В, обладают высоким классом защиты от коротких замыканий, перегрузок, а так же высоким КПД.

Технические характеристики

Перед приобретением преобразователя для светодиодов следует изучить характеристики устройства. К ним относятся следующие параметры:

  • выдаваемая мощность;
  • выходное напряжение;
  • номинальный ток.

Схема подключения LED-драйвера

На выходное напряжение влияет схема подключения к источнику питания, количество в ней светодиодов. Значение тока пропорционально зависит от мощности диодов и яркости их излучения. Светодиодный драйвер должен выдавать столько тока для светодиодов, сколько потребуется для обеспечения постоянной яркости. Стоит помнить, что мощность необходимого устройства должна быть более потребляемой всеми светодиодами. Рассчитать ее можно, используя следующую формулу:

P
(led) – мощность одного LED-элемента;

n
— количество LED-элементов.

Для обеспечения длительной и стабильной работы драйвера следует учитывать запас мощности устройства в 20–30% от номинальной.

Выполняя расчет, следует учитывать цветовой фактор потребителя, так как он влияет на падение напряжения. У разных цветов оно будет иметь отличающиеся значения.

Срок годности

Светодиодные драйверы, как и вся электроника, обладают определенным сроком службы, на который сильно влияют эксплуатационные условия. LED-элементы, изготовленные известными брендами, рассчитаны на работу до 100 тысяч часов, что намного дольше источников питания. По качеству рассчитанный драйвер можно классифицировать на три типа:

  • низкого качества, с работоспособностью до 20 тысяч часов;
  • с усредненными параметрами — до 50 тысяч часов;
  • преобразователь, состоящий из комплектующих известных брендов — до 70 тысяч часов.

Многие даже не знают, зачем обращать внимание на этот параметр. Это понадобится для выбора устройства для длительного использования и дальнейшей окупаемости. Для использования в бытовых помещениях подойдет первая категория (до 20 тысяч часов).

Как подобрать драйвер?

Насчитывается множество разновидностей драйверов, используемых для LED-освещения. Большинство из представленной продукции изготовлено в Китае и не имеет нужного качества, но выделяется при этом низким ценовым диапазоном. Если нужен хороший драйвер, лучше не гнаться за дешевизной китайского производства, так как их характеристики не всегда совпадают с заявленными, и редко когда к ним прилагается гарантия. Может быть брак на микросхеме или быстрый выход из строя устройства, в таком случае не удастся совершить обмен на более качественное изделие или вернуть средства.

Наиболее часто выбираемым вариантом является бескорпусный драйвер, питающийся от 220 В или 12 В. Различные модификации позволяют использовать их для одного или более светодиодов. Эти устройства можно выбрать для организации исследований в лаборатории или же проведения экспериментов. Для фито-ламп и бытового применения выбирают драйверы для светодиодов, находящиеся в корпусе. Бескорпусные устройства выигрывают в ценовом плане, но проигрывают в эстетике, безопасности и надежности.

Виды драйверов

Устройства, осуществляющие питание светодиодов, условно можно разделить на:

  • импульсные;
  • линейные.

Устройства импульсного типа производят на выходе множество токовых импульсов высокой частоты и работают по принципу ШИМ, КПД у них составляет до 95%. Импульсные преобразователи имеют один существенный недостаток — во время работы возникают сильные электромагнитные помехи. Для обеспечения стабильного выходного тока в линейный драйвер установлен генератор тока, который играет роль выхода. Такие устройства имеют небольшой КПД (до 80%), но при этом просты в техническом плане и стоят недорого. Такие устройства не получится использовать для потребителей большой мощности.

Из вышеперечисленного можно сделать вывод, что источник питания для светодиодов следует выбирать очень тщательно. Примером может послужить люминесцентная лампа, на которую подается ток, превышающий норму на 20%. В ее характеристиках практически не произойдет изменений, а вот работоспособность светодиода уменьшится в несколько раз.

Многие довольно часто путают блоки питания и драйвера, подключая светодиоды и светодиодные ленты не от тех источников что нужно.

В итоге через небольшой промежуток времени они выходят из строя, а вы и не подозреваете в чем была причина и начинаете ошибочно грешить на «некачественного» производителя.

Рассмотрим подробнее в чем их отличия и когда нужно применять тот или иной источник питания. Но для начала кратко разберемся в типах блоков питания.

Трансформаторный блок

Сегодня уже довольно редко можно встретить применение трансформаторного БП. Схема их сборки и работы довольно проста и понятна.

Самый главный элемент здесь, безусловно трансформатор. В домашних условиях он преобразует напряжение 220В в напряжение 12 или 24В. То есть, идет прямое преобразование одного напряжения в другое.

Частота сети при этом, привычные нам всем 50 Герц.

Далее за ним стоит выпрямитель. Он выпрямляет синусоиду переменного напряжения и на выходе выдает «постоянку». То есть 12В, подаваемые к потребителю, это уже постоянное напряжение 12V, а не переменное.

У такой схемы 3 главных достоинства:


  • незамысловатость конструкции

  • относительная надежность

Однако есть здесь и недостатки, которые заставили разработчиков задуматься и придумать что-то более современное.


  • как следствие первого недостатка — большой расход металла на сборку всей конструкции

  • ну и ухудшает все дело низкий косинус фи и низкий КПД

Именно поэтому и были изобретены импульсные источники питания. Здесь уже несколько иной принцип работы.

Импульсные блоки питания

Во-первых, выпрямление напряжения происходит сразу же. То есть, подается на вход переменно 220В и тут же на входе преобразуется в постоянное 220V.

Далее стоит генератор импульсов. Главная его задача — создать искусственно переменное напряжение с очень большой частотой. В несколько десятков или даже сотен килогерц (от 30 до 150кГц). Сравните это с привычными нам 50 Гц в домашних розетках.

Кстати за счет такой огромной частоты, мы практически не слышим гул импульсных трансформаторов. Объясняется это тем, что человеческое ухо способно различать звук до 20кГц, не более.

Третий элемент в схеме — импульсный трансформатор. Он по форме и конструкции напоминает обычный. Однако главное его отличие — это маленькие габаритные размеры.

Это как раз таки и достигается за счет высокой частоты.

Из этих трех элементов самым главным является генератор импульсов. Без него, не было бы такого относительно маленького блока питания.

Преимущества импульсных блоков:


  • маленькая цена, если конечно сравнивать по мощности его, и такой же блок собранный на обычном трансформаторе

  • напряжение питания можно подавать в большом разбросе

  • при качественном производителе блока питания, у импульсных ИБП более высокий косинус фи

Есть и недостатки:


  • усложненность сборочной схемы

  • сложная конструкция

  • если вам попался не качественный импульсный блок, то он будет выдавать в сеть кучу высокочастотных помех, которые будут влиять на работу остального оборудования

Проще говоря, блок питания что обычный, что импульсный — это устройство у которого на выходе строго одно напряжение. Его конечно можно «подкрутить», но в не больших диапазонах.

Для светодиодных же светильников такие блоки не подойдут. Поэтому для их питания используются драйверы.

В чем отличия драйвера от блока питания

Почему же для светодиодов нельзя применять простой БП, и для чего нужен именно драйвер?

Драйвер — это устройство похожее на блок питания.

Однако, как только в него подключаешь нагрузку, он заставляет стабилизироваться на одном уровне не напряжение, а ток!

Светодиоды «питаются» электрическим током. Также у них есть такая характеристика, как падение напряжения.

Если вы видите на светодиоде надпись 10мА и 2,7В, то это означает, что максимально допустимый ток для него 10мА, не более.

При протекании тока такой величины, на светодиоде потеряется 2,7 Вольт. Именно потеряется, а не требуется для работы. Добьетесь стабилизации тока и светодиод будет работать долго и ярко.

Более того, светодиод — это полупроводник. И сопротивление этого полупроводника зависит от напряжения, которое на него подано. Изменяется сопротивление по графику — вольтамперной характеристике.

Если на нее посмотреть, то становится видно, даже если вы не намного увеличите или уменьшите напряжение, это резко, в разы изменит величину тока.

Причем зависимость не прямо пропорциональная.

Казалось бы, один раз выставь точное напряжение и можно получить номинальный ток, который необходим для светодиода. При этом, он не будет превышать предельные величины. Вроде бы и обычный блок с этим должен справиться.

Однако у всех светодиодов уникальные параметры и характеристики. При одном и том же напряжении они могут «кушать» разный ток.

Мало того, эти параметры еще способны меняться при изменении окружающей температуры.

А температурный диапазон работы светодиодных светильников очень большой.
Например, зимой на улице может быть -30 градусов, а летом уже все +40. И это в одном и том же месте.

Поэтому, если вы такие светильники подключите от обычного импульсного блока питания, а не от драйвера, то режим их работы будет абсолютно не предсказуем.

Работать они конечно будут, но в каком режиме светоотдачи и насколько долго неизвестно. Заканчивается такая работа всегда одинаково — выгоранием светодиода.

Кстати, при превышении температуры световой поток у светодиодных светильников всегда падает, даже у тех, которые подключены через драйвер. У некачественных экземпляров световой поток падает очень сильно, стоит им поработать около часа и нагреться.

У качественных изделий световой поток с нагревом уменьшается слабо, но все же уменьшается.

Поэтому каждому светильнику после запуска, нужно дать время, чтобы он вышел на свой рабочий режим и световой поток стабилизировался. Его изменение должно быть не более 10% от начального.

Многие недобросовестные производители хитрят и измеряют эти параметры сразу после включения, когда поток еще максимальный.

Если вам нужно соединить несколько светодиодов, то подключаются они последовательно. Это необходимо, чтобы через все элементы, несмотря на их разные ВАХ (вольт-амперные характеристики), протекал один и тот же ток.

А уже эту последовательную цепочку подключают к драйверу. Данные цепочки можно комбинировать различными способами. Создавать последовательно-параллельные или гибридные схемы.

Недостатки драйверов

Безусловно и у драйверов есть свои неоспоримые недостатки:


  • во-первых они рассчитаны только на определенный ток и мощность

А это значит, что для каждого драйвера каждый раз придется подбирать определенное количество светодиодов. Если один из них случайно выйдет из строя в процессе работы, то драйвер весь ток запустит на оставшиеся.

Что приведет к их перегреву и последующему выгоранию. То есть потеря одного светодиода влечет за собой поломку всей цепочки.

Бывают и универсальные модели драйверов, для них не важно количество светодиодов, главное чтобы их общая мощность не превышала допустимую. Но они гораздо дороже.


  • узкоспециализированность на светодиодах

Простые блоки питания можно использовать для разных нужд, везде где необходимы 12В и более, например для систем видеонаблюдения.

Основное же предназначение драйверов — это светодиоды.

А есть бездрайверные заводские светильники? Есть. Не так давно на рынке появилось немало таких Led светильников и прожекторов.

Однако энергоэффективность у них не очень высокая, на уровне обычных люминесцентных ламп. И как он поведет себя при возможных перепадах параметров в наших сетях, большой вопрос.

Светодиодные ленты — подключение от блока питания или драйвера?

Отдельный вопрос это светодиодные ленты. Для них вовсе не нужны драйвера, и как известно они подключаются от привычных нам блоков питания 12-36 Вольт.

Казалось бы в чем подвох? Там же тоже стоят светодиоды.

А дело в том, что драйвер уже автоматически присутствует в самой ленте.

Все вы видели на светодиодных лентах впаянные сопротивления (резисторы).

Они как раз таки и отвечают за ограничение тока до номинальной величины. Одно сопротивление устанавливается на три последовательно подключенных светодиода.

Такие участки ленты, рассчитанные на напряжение 12 Вольт называют кластерами. Эти отдельные кластеры на всем протяжении ленты подключены между собой в параллель.

И именно благодаря такому параллельному соединению, на все светодиоды подается одинаковое напряжение 12В. Благодаря кластеризации при монтаже низковольтной ленты, ее спокойно можно отрезать на мелкие кусочки, состоящие минимум из 3-х светодиодов.

Казалось бы, решение найдено и где здесь недостаток? А главный недостаток такого устройства — эти резисторы не проделывают никакой полезной работы.

Они лишь дополнительно нагревают окружающее пространство и сам светодиод возле него. Именно поэтому светодиодные ленты не светят так ярко, как нам хотелось бы. Вследствие чего, их используют лишь как дополнительный свет интерьера.

Сравните 60-70 люмен/ватт у светодиодных лент, против 120-140 лм/вт у светильников и решений на основе драйверов.

Лидирующую позицию среди наиболее эффективных источников искусственного света занимают сегодня светодиоды. Это во многом является заслугой качественных источников питания для них. При работе совместно с правильно подобранным драйвером, светодиод длительно сохранит устойчивую яркость света, а срок службы светодиода окажется очень-очень долгим, измеряемым десятками тысяч часов.

Таким образом, правильно подобранный драйвер для светодиодов — залог долгой и надежной работы источника света. И в этой статье мы постараемся раскрыть тему того, как правильно выбрать драйвер для светодиода, на что обратить внимание, и какие вообще они бывают.

Драйвером для светодиодов называют стабилизированный источник питания постоянного напряжения или постоянного тока. Вообще, изначально, светодиодный драйвер — это , но сегодня даже источники постоянного напряжения для светодиодов называют светодиодными драйверами. То есть можно сказать, что главное условие — это стабильные характеристики питания постоянным током.

Электронное устройство (по сути — стабилизированный импульсный преобразователь) подбирается под необходимую нагрузку, будь то набор отдельных светодиодов, собранных в последовательную цепочку, или параллельный набор таких цепочек, либо может быть лента или вообще один мощный светодиод.

Стабилизированный источник питания постоянного напряжения хорошо подойдет , LED-линеек, или для запитки набора из нескольких мощных светодиодов, соединенных по одному параллельно, — то есть когда номинальное напряжение светодиодной нагрузки точно известно, и достаточно только подобрать блок питания на номинальное напряжение при соответствующей максимальной мощности.

Обычно это не вызывает проблем, например: 10 светодиодов на напряжение 12 вольт, по 10 ватт каждый, — потребуют 100 ваттный блок питания на 12 вольт, рассчитанный на максимальный ток в 8,3 ампера. Останется подрегулировать напряжение на выходе при помощи регулировочного резистора сбоку, — и готово.

Для более сложных светодиодных сборок, особенно когда соединяется несколько светодиодов последовательно, необходим не просто блок питания со стабилизированным выходным напряжением, а полноценный светодиодный драйвер — электронное устройство со стабилизированным выходным током. Здесь ток является главным параметром, а напряжение питания светодиодной сборки может автоматически варьироваться в определенных пределах.

Для ровного свечения светодиодной сборки, необходимо обеспечить номинальный ток через все кристаллы, однако падение напряжения на кристаллах может у разных светодиодов отличаться (поскольку немного различаются ВАХ каждого из светодиодов в сборке), — поэтому напряжение не будет на каждом светодиоде одним и тем же, а вот ток должен быть одинаковым.

Светодиодные драйверы выпускаются в основном на питание от сети 220 вольт или от бортовой сети автомобиля 12 вольт. Выходные параметры драйвера указываются в виде диапазона напряжений и номинального тока.

Например, драйвер с выходом на 40-50 вольт, 600 мА позволит подключить последовательно четыре 12 вольтовых светодиода мощностью по 5-7 ватт. На каждом светодиоде упадет приблизительно по 12 вольт, ток через последовательную цепочку составит ровно по 600 мА, при этом напряжение 48 вольт попадает в рабочий диапазон драйвера.

Драйвер для светодиодов со стабилизированным током — это универсальный блок питания для светодиодных сборок, причем эффективность его получается довольно высокой и вот почему.

