Бетон марка и класс таблица: Класс бетона и марка. Класс и марка бетона таблица, соотношение класса бетона и марки соответствие.

Содержание

Класс и марка бетона по прочности на сжатие: характеристики, таблица соответствия

Строительство потребляет огромный объем бетона, и он постоянно растет. Для каждого вида работ предназначается своя смесь, они отличаются составом, техническими характеристиками, ценой. Основными параметрами являются класс бетона и его марка – показывающие прочность состава после его полного отвердевания.

Классификация бетонных смесей нужна, чтобы определить их назначение в конкретном виде работ. При необходимости учитываются водостойкость, морозостойкость и другие свойства, определяющие долговечность конструкций из этого материала.

Что означает марка бетона?

Марки бетона определяются по прочности на сжатие, они показывают, какую нагрузку выдерживает до разрушения образец на площади 1 см², обозначается буквой «М» с индексом. Например, М200 выдерживает нагрузку в 200 кг/см². Этот показатель зависит от соотношения основных компонентов, а также способа приготовления раствора, где учитываются:

  • Цемент должен быть как можно более высокой марки, при изготовлении полностью выдерживается соотношение компонентов;
  • Излишки воды в растворе приводят к избыточной пористости, ухудшая характеристики состава;
  • Заполнители – песок и щебень, должны быть равномерной фракции, без пыли, глины, органических и других включений;
  • Все составляющие должны тщательно перемешиваться для обеспечения однородности смеси;
  • Идеальная температура, при которой проходит затвердевание – около 20°С, чтобы обеспечить гидратацию цемента при отрицательных температурах в состав вводят добавки.

График зависимости расхода цемента М400 (1) и М500 (2) от прочности

Чтобы подобрать материал для строительства нужно знать, какие марки бетона бывают. Согласно СП 63.13330.2012, ГОСТ 7473-2010 этот показатель может изменяться от М100 до М500. Также существуют смеси, с узким диапазоном применения. Расшифровка маркировки бетонных растворов позволяет определить пропорции компонентов, которые в них входят. Для этого используются специальные таблицы. В зависимости от характеристик определяется стоимость материала. Чем выше марка, тем дороже будет раствор.

Что такое класс?

Класс бетона – гарантированная по прочности на сжатие нагрузка, которая им выдерживается, измеряется в МПа (мегапаскалях). Эта характеристика введена, чтобы уточнить свойства застывшего раствора, поскольку для одной марки они могут разниться. Этот параметр позволяет определить его фактическую прочность, так как рассчитывается для случаев, когда она будет подтверждаться не менее чем в 95%.

Класс бетона по прочности обозначается символом «В» с индексами от 5 до 60, которые показывают значение давления в мегапаскалях, выдерживаемого материалом до разрушения. Этот показатель соотносится с маркой, более привычной для строителей.

Соответствие марки и класса

При строительстве зданий или других объектов, нужно уметь разбираться в соотношении марок и классов применяемого бетона, что позволит исключить ошибки. Классы и марки заносятся в таблицы, которые можно найти в специализированной литературе.

Необходимо учитывать, что марочная прочность бетона допускает отклонения. Например, у М150 может быть устойчивость давлению в МПа В10 и В12,5, поэтому эта характеристика считается точнее. Иногда классы и марки современного бетона по его прочности определяются как допустимые параметры снижения качества раствора при сохранении технических и эксплуатационных характеристик. На это влияют пропорции и взаимосвязи компонентов раствора, рекомендуемых для изготовления согласно ГОСТ. Например, для смеси со средним показателем прочности М250 или В20 требуется соотношение цемента, песка и щебня по массе 1:4,6:7,0.

Характеристики и применение разных марок

Подбирая марку бетона и соответствующий ей класс бетона, необходимо понимать, где они будут применяться. Учитываются нагрузка на конструкцию, условия, где эксплуатируются здания и сооружения, другие сопутствующие факторы.

В проектной документации чаще указывается показатель В, как более точный параметр.

Кроме того, учитываются водонепроницаемость (W) и морозоустойчивость (F). Образец материала, водонепроницаемостью W2 и морозоустойчивостью F50 соответствует раствору М100-М150.

Основные области применения марок бетона, их характеристики:

  • М100 – тощие растворы, используется при устройстве дренажей, тонких стяжек, подготовке основания под фундамент;
  • М150 – легкий бетон, применяется для бордюров, пешеходных дорожек, стяжек;
    М200 – подходит для стяжки пола, строительства подпорных элементов, фундаментов под одноэтажные здания;
  • М250 – популярна в частном строительстве, обладает достаточной прочностью для возведения частных домов;
  • М300 – повышенная устойчивость, применяется для производства дорожных плит, лестничных маршей;
  • М350 – необходима при строительстве многоэтажных зданий и высотных сооружений, производства перекрытий с пустотами, устройства бассейнов, взлетно-посадочных полос, других объектов с повышенной нагрузкой;
  • М400 – сверхтяжелый раствор для промышленных зданий, возведения основ под сооружения на болотистых и влажных грунтах;
  • М450-М500 – применяются для строительства гидротехнических объектов, тоннелей, мостов и других спецсооружений.

Несмотря на то, что марка — менее точный показатель, чем класс, именно она считается главным показателем прочности.

Марка бетона и класс бетона таблица

Если выбрать бетон неправильных марок – невозможно соорудить здание, которое в точности будет соответствовать необходимым эксплуатационным характеристикам. Выбор совершается исходя из показателей бетонной смеси. Для упрощения ориентации в свойствах придумали класс бетона. От него зависит уровень прочности, морозостойкость и т. д.

Для чего нужен бетон?

 

Бетонный раствор – самый распространенный и незаменимый материал в строительстве. Без него практически невозможно соорудить надежное здание или конструкцию. Вообще трудно представить нормальный строительный процесс без использования этого материала.

Особо важными при использовании бетона являются показатели прочности. На этот параметр обращают внимание еще при проектировании будущего сооружения. Нужно учитывать, что каждую часть конструкции можно изготавливать из бетона разных марок, если это позволяют требования к эксплуатационным характеристикам. Поэтому иногда рационально использовать более низкие марки из классификации для создания конструкций с пониженными требованиями к плотности структуры.

Бетонный раствор хоть и получил широкое распространение в строительных целях, но спектр его использования постоянно становиться более разнообразным. Особую ценность несут бетоны со специальными значениями таких показателей:

  • Экологичность.
  • Подвижность.
  • Устойчивость к потрескиванию.
  • Долговечность.
  • Жаростойкость.
  • Устойчивость к морозам.
  • Влагостойкость.