Мощность светодиодной сборки — критерий важный, но чем обусловлена эта мощность нагрузки? Если бы ток был не стабилизированным, то значительная часть мощности рассеялась бы на выравнивающих резисторах сборки, то есть КПД оказался бы низким. Но с драйвером, обладающим стабилизацией по току, выравнивающие резисторы не нужны, вот и КПД источника света получится в результате очень высоким.

Драйверы разных производителей отличаются между собой выходной мощностью, классом защиты и применяемой элементной базой. Как правило, в основе — , со стабилизацией выхода по току и с защитой от короткого замыкания и перегрузки.

Питание от сети переменного тока 220 вольт или постоянного тока с напряжением 12 вольт. Самые простые компактные драйверы с низковольтным питанием могут быть выполнены на одной универсальной микросхеме, но надежность их, про причине упрощения, ниже. Тем не менее, такие решения популярны в автотюнинге.

Выбирая драйвер для светодиодов следует понимать, что применение резисторов не спасает от помех, как и применение упрощенных схем с гасящими конденсаторами. Любые скачки напряжения проходят через резисторы и конденсаторы, и нелинейная ВАХ светодиода обязательно отразится в виде скачка тока через кристалл, а это вредно для полупроводника. Линейные стабилизаторы — тоже не лучший вариант в плане защищенности от помех, к тому же эффективность таких решений ниже.

Лучше всего, если точное количество, мощность, и схема включения светодиодов будут заранее известны, и все светодиоды сборки будут одинаковой модели и из одной партии. Затем выбирают драйвер.

На корпусе обязательно указывается диапазон входных напряжений, выходных напряжений, номинальный ток. Исходя из этих параметров выбирают драйвер. Обратите внимание на класс защиты корпуса.

Для исследовательских задач подходят, например, бескорпусные светодиодные драйверы, такие модели широко представлены сегодня на рынке. Если потребуется поместить изделие в корпус, то корпус может быть изготовлен пользователем самостоятельно.

Андрей Повный

Отправим материал вам на e-mail

В последние годы все большую популярность стало набирать . Это вызвано тем, что используемые в светильниках светодиоды, их еще называют светоизлучающими диодами (СИД), довольно яркие, экономичные и долговечные. При помощи светодиодных элементов создаются интересные и оригинальные световые эффекты, которые можно применять в самых различных интерьерах. Однако, такие осветительные приборы очень требовательны к параметрам электросетей, особенно к величине тока. Поэтому для нормальной работы освещения в цепь должны быть включены драйверы для светодиодов. В этой статье мы попробуем разобраться, что же такое светодиодные драйверы, каковы их основные характеристики, как не ошибиться при выборе и можно ли сделать его своими руками.

Без такого миниатюрного устройства светодиоды работать не будут

Поскольку светодиоды являются токовыми приборами, то соответственно они очень чувствительны к этому параметру. Для нормальной работы освещения требуется, чтобы через LED-элемент проходил стабилизированный ток с номинальной величиной. Для этих целей и был создан драйвер для светодиодных светильников.

Некоторые читатели, увидев слово драйвер, будут в недоумении, поскольку все мы привыкли, что этим термином обозначается некое ПО, позволяющее управлять программами и устройствами. В переводе с английского языка driver означает: водитель, машинист, поводок, мачта, управляющая программа и еще более 10 значений, но всех их объединяет одна функция – управление. Так обстоит дело и с драйверами для , только управляют они током. Итак, с термином разобрались, теперь перейдем к сути.

LED-драйвер – электронное устройство, на выходе которого, после стабилизации, образуется постоянный ток необходимой величины, обеспечивающий нормальную работу светодиодных элементов. В этом случае стабилизируется именно ток, а не напряжение. Устройства, стабилизирующие выходное напряжение называются , которые также используются для питания светодиодных элементов освещения.

Как мы уже поняли, основным параметром драйвера для светодиодов является выходной ток, который устройство может обеспечивать длительное время при включении нагрузки. Для нормального и стабильного свечения LED-элементов требуется, чтобы через светодиод протекал ток, величина которого должна совпадать со значениями указанными в техническом паспорте полупроводника.

Где нашли применение драйвера для светодиодов

Как правило, светодиодные драйверы рассчитаны на работу с напряжением 10, 12, 24, 220 В и постоянным током в 350 мА, 700 мА и 1 А. Стабилизаторы тока для светодиодов производят, в основном, под определенные изделия, но существуют и универсальные устройства, подходящие к LED-элементам ведущих производителей.

В основном LED-драйвера в сетях с переменным током используются для:

В электроцепях с постоянным током стабилизаторы нужны для нормальной работы бортового освещения и фар автомобиля, переносных фонарей и т.д.

Токовые стабилизаторы адаптированы для работы с системами контроля и датчиками фотоэлементов , а в силу своей компактности могут быть легко установлены в распределительных коробках. Также посредством драйверов можно легко менять яркость и цвет светодиодных элементов, уменьшая величину тока посредством цифрового управления.

Как работают стабилизирующие устройства для светодиодов

Принцип работы преобразователя для и лент состоит в поддержании заданной величины тока независимо от выходного напряжения. В этом и заключается разница между блоком питания и драйвером для светодиодов.

Если посмотреть на представленную выше схему то мы увидим, что ток, благодаря резистору R1, стабилизируется, а конденсатор C1 задает необходимую частоту. Далее в работу включается диодный мост, в результате чего на светодиоды поступает стабилизированный ток.

Характеристики устройства, на которые нужно обратить внимание

Подбирая ЛЕД-драйвер для светодиодных светильников необходимо обязательно учитывать тот основных параметра, а именно: ток, выходное напряжение и мощность, потребляемая подключаемой нагрузкой.

Выходное напряжение токового стабилизатора зависит от следующих факторов:

  • количество LED-элементов;
  • падение напряжения на СИД;
  • способ подключения.

Ток на выходе устройства обусловлен мощностью и . Мощность нагрузки оказывает влияние на потребляемый ею ток в зависимости от требуемой интенсивности свечения. Именно стабилизатор обеспечивает светодиодам ток необходимой величины.

Мощность светодиодного светильника зависит непосредственно от:

  • мощности каждого LED-элемента;
  • общего количества светодиодов;
  • цвета.

Потребляемую нагрузкой мощность можно рассчитать по следующей формуле:


= PLED
× N


,
где


  • – общая мощность нагрузки;

  • PLED


    – мощность отдельного светодиода;

  • N

    – количество светодиодных элементов, подключаемых в нагрузку.

Максимальная мощность токового стабилизатора не должна быть меньше PН. Для нормальной работоспособности LED-драйвера рекомендуется обеспечить запас мощности минимум на 20÷30%.

Помимо мощности и количества СИД, мощность нагрузки, подключаемой к драйверу, зависит и от цвета светодиодных элементов. Дело в том, что светодиоды разного цвета обладают разной величиной падения напряжения при одинаковом значении тока. Так, например, у светодиода CREE XP-E красного цвета падение напряжения при токе в 350 мА составляет 1,9÷2,4 В, и средняя мощность потребления будет порядка 750 мВт. У зеленого светодиодного элемента при том же токе падение напряжения будет 3,3÷3,9 В, а средняя мощность составит уже почти 1,25 Вт. Соответственно стабилизатором тока рассчитанным на мощность 10 Вт можно запитывать 12÷13 СИД красного цвета или 7-8 зеленых светодиодов.

Виды стабилизаторов по типу устройства

Токовые стабилизаторы для светоизлучающих диодов разделяются по типу устройства на импульсные и линейные.

У линейного драйвера выходом является токовый генератор, обеспечивающий плавную стабилизацию выходного тока при неустойчивом входном напряжении, не создавая при этом высокочастотных электромагнитных помех. Такие устройства имеют простую конструкцию и невысокую стоимость, однако не очень высокий КПД (до 80%) сужает область их использования до маломощных LED-элементов и лент.

Устройства импульсного типа позволяют создавать на выходе череду токовых импульсов высокой частоты. Подобные драйвера работают по принципу широтно-импульсной модуляции (ШИМ), то есть средняя величина тока на выходе определяется отношением ширины импульсов к их частоте. Подобные устройства более востребованы в силу своей компактности и более высокого КПД, составляющего порядка 95%. Однако в сравнении с линейными драйверами ШИМ стабилизаторы имеют больший уровень электромагнитных помех.

Как подобрать драйвер для светодиодов

Необходимо сразу заметить, что резистор не может являться полноценной заменой драйверу, поскольку он не в состоянии защитить светодиоды от перепадов в сети и импульсных помех. Также не лучшим вариантом будет использование линейного источника тока вследствие его низкой эффективности, ограничивающей возможности стабилизатора.

При выборе LED-драйвера для светодиодов стоит придерживаться следующих основных рекомендаций:

  • приобретать стабилизатор тока лучше всего одновременно с нагрузкой;
  • учитывать падение напряжения на СИД;
  • ток высокого номинала уменьшает КПД светодиода и приводит его перегреву;
  • учитывать мощность нагрузки, подключаемой к драйверу.

Также необходимо обращать внимание, чтобы на корпусе стабилизатора была указана его мощность, рабочие диапазоны входного и выходного напряжения, номинальный стабилизированный ток и степень влаго- и пылезащищенности устройства.

Рекомендация!
Насколько мощный и качественный будет драйвер для светодиодной ленты или СИД выбирать, конечно же, вам. Тем не менее, следует помнить, что для нормальной работы всей создаваемой системы освещения лучше всего купить фирменный преобразователь, особенно если речь идет о светодиодных прожекторах и других мощных осветительных приборах.

Подключение преобразователей тока для светодиодов: схема драйвера для светодиодной лампы 220 В

Большинство производителей выпускают драйвера на интегральных микросхемах (ИМС), которые позволяют запитываться от пониженного напряжения. Все преобразователи для LED-освещения , существующие на данный момент, делятся на простые, созданные на основе 1÷3 транзисторов и более сложные, выполненные с применением микросхем с ШИМ.

Выше представлена схема драйвера на базе микросхемы, но как мы упоминали, существуют способы подключения при помощи резисторов и транзисторов. На самом деле вариантов подключения много и рассмотреть их все подробно в одном обзоре просто невозможно. На просторах интернета можно найти практически любую схему, подходящую именно для вашей ситуации.

Как рассчитать токовый стабилизатор для светодиодного освещения

Для определения выходного напряжения преобразователя требуется рассчитать соотношение мощности и тока. Так, например, при мощности 3 Вт и токе 0,3 А максимальное напряжение на выходе будет равно 10 В.
Далее необходимо определиться со способом подключения, параллельное или последовательное, а также количеством светодиодов. Дело в том, что от этого зависит номинальная мощность и напряжение на выходе драйвера. После вычисления всех этих параметров можно подбирать соответствующий стабилизатор.

Стоит отметить, что у преобразователей рассчитанных на определенное количество LED-элементов имеется защита от внештатных ситуаций. Такой тип устройств отличается некорректной работой при подключении меньшего числа светодиодов – наблюдается мерцание или вообще не работают.

Диммируемый драйвер для LED-элементов — что это?

Последние модели преобразователей для светодиодов адаптированы для работы с регуляторами яркости свечения полупроводниковых кристаллов – . Использование этих устройств позволяет более рационально использовать электроэнергию и увеличить ресурс LED-элемента.

Диммируемые преобразователи бывают двух типов. Одни включены в цепь между стабилизатором и светодиодными элементами освещения и работают посредством ШИМ-управления. Преобразователи подобного типа используются для работы со светодиодными лентами, бегущей строкой и т.п.

Во втором варианте диммер устанавливается на разрыве между источником питания и стабилизатором, а принцип работы заключается, как в управлении параметрами тока, проходящего через светодиоды, так и при помощи широтно-импульсной модуляции.

Особенности китайских преобразователей тока для светодиодов

Высокая востребованность драйверов для LED-освещения привела к их массовому производству в азиатском регионе, частности в Китае. А эта страна славится не только качественной электроникой, но и массовым производством всевозможных подделок. Светодиодные драйвера китайского производства представляют собой импульсные преобразователи тока, как правило, рассчитанные на 350÷700 мА и в бескорпусном исполнении.

Преимущества китайских преобразователей тока заключаются лишь в невысокой стоимости и наличии гальванической развязки, а вот недостатков все-таки больше и состоят они в:

  • высоком уровне радиопомех;
  • ненадежности, вызванной дешевыми схемными решениями;
  • незащищенность от сетевых колебаний и перегрева;
  • высокий уровень пульсаций на выходе стабилизатора;
  • малый срок эксплуатации.

Обычно комплектующие китайского производства работают на пределе своих возможностей, без наличия какого-либо запаса. Поэтому если желаете создать надежно работающую систему освещения лучше всего покупать преобразователь для светодиодов от известного проверенного производителя.

Срок эксплуатации токовых преобразователей

Как и любое электронное устройство, драйвер для светодиодного источника тока имеет определенный срок эксплуатации, который зависит от следующих факторов:

  • стабильность напряжения в сети;
  • температурные перепады;
  • уровень влажности.

Известные производители дают гарантию на свои изделия в среднем на 30 000 часов работы. Дешевые самые простые стабилизаторы рассчитаны на эксплуатацию в течение 20 000 часов, среднего качества – 20 000 ч и японские – до 70 000 ч.

Схема светодиодного драйвера на базе РТ 4115

Благодаря появлению большого количества светодиодных элементов с мощностью 1÷3 Вт и невысокой ценой, большинство людей предпочитает на их основе делать домашнее и автомобильное освещение. Однако для этого необходим драйвер, который позволит стабилизировать ток до номинального значения.

Для корректной работы преобразователя рекомендуется использовать танталовые конденсаторы. Если не установить конденсатор по питанию, то интегральная микросхема (ИМС) просто выйдет из строя при включении устройства в сеть. Выше представлена схема драйвера для светодиода на ИМС PT4115.

Как сделать своими руками драйвер для светодиодов

При помощи готовых микросхем даже начинающий радиолюбитель в состоянии собрать преобразователь для светодиодов различной мощности. Для этого требуется умение чтения электросхем и опыт работы с паяльником.

Собрать токовый стабилизатор для 3-ваттных стабилизаторов, можно используя микросхему от китайского производителя PowTech – PT4115. Данная ИМС может быть использована для светодиодных элементов с мощностью более 1 Вт и состоит из блоков управления с довольно мощным транзистором на выходе. Преобразователь, созданный на основе PT4115, имеет высокую эффективность и минимальный набор компонентов.

Как видим при наличии опыта, знаний и желания можно собрать светодиодный драйвер практически по любой схеме. Теперь рассмотрим пошаговую инструкцию создания простейшего токового преобразователя для 3-х LED-элементов мощность по 1 Вт, из зарядного устройства для мобильного телефона. Кстати, это поможет лучше разобраться в работе устройства и позднее перейти к более сложным схемам, рассчитанным на большее количество светодиодов и ленты.

Инструкция по сборке драйвера для светодиодов

ИзображениеОписание этапа
Для сборки стабилизатора на потребуется старое зарядное устройство от мобильного телефона. Мы взяли от «Самсунга», так они надежны. Зарядное устройство с параметрами 5 В и 700 мА аккуратно разобрать.
Также нам понадобится переменный (подстроечный) резистор на 10 кОм, 3 светодиода по 1 Вт и шнур с вилкой.
Вот так выглядит разобранное зарядное, которое мы будет переделывать.
Выпаиваем выходной резистор на 5 кОм и на его место ставим «подстроечник».
Далее находим выход на нагрузку и определив полярность припаиваем светодиоды, заранее собранные последовательно.
Выпаиваем старые контакты от шнура и на их место подсоединяем провод с вилкой. Перед тем как проверить на работоспособность драйвер для светодиодов нужно убедиться в правильности соединений, их прочности и чтобы ничего не создало короткого замыкания. Только после этого можно приступать к тестам.
Подстроечным резистором начинаем регулировку пока светодиоды не начнут светиться.
Как видим LED-элементы горят.
Тестером проверяем необходимые нам параметры: выходное напряжение, ток и мощность. При необходимости выполняем регулировку резистором.
Вот, и все! Светодиоды горят нормально, нигде ничего не искрит и не дымит, а значит переделка прошла успешно, с чем вас и поздравляем.

Как видите сделать простейший драйвер для светодиодов очень просто. Конечно, опытным радиолюбителям эта схема может быть не интересна, но для новичка она отлично подойдет для практики.

Драйвер для светодиодов из энергосберегающей лампы.

Приобрел себе на пробу светодиоды 10 Вт 900лм теплого белого света на AliExpress. Цена в ноябре 2015года составляла 23 рубля за штуку. Заказ пришел в стандартном пакетике, проверил все исправные.

Для питания светодиодов в осветительных устройствах применяются специальные блоки — электронные драйверы, представляющие собой преобразователи стабилизирующие ток, а не напряжение на своём выходе. Но так как драйверы для них(заказывал тоже на AliExpreess) были еще в пути решил запитать от балласта от энергосберегающих ламп. У меня было несколько таких неисправных ламп. у которых сгорела нить накала в колбе. Как правило, у таких ламп преобразователь напряжения исправен, и его можно использовать в качестве импульсного блока питания или драйвера светодиода.
Разбираем люминисцентную лампу.

Для переделки я взял 20 Вт лампу, дроссель которой с лёгкостью может отдать в нагрузку 20 Вт. Для 10 Вт светодиода больше никаких переделок не требуется. Если планируется запитать более мощный светодиод, требуется взять преобразователь от более мощной лампы, либо установить дроссель с большим сердечником.
Установил перемычки в цепи розжига лампы.

На дроссель намотал 18 витков эмальпровода, подпаиваем выводы намотанной обмотки к диодному мосту, подаём на лампу сетевое напряжение и замеряем выходное напряжение. В моём случае блок выдал 9,7В. Подключил светодиод через амперметр, который показал проходящий через светодиод ток в 0,83А. У моего светодиода рабочий ток равен 900мА, но я уменьшил ток чтобы увеличить ресурс. Собрал диодный мост на плате навесным способом.

Схема переделки.

Светодиод установил на термопасту на металлический абажур старой настольной лампы.

Плату питания и диодный мост установил в корпус настольной лампы.

При работе около часа температура светодиода 40 градусов.

На глаз освещенность как от 100 ваттной лампы накаливания.

Эта светодиодная настольная лампа работает уже около месяца. Пока все нормально а дальше время покажет. В результате я получил бесплатный драйвер для светодиодов. Когда придут заводские драйвера сравню их работу с самоделкой.
Кому интересно можно посмотреть на видео.
www.youtube.com/watch?v=Glfcvr0iUYw

Что такое светодиодный драйвер?

Что такое светодиодный драйвер? — Sunpower UK

Что такое светодиодный драйвер?

Драйвер светодиодов — это автономный источник питания, который регулирует мощность, необходимую для светодиода или массива светодиодов. Светоизлучающие диоды — это маломощные осветительные устройства с длительным сроком службы и низким энергопотреблением, поэтому требуются специализированные источники питания.

Чем драйвер светодиода отличается от конвекционного источника питания?

Драйвер светодиодного освещения чем-то похож на круиз-контроль в автомобиле: требуемый уровень мощности изменяется в зависимости от температуры светодиода, увеличивается и уменьшается.Без правильного драйвера светодиодной лампы светодиоды станут слишком горячими и нестабильными, что приведет к отказу и снижению производительности. Для обеспечения безупречной работы светодиодов требуется автономный драйвер светодиодов, обеспечивающий поддержание постоянного количества энергии на светодиоды.

Светодиоды обеспечивают низкое напряжение и защиту светодиодов.

  • Обеспечивает низкое напряжение
  • Отдельные светодиодные лампы работают при напряжении от 1,5 до 3,5 вольт и токе до 30 мА.Бытовые лампы могут состоять из нескольких ламп, соединенных последовательно и параллельно, и для этого требуется общее напряжение от 12 до 24 В постоянного тока. Драйвер светодиода выпрямляет переменный ток и понижает уровень в соответствии с требованиями. Это означает преобразование высокого сетевого напряжения переменного тока в диапазоне от 120 до 277 В в необходимое низкое напряжение постоянного тока.

  • Обеспечивает защиту светодиодных ламп
  • Драйверы светодиодов обеспечивают защиту светодиодных ламп от колебаний тока и напряжения.Драйверы обеспечивают, чтобы напряжение и сила тока светодиодных ламп оставались в пределах рабочего диапазона светодиодов независимо от колебаний в электросети. Защита позволяет избежать слишком большого напряжения и тока, которые могут ухудшить работу светодиодов, или слишком низкого тока, который может снизить светоотдачу.

Типы светодиодных драйверов

Драйверы светодиодов используются либо снаружи, либо внутри сборки светодиодной лампы.

Внутренние драйверы светодиодов

Они обычно используются в домашних светодиодных лампах, чтобы упростить замену лампочек; внутренние драйверы обычно размещаются в том же корпусе, что и светодиоды.

Рисунок 1. Внутренние драйверы светодиодов в светодиодной лампе — Изображение предоставлено

Внешние драйверы светодиодов

Внешние драйверы размещаются отдельно от светодиодов и обычно используются для таких приложений, как наружное, коммерческое и дорожное освещение. Для этих типов огней требуются отдельные драйверы, которые проще и дешевле заменить. В большинстве этих приложений производитель указывает тип драйвера светодиода, который будет использоваться для конкретной сборки светильника.

Большинство отказов светодиодных ламп происходит из-за неисправности драйвера, и заменить или отремонтировать внешний драйвер проще, чем внутренний.

Рисунок 2 Внешний светодиодный драйвер — Изображение предоставлено

Выбор светодиодных драйверов

  • Режим тока и напряжения: Драйверы светодиодов работают с постоянным током или постоянным напряжением.
    • Драйверы постоянного тока обеспечивают фиксированный выходной ток и могут иметь широкий диапазон выходных напряжений. Примером драйвера постоянного тока является драйвер с выходным током 700 мА и диапазоном выходного напряжения 4-13 В постоянного тока.
    • Драйверы светодиодов с постоянным напряжением обеспечивают фиксированное выходное напряжение и максимальный регулируемый выходной ток. Они предназначены для систем с питанием от электросети, которым требуется стабильное напряжение, скажем, 12 или 24 В постоянного тока. типичный драйвер может обеспечить 24 В и максимальный выходной ток 1,04 А
  • Физический размер: , чтобы убедиться, что он помещается в фиксируемой области.
  • Степень защиты корпуса от проникновения IP указывает на степень защиты окружающей среды, обеспечиваемую внешним корпусом драйвера от проникновения влаги, пыли и других предметов или жидкостей.
  • Другие рассматриваемые факторы включают коэффициент мощности, максимальную мощность, способность регулирования яркости и соответствие международным нормативным стандартам, таким как UL1310 в отношении безопасности.

Позвоните в отдел продаж по телефону +44 (0) 118 9823746 или закажите бесплатный обратный звонок

Чтобы узнать о полном ассортименте источников питания MEAN WELL обратитесь к своему торговому представителю или перейдите в раздел продуктов MEAN WELL.

Ключевой тенденцией в автоматизации зданий на 2020 год является повышение интеллектуальности умных зданий и их процессов. В качестве ведущего…

Воспользуйтесь возможностью, чтобы загрузить брошюры о наших корпоративных продуктах.

МЫ ОСТАЕМСЯ ОТКРЫТЫМИ.У нас есть сотрудники, которые будут принимать ваши звонки, обрабатывать ваши заказы и осуществлять бесконтактную доставку.
Щелкните здесь, чтобы просмотреть текущее заявление
Отклонить

Что такое светодиодный драйвер? Как проверить и заменить драйвер светодиода?

ЧТО ТАКОЕ СВЕТОДИОДНЫЙ ДРАЙВЕР?

Теперь будущее — за светодиодными светильниками. Часто нам задают вопрос о светодиодах и о драйвере.

Какие они?

Зачем они вам?

Как они работают?

Как проверить драйвер светодиода? (перейдите в конец страницы)

Ваш светодиод может быть лучшим, но он не останется таким, если у вас нет хорошего драйвера светодиода.См. Раздел «Как работают светодиоды», чтобы узнать больше об общих светодиодах.

В светодиодном фонаре всю тяжелую работу выполняет водитель. Будь то светодиодная лампа Corn или светодиодный светильник, у него внутри есть драйвер. Этот драйвер принимает входной сигнал от здания переменного тока или переменного тока и преобразует его в постоянный или постоянный ток. В вашем доме это означает от 120 В переменного тока до 36 или 48 В постоянного тока. Он работает как гигантский трансформатор. Для этого постоянно требуется продукт очень высокого качества. Большинство проблем, которые мы видим при сбоях светодиодов, связаны с драйвером.

Что такое драйвер светодиода? = «Q»>

A: Драйвер светодиода — это регулятор мощности. Технически это схема, которая отвечает за регулирование и подачу идеального тока на светодиод. Драйвер светодиодов обеспечивает питание и регулирует переменные потребности светодиодов, обеспечивая постоянное количество энергии, поскольку его свойства меняются с температурой. Драйверы светодиодов преобразуют переменный ток высокого напряжения в низкое.

Если у вас хороший светодиод и плохо работает светодиодный драйвер, ваши светодиодные фонари для высоких отсеков не будут работать долго.Большинство отказов светодиодов происходит не из-за светодиода, а из-за драйвера. Обычно цепи перегорают и выходят из строя. Драйверы светодиодов обычно должны подавать меньше энергии на светодиоды из-за их эффективного характера, но они также должны быть более точными. Светодиодное освещение разработано с высокой точностью и требует соответствующего напряжения для эффективной работы. Современная технология, используемая в драйвере светодиода, основана на печатной плате и больше похожа на компьютер, чем на электрический регулятор.

Что такое ПРА для светодиодов? = «Q»>

A: Технически этого не существует.HID и другие лампы использовали балласт для увеличения мощности ламп. Светодиоды используют драйвер, который преобразует мощность переменного тока здания в постоянный ток. Светодиоды требуют постоянного постоянного тока для работы.

Балласты и драйвер светодиода

Балласты и драйверы являются регуляторами мощности для фонарей, но работают они по-разному. Оба обеспечивают небольшой буфер между светом и источником тока, что делает его менее уязвимым для перегрузки электричеством, регулируя напряжение между ними. Хотя оба компонента служат одной и той же цели, есть разница.Балласты являются традиционным компонентом, используемым в металлогалогенных лампах и компактных люминесцентных лампах (CFL), и обычно должны регулировать гораздо большую мощность. Они также использовали старые технологии, такие как магниты, для достижения результатов, хотя новые были электронными балластами.

Увидеть водителя внутри светодиодного фонаря для парковки NextGen III

Светодиодный светильник для парковки NextGen III — Распаковка, особенности и обзор — Лучшее освещение для зоны становится лучше
Серия NextGen уже является самым популярным и популярным светом для парковки, но теперь это становится еще лучше…

Драйверы светодиодов с регулируемой яркостью

Другой важной отличительной особенностью является то, что драйверы светодиодов могут включать в себя опцию регулировки яркости светодиодов. Драйверы с регулируемой яркостью можно сделать разными способами. Для небольших бытовых лампочек количество тока, протекающего через светодиодное устройство, определяет световой поток. Их уровень яркости регулируется простым управлением током, проходящим через уложенные друг на друга слои полупроводникового материала, установленные на подложке. Для светодиодных светильников с более высокой мощностью, таких как LED High Bay, для управления светом используется напряжение 0-10 В или PMW.В любом случае хороший драйвер светодиода обеспечивает защиту светодиода.

Электромонтаж

Электромонтаж любой цепи очень важен, когда речь идет о производительности, безопасности и экономии электроэнергии. В больших светильниках, таких как светодиодные уличные фонари, напряжение 110 В или 220 В направляется прямо на драйвер светодиода по стандартному 3-проводному соединению. Затем светодиод настраивает его на правильное напряжение каждого OED. Схема подключения драйвера светодиода позволяет сэкономить до 70% электроэнергии по сравнению с традиционной люминесцентной лампой.Подключение драйвера делает его более безопасным и дает наилучшие результаты даже при экстремальных температурах.

Как заменить драйвер светодиода? = «Q»>

A: Сначала вы должны проверить, исправен ли драйвер, то есть его можно заменить. Если это лампочка, то шансы, что она исправна, равны нулю. Они жестко подключены к лампочке. Для больших светильников есть неплохие шансы. Вам нужно получить доступ к компоненту драйвера и собрать некоторые важные спецификации. Также неплохо протестировать ввод и вывод драйвера, чтобы убедиться, что это всего лишь драйвер.Сначала попробуйте модель драйвера и посмотрите, сможете ли вы ее найти. Если нет, вам понадобится эквивалент. Какая номинальная входная мощность? Номинальное напряжение? Что на выходе? Постоянный ток или постоянное напряжение? Есть ли на борту диммирование 0-10В. Затем вам нужно будет найти драйвер аналогичного размера, который соответствует входной мощности, напряжению, выходному току и т. Д. Если вы найдете совпадение, вы все готовы их поменять. Хорошая новость в том, что обычно обменять проще, чем их найти.

Глядя на светодиодный драйвер внутри светильника

Посмотрите это видео, чтобы увидеть, как мы открываем светодиодный светильник и просматриваем драйверы в нем.Это пример исправного приспособления, в котором можно заменить драйверы.

Светодиодный светильник для парковки NextGen III — Распаковка, особенности и обзор — Самый продаваемый свет для зоны становится лучше

Светодиодный светильник для парковки NextGen III — Распаковка, особенности и обзор — Лучшее освещение для зоны становится лучше
Серия NextGen уже является самой популярной и самой продаваемой лампой для парковки, но теперь она становится лучше …

Светодиоды без водителя

Светодиодные двигатели переменного тока без водителя теперь превратились в важное новое оружие в осветительном бизнесе.Прочтите нашу статью «Ионные светодиоды без драйверов», чтобы узнать, почему они становятся все более распространенными, но при этом более опасными и подверженными сбоям.

Резюме

Драйверы светодиодов критически важны для работы вашего осветительного прибора. LEDLightExpert.com использует только высококачественные драйверы светодиодов от таких торговых марок, как Meanwell или Invetronics. Таким образом, мы можем предоставить 5-летнюю гарантию на все светодиодные лампы с высоким световым потоком, потому что мы знаем, что у вас не возникнет проблем.

Как проверить драйвер светодиода? = «Q»>

A: Светодиоды требуют постоянного тока и, следовательно, работают от постоянного тока.Электроэнергия в здании ак. Убедитесь, что входное напряжение на входе соответствует мощности здания. На выходной стороне убедитесь, что o = utput соответствует постоянному току драйвера. Обычно 24, 36, 48 или 54 постоянного тока. Убедитесь, что диммер и другие провода заглушены. Прочтите нашу полную статью для получения более подробной информации

Как проверить драйвер светодиода

Около 10 минут

При диагностике светодиодного светильника первым шагом должно быть питание. В драйвер светодиода подается питание. Объясняем, как тестировать

https: // www.ledlightexpert.com/What-is-an-LED-Driver_ep_44-1.html

Необходимых предметов:

Светодиодный светильник с исправным драйвером

Проволочные гайки

Инструмент для зачистки проводов

Отвертка

Мультиметр

Препараты

Безопасность прежде всего. Убедитесь, что у вас есть надежный подъемник или лестница, ведущая к приспособлению. Ремни безопасности и зажимы следует использовать для более высоких установок. На выключателе определяют напряжение выключателя.
Вам нужно будет знать это для тестирования позже.дважды проверьте, что вы в безопасности, прежде чем продолжить.