Виды и классы бетона

 

Разные виды бетона

 

Что касается видов, то бетон делится на них в зависимости от материала, используемого в качестве связующего элемента. Бывают такие виды бетона:

  • Цементный.
  • Асфальтный.
  • Гипсовый.
  • Глиняный.
  • Известковый.
  • Силикатный.

Также бетоны разнятся по структуре и особенностях наполнителя:

  • Особо легкий. Имеет объемную массу, не большую 0.5 Т/м3.
  • Легкий. Объемная масса меньше 18 Т/м3. Имеет низкие показатели теплопроводности, что позволяет применять исключительно для сооружения ограждений.
  • Тяжелые. Масса объемная больше 18 Т/м3. Используются для сооружения зданий, требующих большой устойчивости.
  • Особо тяжелые. Объемная масса выше 27 Т/м3. Применяются при возведении специальных зданий: атомных подстанций, лабораторий и пр.

 

Бетонные растворы могут отличаться и по свойствам:

  • Огнестойкие. Используются при сооружении зданий с повышенной пожаробезопасностью.
  • Морозостойкие. Имеют повышенные показатели устойчивости к понижению температур и способны сохранять первоначальную структуру после многократного замораживания/размораживания.
  • Водостойкие. Используют при строительстве шахт, дорожных путей и мостов. Они способны противостоять проникновению воды, если ее давление равно или превышает 0.2 Мпа.

 

Характеристика марок бетонной смеси

 

Класс бетона выбирают исходя из поставленных задач, поэтому в строительстве используют не все его марки. Некоторые имеют слишком высокую стоимость, а нужной прочности можно добиться и за меньшие деньги. Самые используемые марки бетона:

  • М100 В7.5. Используется для образования подстилочного основания. Он заливается непосредственно на подушку в небольшом количестве. Затем делается армирование и формирование фундамента из бетонной смеси большей прочности.
  • М150 В12.5. Применяют при стяжке в процессе формирования монолитных плит, создании оснований под заборы и постройки небольшой массы.
  • М200 В15. Подходит для формирования отмосток, подушек монолитного основания, а также для создания разных типов фундаментов частных домов.
  • М250 В20.Этот вид бетонной смеси – самый частый выбор при строительстве домов. Он универсален в применении и используется для создания перекрытий, отмосток, заборов и м. д.

Таблица расхода цемента в зависимости от марки

 

Марка бетона – основной показатель его прочности и зависит от ряда факторов:

  • Плотность используемых при создании бетона материалов.
  • Качественных показателей веществ, использующихся в качестве связующего материала.
  • От соотношения воды к цементу.

Также бетоны разделяются на легкие и обычные. К первым относят М10,15,25,35,50,75,100,150,200, а к вторым – все остальные.

Расчет бетона



Марка бетона


М100М200М250М300










 

Таблица соотношений марок и классов бетонной смеси

Эти данные применяются для того, чтобы понять какой класс бетона имеет его определенная марка.

 

Таблица соответствия класса, водонепроницаемости и морозостойкости

Рост прочности марки влияет на увеличение показателей водо- и морозостойкости. Дальше приведены данные соответствия этих параметров для обычных марок.

 

Показатель морозостойкости влияет на возможность материала выдерживать замораживание/размораживание без разрушения собственной структуры. Известно, что при низких температурах вода расширяется в объемах, заполняя микропоры цемента и других материалов, что оказывает разрушительное воздействие. От этого следует, что меньшая плотность материала способствует большему проникновению воды в свою структуру – это понижает морозостойкость.

Возможность противостоять морозам – один из главных критериев, от которого зависит класс бетона. Особенно важно на него обращать внимание в тех регионах, для которых критические температуры – обыденное дело. Основная часть сооружений находится на улице, на них попадает влага, они замораживаются и оттаивают. Если здание сооружено из бетонной смеси с низкими показателями морозостойкости – возможно скоропостижное образование повреждений разного уровня сложности.

 

Правильный выбор марки бетона, основанный на показателях прочности, морозо- и влагостойкости поможет соорудить здание, отвечающее всем требованиям безопасности. Определяя оптимальный класс бетонного раствора, учитывайте не только предполагаемый вес будущего сооружения, но и степень воздействия на него критических температур и влаги. Если не пренебрегать этими факторами – сооружение простоит долгое время и будет обладать отличными эксплуатационными показателями.

Обзор марок и класса бетона


Компания «Промщебень» производит все марки бетона с доставкой на строительные объекты в Воскресенске и Воскресенском районе Московской области, Коломне, Егорьевске, Раменском. Возможен самовывоз. Работаем со строительными компаниями с круглосуточной поставкой раствора юридическим лицам и гражданами.


Прочностные свойства готовых строительных конструкций закладываются составом раствора: пропорцией цемента, воды, добавок. Класс (марка) товарного бетона имеет определяющее значение при выборе материала с привязкой к определенным работам на строительной площадке.

Класс и марка бетона по прочности, влагостойкости, морозостойкости


При производстве смесей на основе цемента с оптимальными свойствами учитывается прочность, присущая конкретному классу, марке бетона. Наряду с ними выбор раствора предопределяют пара других технических параметров:

    • соответствие марки бетона необходимым характеристикам по морозостойкости. Важность их значения обусловлена географическим расположением региона, температурой в момент проведения укладки раствора: в помещении (в гараже, мастерской, на кухне при устройстве стяжки пола), на улице (при заливке фундамента, возведении стен дома, строительстве подъездного пути, садовых дорожек, др.),
    • соответствие марки бетона по степени водонепроницаемости. При сооружении подземных конструкций, гидротехнических объектов, застройке участков с близко лежащими к поверхности грунтовыми водами, болотистых и глинистых территорий.


По мере роста класса (марки) бетона, продукт демонстрирует увеличение стойкости к влаге, равно как и к морозам. Сумма всех названных характеристик – реальный показатель качественных преимуществ и долговечности высококлассных смесей.


Таблица соотношения марки и класса


Класс и марки бетона в таблице прочно взаимосвязаны: по одному показателю профессионалы легко определяют второй. По обоим можно судить о главной эксплуатационной характеристике раствора — пределе прочности застывшего бетона на сжатие. Определяют ее в ходе лабораторного тестирования, используя специальное оборудование. Марки бетона, приведенные в таблице внизу, соответствует ГОСТу 26633-91 и сообщают среднее значение прочности затвердевшего раствора с учетом допустимой погрешности.