Найдите водительский отсек и проводку

Найдите отделение водителя на приспособлении. Некоторые приборы могут иметь запечатанный драйвер или использовать драйвер на борту (DOB). Эти приспособления не подлежат ремонту, и необходимо будет заменить все приспособление. Мы рекомендуем исправные приспособления, когда это возможно, для проведения технического обслуживания. После того, как вы найдете отсек, вам нужно будет найти входные и выходные провода. Многие светильники также имеют диммирование 0-10 В и имеют 2 дополнительных провода.Их необходимо проверить, чтобы убедиться, что они не касаются друг друга, чтобы завершить тест. Если установлен диммер или провода соприкасаются, это даст вам ложное считывание плохого драйвера.

Проверка стороны входа

Входная сторона драйвера может быть от 100 до 480 В переменного тока в зависимости от здания. На шаге 1 вы узнаете напряжение и сможете соответственно настроить свой счетчик. В большинстве приспособлений используются быстроразъемные зажимы, но некоторые из них являются проволочными гайками. Вы сможете проверить мощность с помощью любого из них. Сделайте снимок глюкометра со стороны входа.Если у вас нет питания, мы не сможем протестировать драйвер. Сначала исправьте эту проблему. Как только у нас будет показание счетчика, соответствующее напряжению в здании, мы можем двигаться дальше.

Проверить выходную сторону

Светодиоды работают от постоянного тока или постоянного тока. Количество постоянного тока может меняться в зависимости от прибора, и вам нужно будет указать это на драйвере. Чаще всего встречается где-то между 24 и 54 постоянного тока. Переключите измеритель на постоянный ток и вставьте щупы мультиметра. Выход постоянного тока не имеет заземления, поэтому всего 2 провода. еще раз убедитесь, что провода диммирования и любые другие закрыты заглушками для теста.Ознакомьтесь с показаниями DC Out и посмотрите, соответствует ли он вашему драйверу.

Заключение

Драйверы

обычно не устанавливают 0, поэтому на выходной стороне обычно отображается 0. Если драйвер имеет частичный выход, светодиоды прибора будут тусклыми или мигать. Знание того, что у нас хорошее питание, а не отключение, говорит нам, что это плохой драйвер. Если у вас хорошее питание и хорошее выходное напряжение постоянного тока, то проблема связана с платой светодиодов

.

Дополнительные изображения ниже
Драйверы светодиодов

: какие они и какие мне нужны?

Переход на светодиодное освещение имеет огромную тенденцию в коммерческой отрасли.Благодаря длительному сроку службы и энергоэффективности многие подрядчики начинают понимать преимущества этого светодиода. Узнайте больше о светодиодах с помощью «Единственного руководства по светодиодам, которое вам когда-либо понадобится»

… Итак, как вы запитываете светодиоды?

Поскольку светодиоды работают от низкого напряжения, для их питания требуется специальное оборудование. Для светодиодных светильников требуется специальное устройство, называемое светодиодным драйвером. Эти драйверы обеспечивают питание светодиодных лампочек для правильной работы; аналогично тому, как балласт питает люминесцентную лампу или трансформатор питает низковольтную лампу накаливания.

Как работают светодиодные драйверы?

Драйверы светодиодов в основном поддерживают электрический ток, протекающий через цепь светодиодов, на номинальном уровне мощности. Светодиоды рассчитаны на низкое напряжение (12-24 вольт), но в большинстве коммерческих помещений подача питания намного выше (120-277 вольт).

Драйверы светодиодов используются для направления нужного количества электричества на лампочку. В случае изменения напряжения (мощности) драйвер светодиода защитит светодиодную лампу от любых колебаний электрического тока.Эти колебания могут привести к изменению светоотдачи (яркости) лампочки или вызвать перегрев светодиодной лампы. Светодиодный драйвер жизненно важен для безопасности лампы.

Внутренние и внешние драйверы

Для питания каждого светодиодного светильника требуется драйвер. Есть два разных типа устройств: внутренние драйверы и внешние драйверы.

Внутренние драйверы

Внутренние драйверы обычно используются в бытовых лампах. Это стандартные сменные лампы накаливания и КЛЛ с возможностью ввинчивания или вставки.

Внешние драйверы

Внешние драйверы обычно используются для коммерческого освещения. Это где угодно, от освещения площадей до освещения складских помещений и уличного освещения. В большинстве случаев заменить внешний драйвер намного дешевле, чем полностью заменить светодиодный светильник. Для установки освещения ознакомьтесь с нашим Руководством по модернизации

Когда мне следует заменить внешний драйвер?

Неудивительно, что внешние драйверы выйдут из строя, но перед заменой всего светодиодного светильника вам следует подумать о преимуществах простой замены внешнего драйвера.Часто водители терпят неудачу из-за воздействия высоких температур.

Эти высокие внутренние температуры могут сократить срок службы драйвера и привести к прекращению работы светодиодной лампы. Просто заменив старый драйвер на новый, вы сэкономите время и деньги!

Как возникают такие высокие температуры?

Температура внутри драйвера светодиода напрямую коррелирует с внешней температурой драйвера. Высокие температуры возникают, когда электролитические конденсаторы внутри драйвера начинают перегреваться.

Внутри этих конденсаторов находится гель, который со временем постепенно испаряется. При воздействии более высоких температур гель испаряется быстрее, из-за чего водитель неожиданно прекращает работу. Драйвер светодиода укажет на этикетке свою самую горячую точку, известную как точка TC.

Эта точка используется для обозначения максимальной рабочей температуры водителя. Вот почему драйверы светодиодов с высокими значениями термостойкости могут выдерживать более высокие температуры и, следовательно, имеют более длительный срок службы. Если ваша светодиодная лампа неожиданно перестала работать, это, вероятно, означает, что пришло время заменить внешний драйвер.

Какой внешний светодиодный драйвер мне нужен?

Существует три типа внешних драйверов: драйверы постоянного тока, постоянного напряжения и переменного тока. При замене старого драйвера вы должны убедиться, что требования к входу / выходу идеально соответствуют вашей светодиодной лампе. Светодиоды не могут работать с обычными трансформаторами, такими как низковольтные галогенные лампы или лампы накаливания. Поскольку они работают с низким напряжением, им требуется специальное устройство, которое может обнаруживать низкие напряжения.

Драйверы постоянного тока

Внешние драйверы постоянного тока будут питать светодиоды с фиксированным выходным током и набором переменных выходных напряжений. Определенная светодиодная лампа будет показывать один определенный ток, обозначенный в амперах, и будет иметь множество напряжений, которые будут варьироваться в зависимости от мощности лампы. Эти характеристики можно найти в техническом описании внешнего драйвера.

Драйверы постоянного напряжения

Внешние драйверы постоянного напряжения обеспечивают питание светодиодов с фиксированным выходным напряжением и максимальным выходным током.В этой конкретной светодиодной лампе максимальный ток уже регулируется внутри лампы, а напряжение будет фиксированным на уровне 12 В постоянного тока или 240 В постоянного тока. Эти характеристики можно найти в техническом описании внешнего драйвера.

Драйверы светодиодов переменного тока

Драйверы светодиодов переменного тока используются с лампами, которые уже содержат внутренний драйвер. Внутренний драйвер преобразует электрический ток из переменного тока в постоянный.

Драйвер светодиодов A / C просто определяет напряжение светодиодной лампы и преобразует электрический ток в соответствии с требованиями к мощности для этого конкретного осветительного устройства.Эти драйверы светодиодов обычно используются в светодиодных лампах MR16, но их можно использовать с любой светодиодной лампой переменного тока 12-24 В.

Другие вещи, которые следует учитывать при покупке внешнего светодиодного драйвера

Максимальная мощность

Светодиодные драйверы всегда должны быть соединены со светодиодными лампами, которые используют 80% своей максимальной номинальной мощности. Например, если ваш внешний драйвер может работать с максимальной мощностью 120 Вт, он должен работать только с светодиодными лампами мощностью 96 Вт.

120 Вт x 0.80 = 96 Вт

* Примечание * НИКОГДА НЕ ПЕРЕГРУЖАЙТЕ СВОЙ CIRUCIT

Регулировка яркости

Все три типа внешних драйверов обеспечивают возможность регулировки яркости. Убедитесь, что и светодиодная лампочка, и драйвер указывают на то, что у них есть функции регулировки яркости, в паспорте продукта. Для большинства внешних драйверов с регулируемой яркостью потребуется внешняя система управления освещением. Эти устройства укажут, какой внешний диммер необходим для управления определенными светодиодными лампами. Узнайте, как установить диммеры и датчики, из нашего Руководства по управлению освещением .

Класс I по сравнению с классом II

Драйверы UL класса II соответствуют стандарту UL1310. Это означает, что выходная мощность безопасна для контакта, и никаких серьезных защитных мер при обращении не требуется. ( НЕТ риска возгорания или поражения электрическим током)

Эти драйверы могут работать с:

  • Менее 60 В в сухих условиях
  • 30 В во влажных условиях
  • Менее 5 А
  • Менее чем 100 Вт

Обратите внимание * Существует ограничение на количество лампочек, которое может работать с одним драйвером класса II *

Драйверы UL класса I имеют выходную мощность, выходящую за пределы драйверов класса I.Из-за высокого выходного напряжения драйверы класса I требуют защиты при обращении с ними. В отличие от своих собратьев, драйверы класса I намного более эффективны, поскольку в них можно установить больше светодиодных ламп.

Мы стремимся предоставлять качественную продукцию по конкурентоспособным ценам. Если вы хотите заменить или модернизировать систему освещения, мы можем помочь вам в этом. HomElectrical предлагает широкий выбор светодиодных драйверов и светодиодного освещения для вашего удобства.

Магазин светодиодного освещения

Оставайтесь на связи

Нравится этот блог? Мы хотим знать, о каких блогах вы хотите читать.

Поделитесь некоторыми темами блога, которые вас интересуют, в разделе комментариев ниже или отправьте нам сообщение на Facebook!

Не забудьте поделиться с друзьями на Facebook и подписаться на нас в Twitter!

Почему светодиодным лентам всегда нужен светодиодный драйвер

Вы только что вернулись из строительного магазина с большими мечтами и охапкой светодиодных лент. Вы открываете все пакеты и — какого черта? Как все это работает? Как их включить?

Добро пожаловать в мир светодиодных драйверов

Для светодиодных фонарей

требуется специальное устройство, называемое драйвером светодиода, для включения и работы.Драйверы светодиодов выполняют ту же функцию, что и пускорегулирующие устройства для люминесцентных ламп. Драйвер преобразует линейное напряжение в мощность, подходящую для работы светодиода. Кроме того, поскольку электрические свойства светодиода меняются при колебаниях температуры, драйвер регулирует и поддерживает постоянную величину тока.

Для чего нужны светодиодные драйверы?

Драйверы светодиодов служат трем основным целям:

  1. Большинство домохозяйств используют электричество переменного тока 120–277 В, но светодиоды работают от электричества постоянного тока низкого напряжения.Таким образом, драйвер изменяет переменный ток с более высоким напряжением на постоянный ток с более низким напряжением, чтобы соответствовать тому, что необходимо для работы светодиодных ламп.
  2. Входное напряжение драйвера должно быть таким же, как напряжение, требуемое драйвером. В противном случае изменение напряжения может вызвать мерцание или мигание.
  3. Распространенным подходом к управлению светоотдачей светодиодов является широтно-импульсная модуляция. Когда светодиодные лампы приглушены, особенно при низком уровне светоотдачи, это может привести к мерцанию.

Нужен ли драйвер для светодиодов?

Для большинства светодиодов требуется драйвер, некоторые предназначены для работы от переменного тока.Хотя светодиодные лампы, которые вы ввинчиваете в приспособление, могут не выглядеть так, как будто у них он есть, на самом деле у них есть внутренний драйвер, так же как у ввинчиваемых CFL есть встроенный балласт. Большинство бытовых светодиодов, которые являются прямой заменой ламп накаливания, галогенных ламп и CFL с цоколем E26 / E27 или GU10 / GU24, имеют внутренний драйвер.

Это световые полосы, по которым люди спотыкаются. Для светодиодных лент также требуется драйвер, но вы можете купить ленточные светильники отдельно от драйвера, и один драйвер может подавать электричество на несколько светодиодных лент!

Светодиод неисправен или это драйвер?

Вот еще один совет: если ваши светодиодные индикаторы тускнеют, проблема может быть в драйвере, а не в светодиоде! Драйверы работают при высокой внутренней температуре, поэтому срок службы светодиода может быть сокращен, если лампа находится в закрытом светильнике или используется, например, в горячем гараже.Драйвер может выйти из строя до того, как выйдет из строя твердотельный переход светодиодной микросхемы. Вот почему светодиоды намного лучше работают при низких температурах, чем КЛЛ. Они загораются мгновенно (технически быстрее, чем лампы накаливания), в то время как сопоставимым лампам CFL может потребоваться тусклый свет, период прогрева перед достижением полной светоотдачи.

Завершение тех полосовых огней

Итак, теперь, с вашей коллекцией светодиодных лент и без драйвера, что вы делаете? Единственное решение — подобрать драйвер для своих фонарей.

Какой светодиодный драйвер мне нужен?

Как выбрать правильный драйвер для вашей светодиодной установки

Когда дело доходит до выбора правильного
Совместимость светодиодных драйверов имеет решающее значение. Использование неправильного драйвера в светодиодной системе может привести к отказу и даже повреждению используемых компонентов. Как отраслевые эксперты и один из крупнейших поставщиков Великобритании, наша дружная техническая команда Ultra LEDs всегда готова проконсультировать вас по всем вопросам, связанным со светодиодами, и помочь вам найти продукт, который подходит именно вам.Вот наше руководство по драйверам, вопросы, которые вам нужно задать при их покупке, и наши основные советы по их правильной установке.

Что такое драйвер?

Драйверы светодиодов — это устройства, которые регулируют и подают мощность, используемую для «запуска» светодиодных лент. Подобно традиционным трансформаторам, они преобразуют переменный ток сетевого напряжения (240 В переменного тока) в более низкое напряжение. Однако драйверы светодиодов также преобразуют ток сетевого напряжения в постоянный постоянный ток (DC), который требуется светодиодам.Регулируя свою мощность в соответствии с электрическими свойствами светодиодной ленты, которые меняются при нагревании, драйверы регулируют мощность, подаваемую на светодиоды, на постоянное значение, обычно равное 12 В или 24 В постоянного тока.

Поскольку для светодиодов требуется постоянный постоянный ток 12 В или 24 В, драйверы светодиодов требуются во всех светодиодных системах (за исключением тех, которые специально разработаны для управления источниками питания с напряжением сети, такими как лента сетевого напряжения или светодиодные лампы). Но с Ultra LEDs купить подходящий драйвер очень просто — достаточно ответить на эти 5 простых вопросов:

1.Какое напряжение?

Для питания всех светодиодных лент требуется напряжение 12 В или 24 В, как указано в спецификации. Обязательно купите драйвер с тем же выходным напряжением, что и для ленты. Запуск ленты 12 В с драйвером 24 В приведет к тому, что светодиоды станут ярче в краткосрочной перспективе, но более высокое напряжение в конечном итоге сожжет ленту. Запуск ленты 24 В с драйвером 12 В приведет к тому, что светодиоды вообще не загорятся.

2. Какая мощность?

Количество потребляемой мощности светодиодной ленты зависит от ее длины.Мощность ленты — это количество энергии, потребляемой лентой.
за метр . Чтобы определить, сколько ватт требуется вашей ленте, просто умножьте мощность ленты на количество метров, которые вы пробегаете. Как только вы узнаете мощность ленты, вы можете выбрать подходящий драйвер.

Мощность драйвера указывает на его максимальную выходную мощность. Мы рекомендуем выбрать драйвер с мощностью, по крайней мере, на 10% выше, чем мощность, необходимая для светодиодной ленты, чтобы обеспечить более длительный срок службы.

Например, для светодиодной ленты мощностью 5 м мощностью 6 Вт требуется 30 Вт. Мы рекомендуем использовать драйвер с выходной мощностью 33 Вт или более для питания этой ленты.

3. Ваш драйвер должен быть водонепроницаемым?

Если вы устанавливаете светодиодную ленту на открытом воздухе, на кухне или в ванной, важно использовать водостойкий драйвер. Чтобы узнать, является ли драйвер водонепроницаемым, посмотрите его степень защиты от проникновения или степень защиты IP.Брызгозащищенные драйверы имеют степень защиты IP 65 и лучше всего подходят для использования в ванных комнатах и ​​кухнях. Водонепроницаемые драйверы имеют степень защиты IP 67 или выше и лучше всего подходят для использования на открытом воздухе.

4. Хотите иметь возможность затемнять светодиоды?

Если вы хотите иметь возможность затемнять светодиоды, обязательно купите драйвер с возможностью затемнения. Они работают за счет уменьшения мощности, подаваемой на светодиод, и бывают двух разных типов: драйверы с регулируемой яркостью задней кромки (также известные как драйверы ELV) и передняя кромка.
диммируемые драйверы (также известные как драйверы TRIAC).Чтобы узнать больше о различиях между двумя различными технологиями затемнения, щелкните здесь.

5. Plug and Play или профессиональный?

Если вы устанавливаете светодиодное освещение самостоятельно, мы рекомендуем наш стандартный набор светодиодных драйверов; они оснащены инновационной технологией plug and play с предварительно подключенными кабелями и розетками для сетевого напряжения, что делает установку проще, чем когда-либо.

Для тех, у кого есть опыт работы с электрикой, которым требуется доступ к портам драйвера или вы ищете драйвер для более требовательной ситуации, например, в розничной или коммерческой среде, мы рекомендуем нашу линейку драйверов Tagra® Professional.Благодаря их исключительной надежности, высококачественным внутренним компонентам и беспрецедентной 5-летней гарантии не нужно беспокоиться о поломке. Они также имеют несколько клемм для более универсальной установки, требующей жесткой проводки.

Для получения дополнительной информации о драйверах, пожалуйста, свяжитесь с нашим техническим специалистом по электронной почте [email protected] или позвоните в наш офис по телефону 01625 611 611.

Что это и как работает?

Разработка и внедрение технологии светоизлучающих диодов (LED) во всем диапазоне осветительных приложений были захватывающими в последние несколько лет.Несмотря на присущую светодиодам высокую эффективность электрооптического преобразования, светодиодный светильник настолько хорош, насколько хорош его драйвер. Потенциал этой революционной технологии освещения может быть раскрыт только тогда, когда показатели производительности светодиодных драйверов будут последовательно согласованы с электрическими характеристиками светодиодного источника света. Светодиодная система освещения представляет собой синергетическое сочетание источника света, драйверов светодиодов, систем управления температурой и оптики. Поскольку драйверы являются единственным компонентом, который существенно влияет на фотометрические характеристики и качество света светодиодов в системе освещения, они играют решающую роль в более обширных и интенсивных применениях светодиодной технологии.

Что такое светодиодный драйвер?

Драйвер светодиодов — это электронное устройство, регулирующее мощность светодиода или цепочки (или цепочек) светодиодов. Светодиоды представляют собой твердотельные полупроводниковые устройства, пропитанные или легированные слоями для создания p-n-перехода. Когда ток течет через легированные слои, дырки из p-области и электроны из n-области инжектируются в p-n переход. Они рекомбинируют, чтобы генерировать фотоны, которые мы воспринимаем как видимый свет. Преобразование тока в световой поток почти линейное, увеличение входного тока позволяет большему количеству электронов и дырок рекомбинировать в p-n-переходе, и, таким образом, генерируется больше фотонов.

В отличие от обычных источников света, которые работают непосредственно от источника переменного тока (AC), светодиоды работают от входа постоянного или модулированного прямоугольного сигнала, поскольку диоды имеют полярность. При вводе сигнала переменного тока светодиод будет гореть только примерно половину времени, когда сигнал переменного тока имеет правильную полярность, и сразу же погаснет при отрицательном смещении. Следовательно, постоянная подача постоянного электрического тока на фиксированный выход или переменный выход в допустимом диапазоне должна применяться к светодиодной матрице для стабильного, немигающего освещения.

Драйверы светодиодов

обеспечивают интерфейс между источником питания (линией) и светодиодом (нагрузкой), преобразуя входящую мощность сети переменного тока 50 Гц или 60 Гц при таких напряжениях, как 120 В, 220 В, 240 В, 277 В или 480 В, в регулируемый выходной постоянный ток. Существуют драйверы, предназначенные также для приема других типов источников питания, например, питания постоянного тока от микросетей постоянного тока или питания через Ethernet (PoE). Схема драйвера светодиода должна иметь невосприимчивость к скачкам напряжения и другим помехам в линии переменного тока в пределах заданного расчетного диапазона, а также отфильтровывать гармоники в выходном токе, чтобы они не влияли на качество вывода светодиодного источника света.Драйвер — это не просто преобразователь мощности. Некоторые типы светодиодных драйверов имеют дополнительную электронику для точного управления светоотдачей или для поддержки интеллектуального освещения.

Постоянный ток или постоянное напряжение?

Электрическая цепь, которая регулирует входящую мощность для обеспечения выхода постоянного напряжения, обычно называется источником питания, тогда как драйвер светодиода в строгом смысле означает электрическую цепь, которая обеспечивает выход постоянного тока. Сегодня «драйвер светодиода» и «источник питания светодиода» — очень неоднозначные термины, которые используются как синонимы.Несмотря на терминологическую двусмысленность, мы не можем позволить себе игнорировать существенные различия между схемами постоянного тока (CC) и постоянного напряжения (CV) для регулирования нагрузки светодиодов.

Драйверы светодиодов постоянного тока обеспечивают постоянный ток (например, 50 мА, 100 мА, 175 мА, 350 мА, 525 мА, 700 мА или 1 А), независимо от нагрузки по напряжению, на светодиодный модуль в определенном диапазоне напряжений. Драйвер может питать один модуль со светодиодами, подключенными последовательно, или несколько светодиодных модулей, подключенных параллельно.Последовательное соединение является предпочтительным в архитектурах цепей CC, поскольку оно гарантирует, что все светодиоды имеют одинаковый ток, протекающий через их полупроводниковые переходы, а световой поток равномерен через светодиоды. Для параллельного подключения нескольких светодиодных модулей требуется резистор в каждом светодиодном модуле, что приводит к снижению эффективности и плохому согласованию тока. Большинство драйверов CC можно запрограммировать для работы в диапазоне выходного тока для точного сопряжения между драйвером и конкретным светодиодным модулем. Драйверы светодиодов постоянного тока используются, когда световой поток не должен зависеть от колебаний входного напряжения.Они используются во многих типах продуктов общего освещения, таких как потолочные светильники, троферы, настольные / торшеры, уличные фонари и светильники для высоких пролетов, для которых приоритетными являются высокое качество тока и точный контроль мощности. Драйверы CC поддерживают регулировку яркости как с широтно-импульсной модуляцией (PWM), так и с уменьшением постоянного тока (CCR). Работа источника питания в режиме CC обычно требует защиты от перенапряжения на случай чрезмерного сопротивления нагрузки или при отключении нагрузки.

Драйверы светодиодов постоянного напряжения предназначены для работы светодиодных модулей при фиксированном напряжении, обычно 12 В или 24 В.Каждый светодиодный модуль имеет собственный линейный или импульсный регулятор тока для ограничения тока с целью поддержания постоянного выходного сигнала. Обычно предпочтительно подавать постоянное напряжение на несколько светодиодных модулей или светильников, соединенных параллельно. Максимальное количество светодиодов или светодиодных модулей и прямое напряжение на них не должно превышать мощность источника питания постоянного тока. Цепь CV должна допускать рассеяние мощности при коротком замыкании нагрузки. Ограничители тока обычно имеют тепловое отключение для защиты цепи, когда на ограничитель тока подается напряжение, превышающее максимально допустимое.Драйверы CV часто используются в низковольтных светодиодных осветительных устройствах, которые требуют простоты группового подключения при параллельном управлении, например, для управления светодиодными лентами, светодиодными модулями для световых коробов. Драйверы постоянного напряжения могут быть затемнены только при ШИМ.

Импульсный источник питания (SMPS)

Поскольку светодиоды очень чувствительны к колебаниям тока и напряжения, одна из наиболее важных функций драйвера светодиода заключается в уменьшении колебаний прямого напряжения на полупроводниковом переходе светодиодов.Импульсные источники питания работают путем модуляции электрического сигнала с использованием одного или нескольких переключающих элементов, таких как силовые полевые МОП-транзисторы, на высокой частоте, тем самым генерируя заданную величину мощности постоянного тока при изменении напряжения питания или нагрузки. Импульсные преобразователи, используемые в драйверах светодиодов, требуют, чтобы энергия сохранялась в виде тока с использованием катушек индуктивности и / или в виде напряжения с использованием конденсаторов, чтобы поддерживать выходной ток или напряжение на нагрузке во время цикла включения / выключения. Драйвер светодиодов AC-DC SMPS преобразует мощность переменного тока в мощность постоянного тока, которая затем преобразуется в мощность постоянного тока, способную правильно управлять светодиодами.

Для импульсного преобразования мощности в драйверах светодиодов доступны различные топологии схем для поддержки требований к нагрузке светодиодов. Среди всех топологий SMPS наиболее часто используются повышающие, повышающие, понижающие и обратные типы.

Также известная как понижающий преобразователь, понижающая схема регулирует входное постоянное напряжение до желаемого постоянного напряжения с помощью ряда методов управления током, включая синхронное переключение, гистерезисное управление, управление пиковым током и управление средним током.Понижающая топология предназначена для драйверов светодиодов с питанием от сети, которые необходимы для управления длинной цепочкой светодиодов, при этом напряжение нагрузки поддерживается ниже напряжения питания. Понижающие цепи также часто встречаются в приложениях с низким напряжением, где входное напряжение питания относительно низкое (например, 12 В постоянного тока для автомобильного освещения) и работает только один светодиод. Понижающая топология позволяет создавать схемы с меньшим количеством компонентов, сохраняя при этом высокий КПД (90–95%). Однако напряжение нагрузки понижающей цепи должно быть менее 85% от напряжения питания.Более того, понижающие драйверы светодиодов не обеспечивают изоляцию между входными и выходными цепями.

Повышающий преобразователь предназначен для повышения входного напряжения до более высокого выходного напряжения примерно на 20% или более. Для схем повышения обычно требуется один индуктор и они работают либо в режиме непрерывной проводимости (CCM), либо в режиме прерывистой проводимости (DCM), в зависимости от формы волны тока индуктора. В повышающих преобразователях малой мощности может использоваться накачка заряда, а не катушка индуктивности, в которой используются конденсаторы и переключатели для повышения выходного напряжения выше напряжения питания.Преобразователи на основе индуктивности обладают преимуществом в виде небольшого количества компонентов и высокой эксплуатационной эффективности (более 90%). Недостатком этой топологии является отсутствие изоляции между входными и выходными цепями. Повышающий преобразователь выдает импульсную форму волны, поэтому для уменьшения пульсаций тока требуется большой выходной конденсатор. ШИМ-регулирование яркости является сложной задачей из-за большого выходного конденсатора, а также управления с обратной связью, которое требует большой полосы пропускания для стабилизации преобразователя.

Пониженно-повышающие преобразователи

могут обеспечивать выходное напряжение выше или ниже входного, что делает их идеальными для приложений, в которых входное напряжение растет и падает с большими колебаниями (не более 20%).Колебания входного напряжения такого типа обычно возникают в осветительных устройствах с питанием от аккумуляторных батарей, например, в автомобильном освещении для строительной и сельскохозяйственной техники (вилочные погрузчики, тракторы, комбайны, экскаваторы, снегоочистители и т. Д.), А также в грузовых автомобилях и автобусах. Два типа преобразователей, которые часто используются в повышающе-понижающих приложениях, известны как SEPIC (несимметричный первичный преобразователь индуктивности) и Cuk. Преобразователь SEPIC отличается использованием двух индукторов, предпочтительно двухобмоточного индуктора, который имеет небольшую площадь основания, низкую индуктивность рассеяния и способность увеличивать соединение обмоток для повышения эффективности схемы.В архитектуре SEPIC повышающая секция обеспечивает коррекцию коэффициента мощности (PFC), а понижающая секция выдает напряжение, равное, меньшее или большее, чем входное напряжение, в то время как выходная полярность обеих секций остается одинаковой. Топология Cuk сочетает в себе непрерывный выходной ток понижающего преобразователя и непрерывный входной ток повышающего напряжения, что дает Cuk наилучшие характеристики EMI и позволяет при необходимости уменьшать емкость. Повышающе-понижающий преобразователь представляет собой неизолированную схему драйвера.Как и повышающие преобразователи, повышающие преобразователи требуют защиты от перенапряжения для предотвращения повреждений из-за чрезмерно высокого напряжения в случае разомкнутой нагрузки.

Схема обратного переключения — это преобразователь с прерывистой проводимостью, который обеспечивает изоляцию сети переменного тока, накопление энергии и масштабирование напряжения. Он очень похож на повышающий преобразователь, но с разделением индуктивности, образующим трансформатор. Обратный трансформатор с как минимум двумя обмотками не только обеспечивает полную изоляцию между его входной и выходной цепями, но также позволяет подавать более одного выходного напряжения с разной полярностью.Первичная обмотка подключена к входному источнику питания, вторичная обмотка подключена к нагрузке. Магнитная энергия сохраняется в трансформаторе, когда переключатель включен, и в то же время диод имеет обратное смещение (т. Е. Блокируется). Когда переключатель выключен, диод смещен в прямом направлении, и магнитная энергия выделяется током, текущим из вторичной обмотки. В некоторых схемах обратного хода используется третья обмотка, называемая бутстрапом или вспомогательной обмоткой, для питания управляющей ИС. Более точный контроль среднего напряжения на конденсаторе, который используется для поддержания тока в нагрузке светодиода, когда преобразователь находится на первой ступени, требует изолированной обратной связи, обычно через оптрон.Цепи обратного переключения могут быть разработаны для очень широкого диапазона питающих и выходных напряжений с изоляцией от опасно высоких напряжений. Однако эти схемы менее эффективны (75 — 85%, более высокий КПД возможен за счет использования дорогих деталей).

Линейный источник питания

Линейный источник питания использует элемент управления (например, резистивную нагрузку), который работает в своей линейной области для регулирования выхода. В схемах управления светодиодами этого типа напряжение, протекающее через резистор, чувствительный к току, сравнивается с опорным напряжением в контуре обратной связи для создания управляющего сигнала.Контроллер, который работает в линейной области системы обратной связи с обратной связью, регулирует выходное напряжение до тех пор, пока ток, протекающий через чувствительный резистор, не будет соответствовать напряжению обратной связи. Таким образом, ток, подаваемый на цепочку светодиодов, поддерживается до тех пор, пока прямое напряжение не превышает выходное напряжение с ограничением по падению. Линейные драйверы обеспечивают только понижающее преобразование, что означает, что напряжение нагрузки должно поддерживаться ниже, чем напряжение питания. Если напряжение нагрузки выше напряжения питания или напряжение питания сильно колеблется, необходим импульсный стабилизатор.