Класс (В)


7,5


10


12,5


15


20


25


30


35


40


45


Средн.прочн. кг/см2


98


131


164


196


162


327


393


458


524


589


Марка (М)


100


150


150


200


250


350


400


450


550


600


Выбирая марку (М) (бетон марки 400 либо М200, проч.), вы одновременно определяетесь с классом бетона (В), — соответственно В30 и В15, как видно из таблицы. Раствору бетона класса В25 соответствует марка М350. ГОСТ не распространяется на те марки готового к употреблению бетона, которые используются в строительстве дорог и взлетных полос.

Соответствие класса, морозостойкости и водонепроницаемости


При расшифровке маркировки видов бетона непременно обратите внимание на такие свойственные им физические характеристики, как ««W» (водостойкость) и «F» (морозостойкость):

    • водонепроницаемость бетона означает давление воды, которое удерживает бетонная поверхность строительной конструкция, не пропуская сквозь поры. Показатель зависит от класса материала, поэтому колеблется от 2 до 20. W4 – стандартная водостойкость для обычных объектов гражданского строительства (жилья, торговых, спортивных, культурных, медицинских, образовательных, промышленных зданий и сооружений). Марка бетона, походящая по водонепроницаемости, исключает в дальнейшем быстрое разрушение, образование плесени на стенах, сырость в помещении,
    • морозостойкость бетона соответствует количеству замораживаний/ размораживаний материала на основе цемента во влажном состоянии. Самый ходовой диапазон показателя этих циклов– 50-300. F50 применяют в теплых внутренних помещениях. F150 – при строительстве объектов разного назначения в регионах с теплым (умеренным) климатом. 150-300 в районах с суровыми зимними температурами. Точное попадание в марку бетона по морозостойкости и по прочности увеличивает срок эксплуатации стройобъектов до 100 лет.


Интересно: за счет спецдобавок в цементную смесь F-характеристику по желанию заказчика можно увеличить. Однако, бетон со сверхморозостойкостью применяется крайне редко.




При полном соответствии марки бетона условиям эксплуатации будущей конструкции, исключены любые риски.


Таблица морозо- и водостойкости бетона различных марок и классов


М (марка)


100


150


200


250


300


350


400


450


550


В (класс)


7,5


12


15


20


22,5


25


30


35


40


F (морозостойость)


50


50


100


100


200


200


300


200-300


200-300


W (водонепроницаемость)


2


2


4


4


6


8


10


8-14


10-16


Факторы, влияющие на повышение класса бетона


Существуют обстоятельства, влияющие на прочность окончательно затвердевшей бетонной смеси. Чем выше класс применяемого на объекте бетона, и марка, тем он прочнее, тем продолжительнее время службы постройки. Чем это обусловлено? Тем, что класс продукта четко соотносится:

    1. С составом всех содержащихся в смеси ингредиентов. Марка бетона зависит от пропорции образующих раствор компонентов.
    2. С объемом массы цемента и воды.
    3. С маркой использованного в продукте цемента и количеством.
    4. С чистотой, размером наполнителя (фракцией), качеством гранита, гравия, керамзита, отсева, песка.
    5. Со степенью перемешивания компонентов.


На класс и марку бетона в контексте прочности влияют, как уже сказано, и внешние факторы:

    • чем плотнее и технологичнее (то есть, профессиональнее) укладка раствора в конструкции, тем она прочнее и долговечнее по мере возрастания класса бетона, соответствия оптимальным условий эксплуатации строения,
    • чем теплее воздух в момент смешивания составляющих, приготовления товарного бетона на РБУ, работы с ним, тем выше характеристики материала.


Совет профессионала: кто в точности соблюдает технологию, для кого применение бетона строго по назначению – правило, тот не имеет претензий к классу либо марке бетона в части заявленной прочности. Помните: нормативная прочность бетонной конструкции вне зависимости от площади, толщины, достигается через 72 часа после заливки. Максимальную же прочность раствор набирает только спустя 28 суток.

Определение прочности на сжатие


Морозо- вместе с водостойкостью – не единственные критерии оценки качества строительного раствора. В зависимости от марки стрйматериал отличается еще по прочности на сжатие. Что это за характеристика? – Она указывает на нагрузку, которую выдерживает застывший бетон конкретной марки. Единицы измерения прочности:


— кгс/см
2 с точки зрения марки (М) бетона, диапазон 50-1000,


— мегапиксели с точки зрения класса (В) продукта, диапазон 3,5 – 80. В этом случае прочность на сжатие — показатель давления, который материал выдерживает в 95% построек.


Естественно, чем прочнее получается бетонная конструкция, тем дороже стоимость использованного бетонного раствора. Чтобы установить соответствие марки бетона предусмотренному для нее параметру прочности на сжатие, применяется метод проверки — ГОСТ 10180-2012 – по контрольным образцам.


Сущность в том, что изготовленные образцы постепенно нагружаются с постоянной скоростью, затем вычисляется напряжение в испытуемом образце.


Другие способы испытания бетона на прочность

    • Проверка бетонного куба или цилиндра путем раскалывания на прочность на сжатие и растяжение.
    • Тестирование прочности бетона по образцу цилиндрической или призменной с квадратом в сечении формы на осевое растяжение.
    • Испытание прочности призмы из бетона на растяжение при изгибе, раскалывании.


Прочность бетона на сжатие – важнейший показатель качества материала


Марка бетона предопределяет такую характеристику, как прочность на сжатие. Именно она отвечает за степень устойчивости готовых построек к разного рода нагрузкам. При правильном соотношении марки и класса бетона с прочностью на сжатие получается строительный материал, отвечающий национальному стандарту. Нацстандарт распространяется так же на готовые железобетонные плиты.


Применение различных классов бетонных смесей








Класс

Назначение




В0,5 — В2,5




Подготовительные стройработы, создание не рассчитанных на нагрузку конструкций




В7,5




Строительство дорожного полотна, фундаментов, отмостков, дорожек и дворовой зоны на участке, стяжка полов




B10 — B12,5




Сооружение конструктивные элементы домов и малых архитектурных форм, малоэтажные постройки




B15 — B20




Универсальное применение: фундаменты, несущие стены, лестницы, перекрытия монолитные, независимо от веса и нагрузки




B25 — B30




Отвесные конструкции, прокладка фундаментов, межэтажные перекрытия, колонны, чаши бассейнов и проч.




B35 — B60




Банковские хранилища, мосты, ложа каналов, плотины и др. сооружения гидротехники


Используйте возможность приобрести качественный бетон нужной марки, класса по ценам производителя. Оптимизируйте расходы, экономьте на строительстве!
Заказывайте бетон нужной марки в необходимом объеме в ООО «Промщебень» с доставкой.