В приложениях

с питанием от сети переменного тока, которые предъявляют высокие требования к регулированию напряжения, обычно используются переключаемые линейные регуляторы для управления светодиодными лампами с длинной цепочкой светодиодов, соединенных последовательно. Переключаемые линейные регуляторы представляют собой комбинации нескольких линейных регуляторов, которые либо интегрированы, либо каскадированы в модульной форме. Эти линейные регуляторы, обычно разработанные в корпусах ИС для поверхностного монтажа, используются для интеллектуальной регулировки количества подключенных к нагрузке светодиодов в цепочке во время цикла линии питания, чтобы напряжение нагрузки соответствовало мгновенному напряжению сети переменного тока.

Линейные драйверы светодиодов

представляют собой чрезвычайно упрощенное решение, которое устраняет необходимость в громоздких и дорогостоящих катушках, конденсаторах и реактивных (например, индуктивных и / или емкостных) входных фильтрующих элементах EMI / EMC. Значительно небольшое количество деталей и использование твердотельных компонентов позволяет уменьшить размеры переключаемого линейного регулятора до компактной ИС-микросхемы. Это делает линейные драйверы конкурентоспособным кандидатом для светодиодных ламп, стоимость и физические размеры которых являются важными факторами при проектировании.Благодаря способности генерировать резистивную нагрузку диммера, аналогичную лампе накаливания, линейные драйверы светодиодов имеют общую совместимость с существующими диммерами с отсечкой фазы (TRIAC), которые были разработаны для диммирования резистивных нагрузок.

Отличающаяся конкурентоспособностью затрат, невосприимчивостью к электромагнитным и электромагнитным помехам, малой занимаемой площадью и простотой конструкции, топология линейного управления вызывает все больший интерес в отрасли. Однако линейные драйверы борются с присущими им недостатками, которые не позволяют им войти в массовые приложения во многих категориях продуктов.

1. Линейный драйвер светодиода может иметь низкую эффективность, когда напряжение питания значительно превышает напряжение нагрузки.

2. Избыточная мощность выделяется в виде тепловой энергии, что приводит к увеличению термической нагрузки на схему драйвера и, скорее всего, на светодиоды, если тепло не рассеивается эффективно.

3. Ограничение необходимости поддерживать напряжение нагрузки ниже, чем напряжение питания в определенном диапазоне, приводит к дополнительному недостатку, заключающемуся в разрешении только ограниченного диапазона напряжения питания.

4. Линейные драйверы, доступные на рынке, представляют собой преимущественно недорогие схемы, которые не уделяют особого внимания устранению мерцания.

5. Неизолированная топология не обеспечивает гальванической развязки от сети переменного тока.

Switched Vs. Линейный

В конструкции драйвера светодиода есть много компромиссов. При выборе между SMPS и линейными драйверами необходимо учитывать стоимость, эффективность, управляемость, срок службы, диммирование, размер, коэффициент мощности, мерцание, вход / выход, изоляцию от сети переменного тока и различные другие факторы.

Импульсные источники питания, очевидно, более эффективны, чем линейные, из-за их модуляции «0/1» (переключение ВКЛ / ВЫКЛ). Они могут быть разработаны для обеспечения высокой энергоэффективности, а также освещения без мерцания при сохранении высокого коэффициента мощности и низкого общего гармонического искажения (THD). Хотя линейные драйверы светодиодов задумывались как перспективное решение для управления светодиодами, в обозримом будущем SMPS по-прежнему будет предпочтительным решением для управления светодиодами для приложений, где первостепенное значение имеют эффективность, управление освещением, качество света и электрическая безопасность.В частности, цифровая управляемость драйверов SMPS, оснащенных технологией интеллектуальных датчиков и возможностью беспроводного подключения, обещает сделать возможным множество приложений Интернета вещей (IoT). Цифровая модуляция позволяет кодировать данные в двоичном формате для высокоскоростной оптической беспроводной связи (LiFi), что значительно расширяет прикладной потенциал драйверов SMPS.

Тем не менее, привлекательные особенности драйверов SMPS достигаются за счет их зависимости от громоздких, дорогих и ненадежных реактивных компонентов, таких как трансформаторы, катушки индуктивности и конденсаторы.Высокоскоростное переключение вызывает много шума, что приводит к относительно высокому уровню электромагнитных помех, которые необходимо фильтровать и экранировать с помощью дополнительных цепей. Эти дополнительные схемы могут значительно увеличить физические размеры и удвоить общую стоимость драйвера светодиода.

Самым большим недостатком драйверов SMPS, который также является наиболее привлекательной особенностью линейных драйверов, является их надежность. Схема управления SMPS использует большое количество компонентов, включая фильтры, выпрямители, схемы корректора коэффициента мощности (PFC) и т. Д.Сложная конструкция может снизить надежность схемы. Широкое использование алюминиевых электролитических конденсаторов в PFC в качестве компонента накопления энергии вызывает наибольшую озабоченность по поводу надежности драйвера SMPS. Электролитические конденсаторы известны своей высокой емкостью и высоким номинальным напряжением. Тем не менее электролит в конденсаторе со временем испарится. Скорость испарения линейно зависит от температуры. Высокая температура ускоряет испарение электролита, что вызывает уменьшение емкости и увеличение ESR (эквивалентное последовательное сопротивление).Повышенное ESR приводит к высоким колебаниям выходного напряжения и шуму. А конденсатор в итоге выходит из строя, когда высыхает электролит, что приводит к преждевременному выходу из строя всей системы освещения. Высокоскоростное переключение может вызвать электромагнитные помехи (EMI), которые отрицательно сказываются на окружающих элементах схемы. Это создает дополнительную проблему проектирования, которую необходимо преодолеть. Использование шумового фильтра приводит к увеличению объема и веса, а также стоимости производства.

С другой стороны, линейные драйверы обладают большим потенциалом благодаря ранее упомянутым преимуществам.Как правило, они живут дольше, чем драйверы SMPS, упрощают конструкцию лампы и снижают стоимость, а также значительно сокращают спецификации. Однако сложно разработать линейный драйвер с эффективностью преобразования и подавлением мерцания, сопоставимой со схемами SMPS. Эта технология в настоящее время используется неправомерно. Большинство производителей освещения воспринимают это только как дешевое решение для вождения. Хотя допустимо использовать линейные драйверы в светодиодных светильниках для приложений, где высококачественный свет и изоляция от сети переменного тока не являются главным приоритетом (например,грамм. наружное освещение), некоторые производители пытаются включить это недорогое решение для управления светодиодами в требующие визуального восприятия, чувствительные к безопасности приложения внутреннего освещения без улучшения качества вывода драйвера (контроль мерцания) и повышения электробезопасности и рассеивания тепла в системе освещения.

Бортовой водитель (DOB)

DOB — это типичная реализация топологии линейного вождения. Светодиодный модуль DOB, также называемый светодиодным двигателем переменного тока, вмещает светодиоды и всю электронику драйвера на печатной плате с металлическим сердечником (MCPCB).Технология DOB использует возможность монтажа MCPCB микросхем драйвера высокого напряжения (переключаемых линейных регуляторов). В отличие от схемы драйвера SMPS, которая должна быть установлена ​​на маршрутизируемой печатной плате FR4, эти микросхемы драйвера для поверхностного монтажа могут быть припаяны к плате MCPCB, установленной на светодиодах, без разводки схемы. Это полностью устраняет необходимость в специальной сборке драйверов и, таким образом, обеспечивает компактный форм-фактор. Еще одно преимущество конструкции DOB заключается в том, что отличная теплопроводность MCPCB может способствовать быстрому рассеиванию тепла, выделяемого из-за неэффективного преобразования линейного драйвера.

Использование энергии

Обработка мощности, которая происходит внутри SMPS, обычно приводит к неравномерному потреблению мощности из-за модуляции импульсов тока. Способ, которым импульсные регуляторы потребляют импульсы тока из энергосистемы общего пользования, может вызывать изгибы и искажения формы волны тока в линии электропередач, а также срабатывание предохранителей и автоматических выключателей при уровнях мощности ниже, чем допустимая мощность линии. Наличие этих гармонических искажений и нелинейных нагрузок может привести к различным проблемам, таким как перегрев нейтральных проводов и распределительных трансформаторов, отказ или неисправность оборудования для производства и распределения электроэнергии, а также помехи в цепях связи и т. Д.С точки зрения энергопотребления, эти вредные помехи от нисходящего электрического оборудования должны быть запрещены. Поэтому коммунальные предприятия предъявляют нормативные требования к коэффициенту мощности (PF) и общему коэффициенту гармонических искажений (THD) электрического оборудования, включая светодиодные светильники с питанием от сети.

Коэффициент мощности — это отношение потребляемой мощности к поставляемой мощности, выражаемое числом от 0 до 1. У чисто резистивных нагрузок коэффициент мощности равен 1, поскольку ток потребляется точно по фазе с линейным напряжением.Тем не менее, реактивные элементы, такие как конденсаторы и катушки индуктивности драйвера светодиода, потребляют дополнительный реактивный ток, который трудно измерить и, следовательно, предприятиям энергоснабжения невозможно получить прибыль. Что наиболее важно, эта реактивная мощность приведет к тому, что передаваемая мощность (полная мощность) будет больше, чем мощность, фактически необходимая светодиодному светильнику. Это может привести к тому, что инфраструктура коммунального предприятия будет работать с превышением мощности и может привести к потенциальному ущербу, если не будут приняты меры для защиты инфраструктуры от перегрузки дополнительной реактивной мощностью.Чем ближе коэффициент мощности к 1, тем точнее совпадают формы сигналов тока и напряжения. По мере уменьшения коэффициента мощности теряется больше мощности в виде реактивной мощности. В коммерческом и промышленном секторах коммунальные предприятия часто взимают дополнительную плату с конечных пользователей, которые работают с электрооборудованием с низким коэффициентом мощности, чтобы компенсировать возросшие затраты на генерацию и передачу.

Коэффициент мощности светодиодной лампы или светильника стал требованием спецификаций на многих рынках. Директива ЕС требует, чтобы светодиодный продукт с потребляемой мощностью более 25 Вт имел коэффициент мощности выше 0.9. В США и Design Light Consortium (DLC), и Energy Star имеют правила PF, аналогичные европейским. Штат Калифорния имеет четкие правила для значения коэффициента мощности, которое должно быть больше 0,9 для всех уровней мощности светодиодного освещения жилых и коммерческих помещений. Чтобы соответствовать нормативным значениям коэффициента мощности, драйверы светодиодов с питанием от сети, разработанные для сетей переменного тока, должны использовать некоторую форму коррекции коэффициента мощности для поддержания высокого коэффициента мощности в широком диапазоне входных напряжений. Схема коррекции коэффициента мощности (PFC) обычно используется для минимизации реактивной мощности и максимизации доступной мощности от источника и распределительных кабелей.Цепи PFC, которые включают в себя активные и пассивные PFC, формируют и синхронизируют по времени входной ток в синусоидальную форму волны, которая находится в фазе с линейным напряжением.

Общие гармонические искажения (THD) часто возникают одновременно с проблемой низкого коэффициента мощности. THD — это измерение искажения формы волны тока, вызванного нелинейными электрическими нагрузками, такими как нагрузки выпрямителя. Искаженные формы волны тока могут снизить коэффициент мощности и также создать гармонические искажения. Гармонические искажения также возникают, когда нагрузка потребляет ток, не похожий на истинную синусоиду.THD представлен в процентах. Чем ниже значение, тем лучше. Высокий коэффициент нелинейных искажений может вызвать проблемы в оборудовании распределения питания. Поэтому важно, чтобы драйверы светодиодов соответствовали нормативным значениям THD (обычно менее 20%) во всем диапазоне входного напряжения. THD подавляется схемой коррекции коэффициента мощности, которая должна эффективно формировать входной ток, чтобы генерировать минимальную энергию на более высоких частотах.

Регулировка яркости влияет на коэффициент мощности и коэффициент нелинейных искажений. Следовательно, необходимо измерить коэффициент мощности и коэффициент нелинейных искажений на выходах с полной и низкой яркостью.

Регулировка яркости

Переход от традиционной технологии освещения к твердотельному освещению обусловлен необходимостью повышения эффективности, контроля и взаимодействия. В основе управления освещением лежит технология затемнения, которая является неотъемлемой функцией систем управления освещением. Одним из преимуществ светодиодов является способность мгновенно реагировать на изменения потребляемой мощности, которые регулируются драйвером светодиода. Эффективность регулирования яркости светодиодного драйвера становится все более важной, поскольку освещение становится более связным и адаптируемым к потребностям и предпочтениям пользователя.Наиболее часто используемые элементы управления диммером-драйвером включают симистор (триод для переменного тока), 0–10 В и DALI (интерфейс цифрового адресного освещения). Широтно-импульсная модуляция (PWM) и уменьшение постоянного тока (CCR) — наиболее распространенные методы, используемые для уменьшения яркости светодиодных нагрузок от драйвера.

Диммеры

с фазовым управлением работают путем отключения частей цикла переменного напряжения для управления светоотдачей. Цепи управления фазой включают в себя 2-проводное управление прямой фазой (передний фронт), 2-проводное управление обратной фазой (задний фронт) и 3-проводное управление прямой фазой (передний фронт).Регулировка яркости с управлением фазой часто используется в модернизируемых приложениях, где протягивание новой или дополнительной проводки ответвленной цепи или внутренней проводки управления может быть сложным и дорогостоящим. Однако драйвер светодиода должен быть спроектирован так, чтобы распознавать сигналы напряжения от схемы регулирования яркости и реагировать на них. Неспособность интерпретировать выходной сигнал переменного фазового угла при регулировке яркости может вызвать мерцание и уменьшить диапазон затемнения.

0-10 В — это 4-проводный (горячий и нейтральный, плюс 2 низковольтных управляющих провода) метод диммирования, который иногда называют диммированием 1-10 В, поскольку наиболее типичные диммируемые драйверы 0-10 В могут диммировать только от 100% ( 10 В) до 10% (1 В), а 0 В выключает лампу.В этом методе драйвер является источником тока для сигнала постоянного тока и, следовательно, надежен при диммировании, происходящем в драйвере. Схема управления отправляет управляющие сигналы низкого напряжения для настройки входа на драйвер, изменяя напряжение от 1 В до 10 В постоянного тока. Поскольку управляющий сигнал представляет собой небольшое аналоговое напряжение, длинные участки проводов могут вызвать падение напряжения и вызвать падение уровня сигнала. 0-10V — это универсальный протокол управления в осветительной отрасли, который широко используется в коммерческих осветительных приборах.Однако стандарты затемнения 0–10 В для архитектурных приложений в США не определяют значение минимальной светоотдачи и не учитывают форму кривой затемнения. Это может вызвать несовместимость элементов управления и устройств от разных производителей.

DALI, с возможностью адресации отдельных устройств и обратной связи по состоянию от нагрузок, обеспечивает большую гибкость в управлении освещением через 4-проводную систему (горячий и нейтральный плюс 2 низковольтных канала передачи данных без топологии).DALI обычно используется там, где стратегия управления требует, чтобы осветительный прибор реагировал более чем на один контроллер (например, переключатель ручного управления и датчик присутствия). DALI — это двунаправленный протокол, и система освещения DALI может управлять до 64 точек управления (драйверы, диммеры, реле) без использования центрального блока управления. Протокол DALI использует логарифмическое регулирование яркости, которое обеспечивает 256 ступеней яркости со стандартизированной кривой затемнения в диапазоне от 0,1% до 100%.

PWM управляет яркостью светодиода, изменяя рабочий цикл постоянного тока с частотой импульсов, достаточно высокой, чтобы быть незаметным для человеческого глаза.Отношение времени включения к времени выключения определяет воспринимаемую интенсивность света. Широтно-импульсная модуляция поддерживает постоянный прямой ток, что устраняет проблему смещения цвета и, таким образом, является преимуществом для приложений, требующих постоянного CCT в широком диапазоне диммирования. ШИМ-регулировка яркости обычно используется как для статической, так и для динамической регулировки интенсивности с источниками белого света, а также светодиодами RGB. В приложениях для смешивания цветов RGB, затемнение с ШИМ позволяет точно отрегулировать яркость отдельных источников для получения желаемого цвета.Однако переключение на высокой скорости может создавать электромагнитные помехи. Драйверы PWM не могут быть установлены удаленно от источника света, потому что увеличенное расстояние передачи от драйвера к источнику света может мешать высокочастотным, чувствительным ко времени рабочим циклам.

CCR или аналоговое регулирование яркости регулирует интенсивность света путем изменения тока привода постоянного тока, протекающего через светодиод. Поскольку ток изменяется линейно, CCR практически не мерцает. Диммирование с постоянным током также может работать в более широком диапазоне светового потока, чем обычное диммирование с отсечкой фазы.К недостаткам CCR относятся низкая производительность при низких токах (ниже 10%), изменение цвета светодиодов при уменьшении яркости светодиодов до 20% от номинальной мощности и асинхронный отклик при более высоких токах из-за эффекта спада. Схемой регулирования яркости CCR можно управлять с помощью различных протоколов, таких как 0–10 В, DALI и ZigBee. CCR и PWM могут быть объединены для обеспечения гибридного затемнения, так что можно использовать преимущества обоих методов.

Подавление мерцания

Мерцание — это амплитудная модуляция светового потока, которая может быть вызвана колебаниями напряжения в сети переменного тока, остаточной пульсацией выходного тока, подаваемого на нагрузку светодиода, или несовместимым взаимодействием между схемами диммирования и источниками питания светодиодов.Мерцание может вызывать другие временные световые артефакты (TLA), в том числе стробоскопический эффект (неправильное восприятие движения) и фантомный массив (узор появляется при движении глаз). TLA бывают как видимыми, так и невидимыми. Мерцание, возникающее на частотах 80 Гц и ниже, непосредственно видно глазу, а невидимое мерцание — это временные изменения, возникающие на частотах 100 Гц и выше. Стробоскопический эффект и фантомная матрица обычно возникают в диапазоне частот от 80 Гц до 2 кГц, их видимость варьируется в зависимости от населения.Хотя невидимые TLA не воспринимаются человеческим глазом, они все же могут иметь ряд негативных последствий.

Мерцание и другие TLA — это нежелательные временные паттерны светового потока, которые могут вызывать напряжение глаз, нечеткое зрение, зрительный дискомфорт, снижение зрительной способности и, в некоторых случаях, даже мигрень и светочувствительные эпилептические припадки. Поэтому они являются одними из ключевых факторов при оценке качества света. Целевое использование искусственного освещения играет роль. Различные сценарии освещения могут допускать разный уровень временных световых артефактов.TLA могут быть менее важны для проезжей части, парковки и наружного архитектурного освещения или других приложений, где продолжительность воздействия искусственного света ограничена. Искусственный свет с высоким процентом мерцания не следует использовать как для внешнего, так и для рабочего освещения в домах, офисах, классных комнатах, гостиницах, лабораториях и промышленных помещениях. Освещение без мерцания имеет решающее значение не только для визуальных задач, требующих точного позиционирования глаз и среды, в которой уязвимые группы населения проводят много времени, но и для телевещания высокой четкости, цифровой фотографии и замедленной записи в студиях, стадионах и спортзалах.Видеокамеры могут улавливать TLA так же, как человеческий глаз улавливает эти эффекты.

Ключ к уменьшению мерцания заключается в драйвере светодиода, который предназначен для преобразования коммерческой мощности переменного тока в мощность постоянного тока и фильтрации любых нежелательных пульсаций тока. Достаточно большие пульсации, которые обычно возникают при частоте, в два раза превышающей напряжение сети переменного тока, в постоянном токе, подаваемом на светодиодную нагрузку, приводят к мерцанию и другим визуальным аномалиям с частотой 100/120 Гц. Таким образом, допустимый уровень пульсаций тока в светодиодах, например пульсация ± 15% (всего 30%), должен быть определен в драйверах светодиодов для различных приложений, где мерцание имеет значение.Пульсации можно сгладить, используя конденсатор фильтра. Одной из основных проблем при разработке драйверов является фильтрация пульсаций и гармоник без использования громоздких короткоживущих высоковольтных электролитических конденсаторов на первичной стороне. Светодиодные двигатели переменного тока по своей природе восприимчивы к явлению мерцания, потому что светодиоды фактически работают от того, что по сути является промежуточным напряжением постоянного тока, которое было бы в системе светодиодного освещения на основе SMPS. Быстрое изменение полярности вызывает мерцание интенсивности на частоте, вдвое превышающей синусоидальную частоту переменного тока.Несмотря на простоту конструкции схемы, требуются дополнительные схемы, чтобы эффективно уменьшить временные колебания источника питания.

Стандарты ограничения мерцания для различных приложений еще не установлены. IES установила две метрики для количественной оценки мерцания. Процент мерцания измеряет относительное изменение модуляции света (глубину модуляции). Индекс мерцания — это показатель, который характеризует изменение интенсивности по всей периодической форме волны (или скважности для прямоугольных сигналов).Процент мерцания лучше известен обычным потребителям. В целом, 10-процентное мерцание или меньше при 120 Гц или 8-процентное мерцание или меньше при 100 Гц приемлемо для большинства людей, за исключением групп риска, 4-процентное мерцание или меньше при 120 Гц или 3-процентное мерцание или меньше при 100 Гц считается безопасным для всех слоев населения и очень востребованным в приложениях с интенсивным зрением. К сожалению, большое количество светодиодных ламп и светильников, представленных в настоящее время на рынке, имеют высокий процент мерцания. В частности, светодиодные фонари переменного тока имеют мерцание, обычно превышающее 30 процентов при 120 Гц.

Защита цепи

В зависимости от топологии драйвера, конструкции схемы и условий применения драйверы светодиодов могут работать в условиях аномалий нагрузки и ненормальных условий эксплуатации, таких как перегрузка по току, перенапряжение, пониженное напряжение, короткое замыкание, обрыв цепи, неправильная полярность, потеря нейтрали, перегрев и т. Д. Следовательно, драйверы светодиодов должны включать механизмы защиты для решения этих проблем.

Выходное напряжение некоторых драйверов постоянного тока, особенно импульсных повышающих преобразователей, может слишком сильно превышать номинальное напряжение привода из-за отключения нагрузки или чрезмерного сопротивления нагрузки.Защита от разомкнутой цепи или защита от перенапряжения на выходе (OOVP) обеспечивает механизм отключения, который использует стабилитрон для обеспечения обратной связи и проведения выходного тока на землю, когда выходное напряжение превышает определенный предел. Более предпочтительным методом защиты от обрыва цепи является использование схемы активной обратной связи по напряжению для отключения источника питания при достижении точки срабатывания по перенапряжению.

Защита от перенапряжения на входе (IOVP) предназначена для снятия напряжения цепи управления от перенапряжения в результате операций переключения / изменения нагрузки в электросети, ударов молнии поблизости, ударов молнии непосредственно в систему освещения или электростатического разряда.В линиях переменного тока небольшое, но продолжительное перенапряжение может вызвать высокие токи (импульсы энергии) в драйвере светодиодов и светодиодах, что может привести к отказу драйвера светодиода и интерфейсов управления, а также к преждевременному старению светодиодов. Металлооксидный варистор (MOV) или ограничитель переходного напряжения (TVS) может быть помещен напротив входа для поглощения энергии путем ограничения напряжения. Конденсатор с пластиковой пленкой, который обычно подключается к линии переменного тока, чтобы уменьшить эмиссию электромагнитных помех, также помогает поглощать часть энергии в импульсных импульсах.

Драйверы светодиодов

обычно имеют ограниченный уровень защиты от перенапряжения за счет встроенных схем защиты от перенапряжения. В некоторых приложениях, таких как уличное освещение, к драйверу должны быть добавлены дополнительные устройства защиты от перенапряжения, способные выдерживать многократные скачки или удары, чтобы защитить компоненты, расположенные ниже по потоку, от сильных скачков напряжения. УЗИП должен быть рассчитан на снижение или разрядку высокой энергии импульса минимум 10 кВ и 10 кА в соответствии с ANSI C136.2.

Короткое замыкание на нагрузке линейного источника питания может привести к перегреву, но не влияет на ток, подаваемый на каждый светодиод, поскольку цепи ограничения тока обеспечивают автоматическую защиту от короткого замыкания.Однако в импульсном понижающем стабилизаторе короткое замыкание приведет к выходу из строя светодиода или всего модуля в зависимости от конструкции схемы. Выход из строя одного светодиода обычно минимально влияет на общую светоотдачу. Изменение напряжения можно уравновесить с помощью саморегулирующейся схемы распределения тока, которая по-прежнему распределяет ток равномерно. С другой стороны, короткое замыкание на нагрузке светодиодной цепочки может существенно повлиять на общий световой поток. Механизм обнаружения отказов защиты от короткого замыкания может быть реализован путем контроля рабочего цикла.Короткое замыкание обычно приводит к очень короткому рабочему циклу.

Защита от перегрева для светодиодных систем включает температурную защиту модуля (MTP) и ограничение температуры драйвера (DTL). DTC использует резистор с отрицательным температурным коэффициентом (NTC) для уменьшения выходного тока, когда максимальная температура в точке корпуса драйвера в приложении превышает заранее установленный предел. MTC контролирует температуру светодиодного модуля и взаимодействует с драйвером, который автоматически снижает ток, подаваемый на светодиоды, когда MTC определяет пороговую температуру.DTL также может использоваться в качестве альтернативы MTP, если точка TC драйвера и температура светодиодного модуля могут быть коррелированы.

EMI и EMC

Электромагнитные помехи (EMI), также называемые радиочастотными помехами (RFI), влияют на другие электрические цепи в результате либо электромагнитной проводимости, либо электромагнитного излучения, излучаемого электроникой, такой как драйверы светодиодов, радиоприемники CB и сотовые телефоны. Любой драйвер светодиодов, подключенный к сети переменного тока, должен соответствовать стандартам излучения, таким как определено в IEC 61000-6-3.В схеме управления светодиодами переключение MOSFET обычно является основным источником электромагнитных помех. Компоновка печатной платы с короткими и компактными путями для коммутирующих токов также важна для ограничения электромагнитных помех. В некоторых приложениях требуется входной фильтр для уменьшения высокочастотных гармоник, и конструкция этой схемы имеет решающее значение для поддержания низкого уровня электромагнитных помех. Заземляющий слой на печатной плате должен оставаться непрерывным, чтобы избежать создания токовой петли, вызывающей излучение высоких уровней электромагнитных помех. Металлический экран может быть установлен над зоной переключения, чтобы обеспечить защиту от электромагнитного излучения.

Электромагнитная совместимость (ЭМС) — это способность устройства или системы работать в своей электромагнитной среде, не создавая электромагнитных помех, мешающих соседнему оборудованию, или не подвергаясь влиянию электромагнитных помех, излучаемых соседним оборудованием. Эффективность ЭМС драйвера светодиода часто автоматически обеспечивается хорошей схемой защиты от электромагнитных помех. Однако электростатический разряд (ESD) и устойчивость к скачкам напряжения, которые не учитываются в практике EMI, также влияют на характеристики EMC.

Соображения безопасности

Безопасность всегда должна оставаться приоритетом номер один при оценке водителя и системы освещения, с которой он работает.Очень желателен светодиодный драйвер с питанием от сети с диэлектрической изоляцией, например, 1500 В RMS (50 или 60 Гц) от входа до выхода. Изоляцию входной / выходной цепи можно выполнить только с помощью трансформатора, имеющего первичную и вторичную обмотки с хорошей гальванической развязкой. Выходное напряжение должно быть ниже предела безопасного сверхнизкого напряжения (SELV) 60 В постоянного тока в соответствии с IEC 61140. Однако растет число светодиодных осветительных приборов, которые реализуют неизолированную топологию с целью сокращения затрат.Риск поражения электрическим током является серьезной проблемой для светодиодной продукции, управляемой недорогими линейными регуляторами. Эти цепи не обеспечивают развязку между входными и выходными цепями, а электрическая изоляция систем освещения может быть недостаточно проверена.

Для продуктов с питанием от переменного тока необходимо учитывать вопросы длины пути утечки и зазоров. Длина пути утечки между первичной и вторичной цепями должна соответствовать требованиям к расстоянию, в противном случае возможно поражение электрическим током или возгорание.Необходимо учитывать зазор, который определяется как кратчайшее расстояние между двумя проводящими частями, чтобы предотвратить искрение между электродами, вызванное ионизацией воздуха. Поскольку размеры электронных схем продолжают уменьшаться, хорошая конструкция печатной платы имеет важное значение для схемы драйвера, чтобы не только уменьшить эмиссию электромагнитных помех, но также уменьшить проблемы утечки и зазоров.

Все электропроводящие и прикосновенные части драйвера светодиодов класса защиты I с питанием от сети должны быть заземлены.Драйверы светодиодов, предназначенные для работы с системами светодиодного освещения для жилых и коммерческих помещений, обычно относятся к классу II. Для драйверов светодиодов класса II нет заземления корпуса, но все проводники внутри драйверов класса II должны иметь двойную или усиленную изоляцию, чтобы обеспечить хорошую изоляцию между цепью питания от сети и выходной стороной или металлическим корпусом драйвера.

Температурные характеристики

Драйвер светодиода сконфигурирован для преобразования сетевого напряжения переменного тока в выходное напряжение постоянного тока с максимальной эффективностью, и любая энергия, потерянная в процессе преобразования, будет преобразована в тепло.Это означает, что драйвер светодиода с КПД 90% требует входной мощности 100 Вт / 0,9 = 111 Вт для управления нагрузкой 100 Вт. Среди входной мощности 11 Вт — потери мощности, которые уходят в виде тепла. Это создает высокую тепловую нагрузку на схему драйвера светодиода. Когда драйвер размещен в корпусе светильника, тепловая нагрузка от светодиодов приведет к дополнительному увеличению температуры драйвера. Помимо использования компонентов, рассчитанных на высокие температуры, драйвер должен быть спроектирован так, чтобы отводить тепло от термочувствительных компонентов.Избыточное тепловыделение вызовет проблемы с надежностью компонентов, включая электролитические конденсаторы, которые высыхают под воздействием тепла. Поэтому температура, при которой работает светодиодный драйвер, принципиально важна для определения срока его службы. Для облегчения отвода тепла в драйверах светодиодных светильников высокой мощности используются алюминиевые корпуса, которые могут поставляться с ребрами высокой плотности и теплопроводящей заливкой.

Защита от проникновения

Драйверы светодиодов

для освещения проезжей части, улицы, наружного и ландшафтного освещения должны быть герметизированы для защиты от попадания пыли, влаги, воды и других предметов, которые могут проникнуть внутрь продукции.Высокая степень защиты от проникновения (IP) для светодиодных драйверов имеет решающее значение для использования в помещениях, таких как автомойки, чистые помещения, разливочные и консервные заводы, предприятия пищевой промышленности, фармацевтические предприятия или любое промышленное применение, требующее ежедневного мытья под высоким давлением. Автономные драйверы светодиодов для влажных помещений обычно залиты силиконом, чтобы улучшить целостность корпуса, а также облегчить электрическую изоляцию и управление температурой. Эти драйверы обычно имеют степень защиты IP65, IP66 или IP67.