марка, определение, класс, таблица, требования и характеристики морозостойкого бетона

Одна из важных характеристик бетона, используемого для строительства в регионах с холодными зимами и температурными перепадами, – морозостойкость. Она определяет свойство материала выдерживать многократное замораживание и оттаивание.

Показателем морозостойкости бетона является марка, равная количеству циклов замораживания и оттаивания до возникновения видимых признаков разрушения, уменьшения прочности более чем на 5%, изменения физических характеристик.

Марка обозначается буквой F и числом, равным максимальному количеству циклов до состояния, обозначенного в нормативе.

Эта величина важна для смесей, применяемых при сооружении фундаментов, наружных стен, объектов гидротехнического назначения, опор мостов и других строительных конструкций ответственного назначения.

Классификация морозостойкости бетонов

Виды бетонных смесей по морозоустойчивости регламентируются ГОСТом 25192-2012. Помимо показателя F, морозостойкость могут определять следующие характеристики:

  • F1 – марка, установленная при исследовании материала, находящегося в водонасыщенном состоянии;
  • F2 – марка бетонных смесей, производимых для устройства покрытий дорог и аэродромов или эксплуатации в контакте с минерализованными водами, образцы для исследований насыщают 5% раствором NaCl.

Требования к морозостойкости бетона зависят от запланированной области его применения:

  • До F50. Это низкий уровень устойчивости к знакопеременным температурам. Такая смесь применяется для внутренних работ, в подготовительных строительных мероприятиях.
  • F50-F150. Этот материал со средним уровнем морозоустойчивости широко применяется в рядовом строительстве объектов, расположенных в регионах с умеренным, устойчивым климатом.
  • F150-F300. Такие бетоны востребованы при строительстве в регионах с холодным климатом.
  • Выше F300. Смеси с высокой стойкостью к температурным перепадам применяются для сооружения объектов специального назначения, а также сооружений, эксплуатируемых в тяжелых климатических условиях.

Прочность и показатель морозостойкости всех видов бетона находятся в прямой зависимости: чем выше прочность, тем больше морозоустойчивость материала.

Таблица зависимости класса прочности и морозостойкости бетона










Марка бетона

Класс прочности

Класс морозостойкости

Класс водонепроницаемости

100

В7,5

F50

W2

150

В10-В12,5

200

В15

F100

W4

250

В20

300

В22,5

F200

W6

350

В25

W8

400

В30

F300

W10

450-600

В35-В45

W8-W18

От каких факторов зависит морозостойкость бетона?

Основной параметр, влияющий на способность материала противостоять замораживанию и оттаиванию, – количество пор. Чем оно выше, тем большее количество воды проникает в бетонный элемент.

При отрицательных температурах вода меняет агрегатное состояние, превращаясь в лед с увеличением объема примерно на 10%. Поэтому с каждым циклом бетонная конструкция постепенно деформируется, утрачивая прочностные характеристики.

Вода, проникающая вглубь конструкции, разрушает не только сам бетон, но и вызывает коррозию стальной арматуры.

Способы определения морозостойкости бетона

Способы определения морозоустойчивости регламентирует ГОСТ 10060-2012. Методика актуальна при разработке новых рецептур и передовых технологий, контроле качества при купле-продаже. Для испытаний изготавливают образец кубовидной формы со сторонами 100-200 мм. Циклы замораживания и оттаивания осуществляются в диапазоне -18…+18°C. В соответствии с ГОСТом существует несколько вариантов вычисления этого показателя:

  • базовый многократный;
  • ускоренный многократный;
  • ускоренный однократный.

Если результаты ускоренных испытаний отличаются от результатов базовых, то эталонными считаются показатели базовых исследований.

Основные этапы базовых испытаний водонасыщенных образцов, проводимых в соответствии с ГОСТом:

  • Бетонные кубики насыщают водой и обтирают влажной тканью. Испытывают на сжатие.
  • Исследовательский материал помещают в морозильную камеру для замораживания. Выдерживают заданный режим.
  • Оттаивание производят в специальных ваннах.
  • После оттаивания с образцов щеткой удаляют отслаивающийся материал.
  • Кубики обтирают ветошью, определяют массу и исследуют на сжатие.
  • Обрабатывают результаты испытаний.

Пониженную морозостойкость материала можно определить и подручными методами. Конечно, результаты таких исследований не могут использоваться при составлении проектной документации.

  • Визуальный осмотр. О низкой устойчивости к знакопеременным температурам свидетельствует наличие трещин, бурых пятен, расслаивания, шелушения.
  • Определение водопоглощения. Если этот показатель равен 5-6%, то устойчивость к низким температурам будет пониженной.
  • Высушивание влагонасыщенного образца на солнце. Его растрескивание сигнализирует о пониженной морозостойкости.

Способы повышения морозостойкости

Повысить морозоустойчивость бетона можно несколькими способами:

  • Изолировать бетонный элемент от неблагоприятного внешнего воздействия с помощью обмазочных и окрасочных материалов, пропиток.
  • Использовать цемент более высоких марок. Чем прочнее вяжущее, тем выше морозоустойчивость готового бетонного элемента.
  • Получить плотную структуру материала путем тщательного уплотнения различными способами и создания благоприятных условий твердения бетонной смеси
  • Изготовить морозостойкий бетон можно путем введения в его состав специальных присадок.

Подробнее рассмотрим виды и принцип действия добавок:

  • Поверхностно-активные вещества. Обеспечивают образование плотной структуры.
  • Присадки, способствующие появлению шаровидных пор. Вода, проникшая в бетонную конструкцию, при замерзании выталкивается в эти пустоты, поэтому структура материала при изменении агрегатного состояния воды не повреждается.
  • Суперпластификаторы. Увеличивают плотность, повышают водонепроницаемость, а следовательно, показатели морозостойкости. 
  • Добавки, улучшающие водонепроницаемость бетонного элемента и его внутреннюю структуру. К ним относятся «Дегидрол», «Пенетрон Адмикс», «Кристалл».

Присадки для бетона с глиноземистым цементом обычно не применяются, поскольку они могут не улучшить, а снизить характеристики материала.

Марки бетона по прочности — используемые марки цемента — классы бетона.

Марки бетона по прочности — используемые марки цемента — классы бетона.

Бетоны маркируются согласно прочности на сжатие в кгс/см2. Набор прочности бетоном это отдельная тема.

Важно: прочность бетона
при растяжении составляет только 5-10% от предела прочности при сжатии, а
предел прочности при изгибе только 10-15% от предела прочности на сжатие. Бетон не течет. За стадией упругой деформации следует разрушение.







Марка


бетона
М150 М200 М250 М300 М350 М400 М450 М500 М600

и выше
Используемая марка



цемента
М300 М300


М400
М400 М400


М500
М400


М500
М500


М600
М550


М600
М600 М600

В целом, предел прочности при растяжении возрастает с ростом прочности при сжатии (марки бетона)
, однако увеличение идет медленнее, чем нарастает прочность на сжатие. Таким образом, % отношение этих прочностей ниже для более высоких марок.

Класс бетона — это числовая характеристика какого-либо его свойства, принимаемая с гарантированной обеспеченностью 0,95. Эта статистическая формулировка означает, что установленное свойство обеспечивается не менее чем в 95% случаев и лишь в 5% проб можно ожидать, что оно не выполненно.

Теоретически, существуют следующие классы бетонов: В1; B1,5; В2; B2,5; В3,5; B5; В7,5; B10; В12,5; В15; В20; В25; В30; В40; В45; В50; В55; В60.

Ниже приводится соотношение между классом и марками бетона по прочности на сжатие при нормативном коэффициенте вариации равном 13,5%:


















Класс бетона Средняя прочность данного класса Ближайшая

марка бетона
кгс/см2 Н/мм2
В 3,5 46 4,5 М50
B 5 65 6,2 М75
В 7,5 98 9,5 М100
B 10 131 13 М150
В 12,5 164 16 М150
B 15 196 19 М200
В 20 262 25 М250
B 25 327 30 М350
В 30 393 36 М400
B 35 458 43 М450
В 40 524 50 М550
B 45 589 56 М600
В 50 655 63 М600
B 55 720 70 М700
В 60 786 76 М800

Соответствие марки и класса бетона по морозостойкости

Бетон стал основным материалом в строительстве. Сложно представить конструкцию, в которой бы не было бетонных элементов. Чтобы грамотно работать с этим материалом, необходимо разбираться в его характеристиках. Основным показателем бетона является прочность, а если быть точнее, то прочность на сжатие. Сооружения рассчитывают таким образом, чтобы материал мог принимать определенные сжимающие нагрузки. Так что же определяет прочность? Марка и класс, о них мы и поговорим в этой статье. Разобраться в марках и классах нам помогут различные таблицы и советы профессионалов.

Не нужно быть профессиональным строителем, чтобы понимать, что бетон занимает основную нишу в этой отрасли. С каждым годом количество бетонных смесей стремительно увеличивается. Наиболее высокие результаты обеспечивают бетонные смеси высоких прочностных марок. Также существует специальные растворы, обладающими следующими показателями: малоподвижность, долговечность, стойкость к растрескиванию, жаростойкость и т.д.

Марки и классы – что это?

Ни одна монолитная или сборная конструкция сегодня не может обойтись без бетона. Этот материал требуется для каждого вида строительства, будь это несущие стены, основания или колонны. В зависимости от конструкции и ее назначения, подбирается бетон определенной марки и класса. Такие подробности должны быть указаны в проекте строительства. Подбором подходящего материала занимаются специалисты, так как от этого выбора зависит долговечность конструкции.

Так что же такое марки (М)? Это базовые показатели прочности бетона на сжатие. Чем выше степень марки, тем выше требования, которые предъявляются к бетонной конструкции. А теперь перейдем к классу (В) – это показатель фактической прочности материала. Каждый класс бетона по прочности соответствует определенной марки.

Для начала изучите таблицы, где указаны соответствия класса смеси и сферы применения:

Как состав ингредиентов бетона влияет на его прочность

Не только марка и класс бетон, но и компоненты влияют на параметр прочности:

  • Цемент. Чем больше цемента, тем прочнее будет бетон. Это правило работает до определенного порога, после которого прочность увеличивается незначительно, зато другие параметры ухудшаются. Для примера можно взять усадку и ползучесть. На один куб бетона не должно быть более 600 кг цемента. Обратите внимание, что у цемента есть своя марка, и чем она выше, тем прочнее бетон.
  • Наполнители. Профессионалы рекомендуют выбирать очищенный песок и щебень, так как глина и пыль негативно влияют на показатели прочности. Строителю важно обеспечить наивысшее сцепление крупных фракций с цементом.
  • Вода. Без водоцементного модуля бетон мы не получим. Его затвердевание возможно при участии воды 15-25%. Если в смеси имеются излишки жидкости, образовываются поры, снижающие показатель прочности на сжатие. Именно поэтому прочность быстрее всего набирается в бетоне с малым водоцементным отношением.

Также стоит учитывать технологию перемешивания, так как от нее тоже зависит прочность на сжатие. Профессиональные строители рекомендуют отдавать предпочтение спецтехнике, так как она позволяет сделать однородную массу.

Полезный совет! Если вы собираетесь самостоятельно изготавливать бетонную смесь, то для нее необходимо брать цементные марки, превосходящие бетонные марки в два раза. Особенно это касается строителей, которые планируют перемешивать смесь вручную.

Виды бетона

Бетон отличается по использованию вяжущих компонентов, он может быть цементным, глиняным, известковым, силикатным, асфальтным, гипсовым и силикатным. Также стоит учитывать свойства, по которым материалы разделяются на огнестойкие и морозостойкие, пластичные и жесткие.

Назначение будет определяться за счет наполнителя:

  • Легкие. Речь идет о бетоне с природной шлаковой пемзой, которой строители нашли применение в различных ограждения и покрытиях.
  • Особо легкие. Достаточно популярные сегодня бетоны, к которым относятся газобетонные и пенобетонные блоки.
  • Тяжелые. Щебень из твердых пород, различные виды гравия, которые используются для строительства железобетонных конструкций.
  • Особо тяжелые. Применяются для возведения полигонов, военных конструкций и атомных станций. В качестве наполнителя используются железная руда и барит.

Подбор марки под конкретную задачу: таблицы

Если вы знаете соответствие классов и марок, вы сможете подобрать нужную смесь. Бать слишком прочную марку тоже не стоит, если конструкция этого не требует. Разумеется, прочность будет выше, но зато вы нерационально распределите средства на строительстве. Сегодня используется бетон, не превышающий марку М500.

Рассмотрите таблицу, в которой показаны марки бетона и их использование:

Эта таблица показывает, что нужно взять для строительства частного жилого дома. Для возведения небольших хозяйственных построек можно брать бетон с низким показателем прочности, к примеру, М200. Если же речь идет о фундаменте для здания, имеющего 2-3 этажа, то стоит брать материал, обладающим более высокой прочностью на сжатие.

В этой таблице показано соответствие классов и марок бетонной смеси:

Прочность на сжатие измеряется в МПа. Возьмем класс B20, где буква «B» обозначает классы бетон, а 20 – выдерживаемое давление в 20 МПа, которое может выдержать кубик бетона. Изучите таблицы, где показаны эти параметры:

Морозостойкость

Возможность бетона перетерпливать многократные оттаивания и замерзания и называется морозостойкостью. Если этот показатель высокий, то материал не теряет прочности. Особенно этот показатель важен в холодных зонах, где происходят регулярные заморозки. Если там использовать бетон с низким показателем морозостойкости, то конструкция может быстро прийти в негодности.

Таблица, где указаны марки бетона по морозостойкости:

Марка бетона и класс бетона: таблица и показатели

При работе с бетоном, как и со многими другими материалами, очень важно ориентироваться в классификации, основных характеристиках и требованиях, предъявляемых к данному виду стройматериала, чем они могут отличаться.

Разбираться в этом необходимо не только для покупки более-менее качественного товара, но и подходящего для конкретной ситуации. Например, если фундамент предназначен для одноэтажного здания, то построй мы на нем высотку – сделали бы ужасную глупость. Нужно подобрать идеальное соотношение подходящего качественного материала и цены. Если взять слишком дорой, но очень качественный товар, когда можно было бы обойтись менее дорогим – это просто перевод денег.

А так как практически ни одна стройка не может обойтись без использований бетонных смесей, необходимо знать, чем могут отличаться те или иные виды между собой. Мы поговорим сегодня о том, чем отличаются марки и классы бетона, какие соответствия характеристик к той или иной марке или классу, как выбрать подходящий бетон и что говорит нам ГОСТ. Для удобства нахождения нужного вам материала, часть информации представлена в виде таблицы.

Прежде, чем рассматривать разные особенности и параметры, нужно ознакомиться с таблицей, которая описывает соответствие прочности определенной марке и классу. Или, проще говоря, прочность бетона в зависимости от марки и класса:

Что такое марка бетона?

Марка бетона – это его основной показатель прочности. Указывает прочность на сжатие материала. В таблице мы еще продемонстрируем данное соответствие, но немного позже. Она находится в прямой зависимости от количества цемента в этой смеси. Чтобы сделать бетон нужной марки, нужно брать марка цемента должна быть в два раза выше.

Чем выше будет это значение, тем сложнее в работе данный вид бетона. Проверить прочность можно лишь в лабораторных условиях путем сжатия материала прессов специальным.

Обозначается марка буквой «М», а также имеет числовое значение, указывающее на то, какое количество бетона в смеси. Каждая марка отличается по прочности, граница которой измеряется в кгс/см2.

Теоретически спектр в таблицах отражает марки от М50 до М1000, при этом на практике не используются все, а лишь определенные виды.

Классификация и характеристика марок

Каждая марка, указанная в таблице, имеет свое назначение. Используется марки от М100 до М500 на практике. Для чего применяется каждая из них?

  1. М100. Строить дома на такой марке бетона просто невозможно, но они неплохо подходят в качестве подготовительной основой для заливки монолитной плиты под фундамент. Т.е. необходимо комбинировать с более прочным бетоном.
  2. М150. Будет отличаться от других тем, что применяется при выполнении стяжки. Походит при совмещении с армированием для хозяйственных построек. Этот бетон могут использовать в основании дорожек, бордюров.
  3. М200. Раствор нужен, как и М150, при заливке стяжки или подушки для монолитных плит фундамента, а также для проведения отмостки.
  4. М250. Это наиболее популярный тип бетона для заливки фундамента монолитного для строительства частного дома. Будет отличатся использование в индивидуальном строительстве не многоэтажных построек. Это как промежуточное звено между М300 и М200, благодаря чем его предпочитают многие строителя.
  5. М300. Следующий элемент таблицы классификации очень популярен отличается хорошим соотношением качества и цены. Используется как для ленточных фундаментов, так и для перекрытий, стен и заборов.
  6. М350. Применяется в строительстве опор, водоемов искусственных, например, бассейнов. Применяется и в производстве железобетонных конструкций. Отлично подойдет для фундамента свайного и уже повышенной прочности. Нет смысла уже применять его в индивидуальном одноэтажном строительстве, лучше брать более дешевую марку. Можно разве что построить дом из него с цоколем или подвальным помещением, погребом.
  7. М400 и М500 отличаются повышенной стойкостью. При этом они вряд ли подойдут для частного дома, ведь нашли свое применение в промышленности. Например, для стройки хранилищ или мостов.

Что такое класс бетона?

Класс –это еще один способ маркировки бетона. Это более точный показатель фактической прочности, так сказать гарантированной. Это уровень прочности с учетом не только количества цемента, как в случае с маркой, но и качеством воды, песка, в общем всех ингредиентов, учитывая их свойства и технологию производства. Фактически марка указывает на усредненные значения бетона, а класс на практические его свойства в эксплуатации.

Маркируют класс буквой В. Табличный спектр обычно описывает ряд от В1 до В60. Каждый класс соответствует определенной марке бетона, что вы можете увидеть ниже.

Данная таблица описывает соответствие определенного класса определенной марке:

Класс бетона по прочности учитывает следующие факторы:

  • количество цемента;
  • соотношение цемента и воды;
  • активность цемента;
  • степень уплотнения бетонного раствора;
  • качество добавок и заполнителей.

Другие способы классификации по марке и классу

По сути мы с вами разобрались с разницей между этими двумя показателями, разобрали их виды и сделали главным образом упор на крепость. Да и вообще прочность на сжатие – самый важный фактор при учете выбора бетона. Но отличаться могут они и по другим характеристикам. Соответствующие таблицы мы приведем для вас.

Основополагающим фактором при выборе марки или класса может стать морозостойкость. Отличаться будет марка для холодных регионов от теплых. Ведь мы знаем, что низкая температура может сказываться губительно. Ведь учитывайте, что процесс постоянного оттаивания и замерзания снова будет влиять на срок службы. Это может повлиять на появление трещин.

Повысить морозостойкость помогут разные добавки. Маркируют ее буквой F, а спектр будет от F50 до F1000. Соответствующую таблицу вы найдете ниже.

Отличаться марки и классы будут по водонепроницаемости. Влага часто негативно влияет на конструкцию, поэтому также важно. Определяется допустимым уровнем воды и отмечается как W, при это варьируется в таблицах от W2 до W200.

Теперь внимательно рассмотрим таблицу и определим какой водонепроницаемости и морозостойкости соответствует та или иная марка бетона и класс:

Как вы понимаете, нельзя просто учитывать лишь способность выдерживать конструкцию, необходимо учитывать и особенности окружающей среды.

Надеюсь, что материал был хоть немного понятен для вас. Но, если остались какие-то вопросы, или вы все еще не смогли разобраться, то загляните в данное видео:

различных видов бетона и их применение

Вы можете найти бетон практически везде, включая здания, мосты, стены, бассейны, дороги, взлетно-посадочные полосы аэропорта, полы, внутренние дворики или даже цементный дом. Все эти структуры зависят от искусственного материала с простой формулой. Как делается весь этот бетон?

Бетон состоит из цемента, воды и крупных заполнителей. При смешивании они создают строительный материал, который со временем затвердевает.Количество используемой воды и цемента определяет свойства бетона, например:

  • Прочность
  • Прочность
  • Устойчивость к нагреванию или излучению
  • Технологичность

Свежий бетон находит множество применений: его можно заливать кругами, прямоугольниками, квадратами и т. Д. Его также можно использовать для лестниц, колонн, дверей, балок, чечевицы и других привычных конструкций. Бетон бывает разных марок, в том числе обычных, стандартных и высокопрочных.Эти марки показывают, насколько прочен бетон и как он будет использоваться в строительстве. Какие тебе нужны? Наш гид может помочь вам принять решение, исходя из требований вашего проекта.

Как сделать бетон?

Когда вы делаете бетон, независимо от того, для чего вы планируете его использовать, вы должны смешать правильные пропорции, чтобы достичь желаемого качества. Для изготовления бетона можно использовать две разные смеси:

  • Номинальная смесь : Эта смесь используется для обычного строительства, такого как небольшие жилые постройки.В большинстве номинальных смесей используется пропорция 1: 2: 4. Первое число — это соотношение цемента, второе число — соотношение песка, а третье число — соотношение необходимого заполнителя в зависимости от веса или объема материалов.
  • Расчетная смесь : Расчетная смесь, или дизайн смеси, основывается на пропорциях, окончательно согласованных с помощью лабораторных испытаний для определения прочности смеси на сжатие. Это определит необходимую вам прочность на основе конструктивного решения бетонного компонента.

Наряду с пропорциями смеси, существуют также два метода смешивания бетона:

  • Машинное смешивание : Здесь используются разные типы машин. Ингредиенты помещаются в машину и перемешиваются. Результат — свежий бетон.
  • Ручное смешивание : При ручном смешивании ингредиенты помещаются на плоскую поверхность. Затем рабочие добавляют воду и вручную перемешивают цемент с помощью специальных инструментов, предназначенных для этой задачи.

Тип смешивания, который вы используете, зависит от количества и качества бетона, который вы хотите.

Виды бетона

Есть много разных типов бетона, некоторые из которых можно использовать для одной и той же цели. Это зависит от цели, которую вы хотите достичь. Вы можете выбрать подходящую форму бетона для выполнения поставленной задачи.

1. Бетон нормальной прочности

Этот бетон сочетает в себе все основные ингредиенты — бетон, песок и заполнитель — в соотношении 1: 2: 4.Таким образом получается бетон нормальной прочности. Для схватывания требуется от 30 до 90 минут, но это зависит от погодных условий на бетонной площадке и свойств цемента.

Обычно используется для тротуаров или зданий, которым не требуется высокая прочность на разрыв. Он не очень хорош для многих других конструкций, поскольку не очень хорошо выдерживает нагрузки, создаваемые ветровой нагрузкой или вибрациями.

2. Обычный или обычный бетон

Это еще один бетон, в котором используется обычная смесь 1: 2: 4 с компонентами цемента, песка и заполнителей.Вы можете использовать его для изготовления тротуаров или зданий, где нет высоких требований к прочности на разрыв. Он сталкивается с теми же проблемами, что и бетон нормальной прочности — он не очень хорошо выдерживает вибрации и ветровые нагрузки. Обычный или обычный бетон также используется при строительстве плотин. Рейтинг прочности этого вида бетона очень удовлетворительный.

3. Железобетон

Бетон этой формы широко используется в промышленности и современном строительстве. Прочность железобетона повышается за счет размещения в бетоне проволоки, стальных стержней или тросов до его схватывания.Более привычное название для этих предметов — арматура. В последнее время люди использовали волокна для армирования этого бетона.

Эти арматуры противостоят растягивающим силам, в то время как сам бетон помогает противостоять сжимающим силам. Они создают прочную связь, и в результате два материала противостоят различным приложенным силам. По сути, они становятся единым конструктивным элементом.

Изобретенный в 19 веке, он коренным образом изменил строительную отрасль. Здания, мосты и проезжие части опираются на железобетон.Когда вы путешествуете по строительной площадке, вы, скорее всего, увидите железобетон с арматурой.

4. Предварительно напряженный бетон

Во многих крупных бетонных проектах используются предварительно напряженные бетонные блоки. Предварительно напряженный бетон создается в специальной технике. Как и железобетон, он включает стержни или арматуру. Но эти стержни или связки подвергаются нагрузке перед нанесением бетона.

Когда бетон смешивается и укладывается, эти стержни размещаются на каждом конце структурной единицы, где они используются.Когда бетон схватывается, эта единица подвергается сжатию.

Этот процесс делает нижнюю часть устройства более устойчивой к растягивающим усилиям. Однако это требует тяжелого оборудования и квалифицированной рабочей силы. Обычно предварительно напряженные элементы создаются и собираются на месте. Предварительно напряженный бетон используется для строительства мостов, тяжеловесных конструкций или крыш с длинными пролетами.

5. Сборный железобетон

Этот бетон создается и отливается на заводе в соответствии с точными спецификациями.Затем сборные железобетонные блоки доставляются на площадку и собираются.

Вы часто видите, как эти агрегаты перевозят на рабочие места, когда вы едете по шоссе. Сборный бетон используется для:

  • Бетонные блоки
  • Сборные стены
  • Блоки лестничные
  • поляков

Преимущество сборного железобетона — его быстрый монтаж. Поскольку агрегаты производятся на заводе, они отличаются очень высоким качеством.

6. Легкий бетон

Легкий бетон — это любой бетон с плотностью менее 1920 кг / м. 3 . Легкий бетон создается с использованием легких заполнителей. Заполнители — это ингредиенты, которые увеличивают плотность бетона. Эти легкие заполнители включают натуральные материалы, такие как шлак или пемза, искусственные материалы, такие как глины и вспученные сланцы, или обработанные материалы, такие как вермикулит и перлит. Его важнейшее свойство — очень низкая теплопроводность.

Обычное применение легкого бетона включает создание длинных пролетных мостовых настилов и строительных блоков.Также его можно использовать для защиты стальных конструкций.

7. Бетон высокой плотности

Бетон высокой плотности имеет очень конкретное назначение. Его часто используют при строительстве атомных электростанций. Тяжелые заполнители, используемые при создании бетона высокой плотности, помогают конструкции противостоять радиации.

Обычно используется щебень. Барит, бесцветный или белый материал, состоящий из сульфата бария и являющийся основным ингредиентом бария, представляет собой наиболее часто используемый щебень.

8. Бетон с воздухововлекающими добавками

Некоторые виды бетона содержат миллиарды микроскопических ячеек с воздухом на каждый кубический фут. Эти крошечные воздушные карманы снижают внутреннее давление на бетон. В них есть крошечные камеры, в которых вода может расширяться при замерзании.

Воздух захватывается бетоном за счет добавления в процессе смешивания различных пенообразователей, таких как спирты, смолы или жирные кислоты. Это должно выполняться под тщательным техническим надзором, поскольку бетон смешивается на строительной площадке.Вовлеченный воздух составляет от 3% до 6% от объема бетона. Почти весь бетон, используемый в условиях замерзания или при циклах замораживания-оттаивания, содержит воздух.

9. Готовый бетон

Бетон, подготовленный и залитый на центральном заводе, известен как товарный бетон. Этот бетон смешивается, поскольку он доставляется к месту на знакомых цементовозах, которые часто можно увидеть на дорогах и шоссе. Как только грузовики прибывают на место работы, цемент можно использовать немедленно, потому что он не требует дополнительной обработки.Товарный бетон — это специальный бетон, который смешивается с высокой точностью в соответствии со спецификациями, разработанными.

Для производства товарного бетона требуется централизованное место, где можно приготовить бетон. Эти места необходимо размещать на регулируемом расстоянии от рабочего места. Если бетон достигает рабочего места слишком долго, он бесполезен. В большинстве случаев рабочее место находится далеко от подготовительного завода. Иногда используются замедлители схватывания, чтобы замедлить схватывание бетона.

Готовый бетон предпочтительнее, чем бетон, смешанный на месте, потому что смесь имеет более высокую точность, а готовность бетона к заливке снижает беспорядок на рабочем месте. Товарный бетон можно использовать для строительства зданий, проезжей части, стен и т. Д.

10. Бетон объемный

Этот бетон был создан как альтернатива товарному бетону для решения проблемы больших расстояний между бетонным заводом и строительными площадками. Для этого требуются специализированные грузовые автомобили, известные как объемные мобильные миксеры.Они несут бетонные ингредиенты и воду, которая будет смешиваться на строительной площадке.

Объемный бетон чрезвычайно полезен, когда строителю требуется бетонная смесь двух разных типов на одном участке. Поскольку бетон можно смешивать и доставлять по мере необходимости, это позволяет одному грузовику производить две разные смеси бетона. Это очень удобно на больших участках, в подвальных помещениях и в многопроектах, где требуются разные типы бетона.

11. Декоративный бетон

Декоративный бетон создает визуально и эстетически привлекательные бетонные смеси.Декоративный бетон может пройти несколько процессов, например:

  • Окраска
  • Багет
  • Полировка
  • Офорт
  • Нанесение декоративных покрытий

Идеально подходит для любого проекта, в котором вы хотите заявить о себе с эстетической точки зрения. Это также отличный способ добавить немного индивидуальности тусклым поверхностям или структурам. Например, для бассейнов и полов можно использовать декоративный бетон.

12. Бетон быстрого схватывания

Спешите? Тогда вам понадобится быстротвердеющий бетон.Это идеальный вариант, когда у вас мало времени на выполнение проекта. Он имеет более быстрое время схватывания и очень устойчив к низким температурам, поэтому его можно использовать в любое время года. Это особенно полезно зимой, когда холода не позволяют использовать многие другие виды бетона.

13. Умный бетон

Это бетонная технология будущего. Он предлагает другой способ наблюдения за состоянием железобетонных конструкций. Короткие углеродные волокна добавляют в бетон с помощью обычной бетономешалки.Это влияет на электрическое сопротивление бетона, когда он испытывает деформацию или напряжение. Этот вид бетона можно использовать для обнаружения возможных проблем до его разрушения.

Он очень хорошо обнаруживает крошечные структурные дефекты. Хотя он еще не широко доступен, он обещает стать строительным материалом будущего для городов, которые столкнутся с риском повторных землетрясений. Умный бетон позволяет инженерам в этих городах проверять состояние конструкций после землетрясений, обеспечивая гораздо лучшую оценку их состояния, чем визуальный осмотр.

14. Проницаемый бетон

Это один из наиболее распространенных видов бетона, который используется для строительства дорог и тротуаров. Он разработан для решения проблем, связанных с ливневым стоком, лужами и лужами на дорогах или взлетно-посадочных полосах аэропортов.

Другой бетон впитывает воду. У дорог, в которых используется проницаемый бетон, меньше проблем с аквапланированием, распылением покрышек и накоплением снега. Это также снижает потребность в бордюрах и ливневой канализации.

Состоит из смеси цемента, воды и крупных заполнителей.Он не содержит песка, что создает открытую пористую структуру. Это позволяет воде легче проходить через слои. Некоторые виды проницаемого бетона пропускают через свою поверхность несколько галлонов воды в минуту.

15. Накачиваемый бетон

Если вы когда-нибудь задумывались, какие типы цементных смесей используются для полов в очень высоких зданиях, ответ, вероятно, — бетон с помощью насоса. Секрет перекачиваемого бетона в том, что он очень удобен в использовании, поэтому его можно легко транспортировать по трубе на верхний этаж.Эта труба будет гибким или жестким шлангом, по которому бетон выводится на необходимую площадь.

Также можно использовать перекачиваемый бетон:

  • Для создания суперплоских перекрытий на нижних конструкциях
  • В строительных проектах, таких как дороги и мосты
  • Для личных вещей, например бассейнов

Это надежный, эффективный и экономичный способ укладки бетона и часто единственный способ укладки бетона в определенных местах. В перекачиваемом бетоне используются очень мелкие заполнители.Чем мельче заполнитель, используемый в смеси, тем свободнее вытекает бетон из трубы.

16. Лимебетон

В этом бетоне вместо цемента используется известь, а также легкие заполнители, такие как стекловолокно или острый песок. В основном он используется для устройства полов, сводов и куполов. Limecrete имеет много преимуществ для окружающей среды, поскольку его легко чистить и его можно возобновлять. Его также можно использовать с лучистым