Местоположение Воздействие

Драйверы светодиодов

могут быть установлены удаленно или совместно с корпусами светильников или ламп. В совместно размещенных системах без DOB драйвер должен быть термически изолирован от светодиодов, которые выделяют огромное количество тепла. При проектировании корпуса светильника необходимо учитывать техническое обслуживание драйвера. В удаленных системах драйверы ШИМ могут терять производительность на большом расстоянии. Таким образом, CCR является предпочтительным методом диммирования для удаленных систем.

Драйвер светодиода

: функции, типы и применение

Драйвер светодиода

относится к электронному устройству регулировки мощности, которое управляет светодиодной подсветкой или компонентами светодиодного модуля, работающими нормально. Из-за характеристик проводимости PN перехода светодиода диапазон напряжения и тока источника питания, к которому он может адаптироваться, очень узок, и небольшое отклонение может не позволить зажечь светодиод, или световая отдача будет серьезно снижена, или срок службы может сократиться, или чип может сгореть.

Каталог

I Что такое светодиодный драйвер?

Светодиодный драйвер относится к электронному устройству регулировки мощности, которое управляет светодиодной подсветкой или компонентами светодиодного модуля, работающими нормально. Из-за характеристик проводимости PN перехода светодиода диапазон напряжения и тока источника питания, к которому он может адаптироваться, очень узок, и небольшое отклонение может не позволить зажечь светодиод, или световая отдача будет серьезно снижена, или срок службы может сократиться, или чип может сгореть.

II Что делает светодиодный драйвер?

Текущий источник питания промышленной частоты и обычный аккумуляторный источник питания не подходят для прямого питания светодиодов. Драйверы светодиодов — это такие электронные компоненты, которые могут управлять светодиодами для работы в наилучшем состоянии напряжения или тока.

Поскольку светодиоды практически универсальны в различных областях применения электроники, изменения их силы света, цвета света и управления включением-выключением практически непредсказуемы.Таким образом, драйверы светодиодов становятся практически однозначными сервоустройствами s, благодаря чему члены этого семейства становятся разнообразными.

Простейший драйвер светодиода (если его можно так назвать) может состоять из одного или нескольких последовательно-параллельных резисторно-конденсаторных компонентов, которые делят ток и делят напряжение в контуре. Это вообще не самостоятельный продукт.

Для более общих коммерческих приложений, требующих стабильного постоянного тока и постоянного выходного напряжения, была создана серия системных решений с возможностью точной регулировки мощности.Реализация этих решений обычно требует более сложной конструкции схемы драйвера светодиода, ядром которой является интегрированное приложение микросхемы драйвера светодиода.

Устанавливая различные вспомогательные схемы на периферии ИС драйвера светодиода, мы можем создавать решения для различных светодиодных приложений, от подсветки дисплея мобильного телефона и драйверов подсветки кнопок до мощных светодиодных уличных фонарей и больших уличных светодиодных дисплеев. .

Рисунок 1.Светодиодный драйвер

Разработкой и поставкой обычных мощных плат светодиодных драйверов обычно занимаются профессиональные компании. Эти компании переупаковывают их в модули и поставляют производителям продукции для светодиодных терминалов. Конструкцию светодиодного драйвера для менее распространенных продуктов для светодиодных терминалов, возможно, придется разработать самостоятельно.

Драйвер светодиодов стал важной частью уникального технического содержания этого прикладного продукта для светодиодных терминалов. Поскольку светодиоды как упакованный продукт находятся на начальном этапе производства, его технические характеристики были закреплены в светодиодном продукте, и для создания уникального конечного продукта светодиодного применения для источника света не так много мест, с которыми мы можем работать, кроме управления светодиодами. функция.

Из-за важности драйвера светодиода в светодиодных прикладных продуктах и ​​широких потребностей пользователей, драйвер светодиода IC , который является сердцем драйвера светодиода, стал ключевым элементом всего технического звена. Таким образом, многие производители или даже перечисленные компании делают драйверы светодиодов в качестве своих основных продуктов для поставки большого количества микросхем драйверов светодиодов для последующих отраслей. Есть много ведущих американских производителей светодиодных драйверов, таких как National Semiconductor, Maxim, Texas Instruments, ON Semiconductor, Linear Technology, Fairchild Semiconductor и так далее.

Источник питания привода светодиода — это преобразователь напряжения, который преобразует источник питания в определенное напряжение и ток, чтобы заставить светодиод излучать свет. В нормальных условиях входная мощность привода светодиода включает в себя высоковольтный переменный ток промышленной частоты (например, сеть), низковольтный постоянный ток, высоковольтный постоянный ток, низковольтный высокочастотный переменный ток (например, выход электронного трансформатора). и т. д. Выходной сигнал источника питания светодиодного света в основном представляет собой источник постоянного тока, который может изменять напряжение с изменением прямого падения напряжения светодиода.

III Характеристики

В соответствии с правилами энергоснабжения электросети и характеристическими требованиями источника питания светодиодного привода при выборе и проектировании источника питания светодиодного привода необходимо учитывать следующие моменты:

1. Высокая надежность

В особенности, как и у светодиодных уличных фонарей, его неудобно и дорого обслуживать при установке на большой высоте.

2. High Efficiency

Светодиоды являются энергосберегающими продуктами, поэтому КПД источника питания привода должен быть высоким.Для установки блока питания особенно важна структура блока питания привода светодиода в лампе. Кроме того, поскольку световая отдача светодиода уменьшается по мере увеличения температуры светодиода, рассеивание тепла светодиода очень важно. Если эффективность источника питания высока, его энергопотребление невелико, а выделяемое в лампе тепло мало, что снижает повышение температуры лампы, что способствует задержке затухания света светодиода.

3. Высокий коэффициент мощности

Коэффициент мощности — это требование электросети к нагрузке. Как правило, для электроприборов мощностью ниже 70 Вт обязательных показателей нет. Хотя более низкий коэффициент мощности одного электроприбора с малой мощностью мало влияет на электросеть, если все светятся ночью, аналогичные нагрузки будут слишком сконцентрированными, что вызовет серьезное загрязнение электросети.

Говорят, что в ближайшем будущем могут появиться определенные требования к индексам для коэффициентов мощности источников питания светодиодов от 30 до 40 Вт.

4. Способы управления

Есть два общих метода управления:

(1) Источник постоянного напряжения для нескольких источников постоянного тока, и каждый источник постоянного тока индивидуально подает питание на каждый светодиод. Таким образом, комбинация получается гибкой, и выход из строя одного светодиода не повлияет на работу других светодиодов, но стоимость будет немного выше.

(2) Прямой Источник постоянного тока со светодиодами, включенными последовательно или параллельно.Его преимущество в том, что стоимость немного ниже, но гибкость низкая, и он должен решать проблему отказа определенного светодиода, не влияя на работу других светодиодов.

Рисунок 2. Драйвер светодиода постоянного напряжения

Эти две формы сосуществуют в течение определенного периода времени. Режим питания с многоканальным выходом постоянного тока будет лучше с точки зрения стоимости и производительности, что может стать основным направлением в будущем.

5. Защита от перенапряжения

Способность светодиодов противостоять скачкам напряжения относительно невысока, особенно способность противостоять обратному напряжению. Итак, важно усилить защиту в этой области.

Некоторые светодиодные фонари устанавливаются на открытом воздухе, например, светодиодные уличные фонари. Из-за появления нагрузки на сетку и возникновения ударов молнии в систему электросети будут проникать различные скачки, и некоторые скачки вызовут повреждение светодиода. Следовательно, источник питания привода светодиодов должен иметь возможность подавлять проникновение скачков напряжения и защищать светодиод от повреждений.

6. Функция защиты

В дополнение к общей функции защиты источника питания светодиодов, лучше добавить отрицательную обратную связь по температуре светодиода к выходу постоянного тока, чтобы предотвратить слишком высокую температуру светодиода.

7. С точки зрения защиты лампа устанавливается снаружи, конструкция источника питания должна быть водонепроницаемой и влагонепроницаемой, а внешняя оболочка должна быть светостойкой.

8. Срок службы источника питания привода должен соответствовать сроку службы светодиода.

9. Требования правил техники безопасности и электромагнитной совместимости

С увеличением применения светодиодов характеристики мощности привода светодиодов будут все более подходить для требований светодиодов.

IV Типы драйверов светодиодов

1. В соответствии с режимом управления

(1) Драйвер светодиода постоянного тока

1) Выходной ток схемы возбуждения светодиода постоянного тока постоянный , но выходное постоянное напряжение изменяется в определенном диапазоне с изменением сопротивления нагрузки.Чем меньше сопротивление нагрузки, тем ниже выходное напряжение. Чем больше сопротивление нагрузки, тем выше выходное напряжение;

2) Допускается короткое замыкание нагрузки в цепи постоянного тока, но нагрузка не может быть полностью отключена.

3) Идеально подходит для схемы драйвера светодиода с постоянным током для управления светодиодами, но это относительно дорого.

4) Обратите внимание на максимальные используемые значения выдерживаемого тока и напряжения, которые ограничивают количество используемых светодиодов;

(2) Регулируемый светодиодный драйвер

1) Когда определены различные параметры в цепи регулятора напряжения, выходное напряжение фиксируется, но выходной ток изменяется с увеличением или уменьшением нагрузки;

2) В цепи регулятора напряжения отключение нагрузки допускается, но категорически запрещается замыкать нагрузку полностью.

3) Светодиод приводится в действие схемой управления светодиодами, стабилизирующей напряжение, и каждая цепочка должна быть дополнена подходящим резистором, чтобы сделать яркость каждой цепочки светодиодов средней;

4) На яркость влияют изменения напряжения из-за выпрямления.

2. В соответствии со структурой схемы

(1) Метод понижения конденсатора

Когда конденсатор используется для снижения напряжения из-за эффекта зарядки и разрядки, мгновенный ток через светодиод чрезвычайно большой, и чип легко повредить.На метод легко влияют колебания напряжения сети, а источник питания имеет низкий КПД и низкую надежность.

(2) Метод понижения резистора

Понижение резистора сильно зависит от изменения напряжения сети , и сделать регулируемый источник питания непросто. Понижающий резистор потребляет большую часть энергии, поэтому этот способ питания имеет низкий КПД, а система — невысокую надежность.

(3) Обычный метод понижения трансформатора

Источник питания небольшой, тяжелый и имеет низкий КПД источника питания, обычно от 45% до 60%, поэтому он обычно имеет низкую надежность и редко используется.

(4) Метод понижения электронного трансформатора

Эффективность источника питания низкая, а диапазон напряжений невелик, обычно 180–240 В, с большой пульсацией помех.

(5) понижающий импульсный источник питания RCC

Диапазон регулирования напряжения относительно широк, эффективность источника питания относительно высока, обычно достигает 70% — 80%, а область применения также широка. Поскольку частота колебаний этого метода управления не является непрерывной, частоту переключения нелегко контролировать.Коэффициент пульсации напряжения нагрузки также относительно велик, и адаптируемость к ненормальным нагрузкам является плохой.

(6) Импульсный источник питания в режиме управления ШИМ

Драйвер светодиода ШИМ в основном состоит из четырех частей: входной фильтрующей части выпрямления, выходной части фильтрации выпрямления, части управления стабилизацией напряжения ШИМ, части преобразования энергии переключения.

Рис. 3. Драйвер светодиодов высокой мощности 1 Вт с ШИМ

Основной принцип работы импульсного регулятора ШИМ заключается в том, что при изменении входного напряжения, внутренних параметров и внешней нагрузки схема управления выполняет обратную связь с обратной связью. через разницу между управляемым сигналом и опорным сигналом для регулировки ширины импульса устройства переключения главной цепи.Это делает выходное напряжение или ток импульсного источника питания стабильным (то есть соответствующего регулируемого источника питания или источника постоянного тока).

КПД источника питания чрезвычайно высок, обычно достигает 80–90%, а выходное напряжение и ток стабильны. Как правило, такая схема имеет идеальные меры защиты и является надежным источником питания.

3. В соответствии с местом установки

В зависимости от места установки мощность привода может быть разделена на внешний источник питания и встроенный источник питания.

(1) Внешний источник питания

Как следует из названия, внешний источник питания предназначен для источника питания, установленного снаружи. Как правило, для цепей с относительно высоким напряжением, опасным для безопасности человека, требуется внешний источник питания. Отличие его от встроенного блока питания в том, что блок питания имеет корпус , а уличные фонари — обычные.

(2) Встроенный блок питания

Предназначен для установки блока питания в лампу.Как правило, напряжение относительно низкое, от 12 до 24 В, и опасности для людей нет. Это обычная лампочка.

V Приложение

Давайте посмотрим на основной рынок приложений мощных светодиодов ландшафтный свет , чтобы проанализировать рынок мощных светодиодов.

Рисунок 4. Ландшафтное освещение

В Китае, который является крупнейшим рынком применения светодиодного освещения, рынок ландшафтного освещения составляет около 43%.Его новый виток быстрого роста, несомненно, приведет к быстрому развитию индустрии светодиодного освещения в целом.

Ландшафтное освещение некоторых крупных и средних городов, таких как Шанхай, Сямэнь, Пекин, Далянь, Наньчан и др., Уже достигло значительных масштабов, и значительная часть демонстрационных проектов светодиодного освещения была завершена. Успешное завершение этих демонстрационных проектов в крупных и средних городах и успешное использование на олимпийских объектах свидетельствует о том, что технология светодиодного освещения в ландшафтном освещении постепенно развивается.

Будь то дома или за границей, городской пейзаж — знаковый строительный продукт города. И неоновые огни, как ландшафтное освещение, постепенно заменяются светодиодными ландшафтными огнями во всем мире из-за энергии, энергосбережения, защиты окружающей среды и других проблем.

В мире около 700 тысяч городов, и если предположить, что в городе 5 000 ламп, а стоимость лампы составляет около 1 000 юаней, огромные экономические выгоды, получаемые только от них, непредсказуемы.

Драйвер — это основной компонент светодиодного освещения.С развитием технологии светодиодных чипов качество светодиодных источников света было очень надежным. Во многих случаях выход из строя светодиодных ламп исходит от водителя. Мощные двигатели для светодиодов — это развивающаяся отрасль, которая еще не сформировала концентрированный отраслевой кластер, поэтому региональность не очевидна. Кроме того, в отрасль входит не так много компаний, поэтому конкуренция относительно невысока.

VI Недостатки

1. Технический персонал компании, производящей светодиодное освещение и сопутствующие товары, недостаточно разбирается в импульсных источниках питания.Источник питания может работать нормально, но некоторые ключевые оценки и электромагнитная совместимость не учитываются в недостаточной степени, что создает определенные скрытые опасности;

2. Большинство производителей светодиодных источников питания переходят с обычных импульсных источников питания на светодиодные источники питания, и у них недостаточно знаний характеристик и использования светодиодов;

3. Нет почти стандартов на светодиоды, большинство из них относятся к стандартам импульсных источников питания и электронных выпрямителей;

4. Большинство светодиодных источников питания не унифицированы , поэтому их количество относительно невелико. Поскольку сумма покупки небольшая, цена высока, а поставщики компонентов не очень склонны к сотрудничеству;

5. Что касается стабильности питания светодиодов, широкого входного напряжения, работы при высоких и низких температурах, перегреве, защите от перенапряжения и другие вопросы не решены.

Рекомендуемые статьи:

Введение в стабилизатор напряжения

Что такое цифровая интегральная схема и как ее использовать?

Введение в фотонные интегральные схемы и технологию PIC

Обзор линейных интегральных схем

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *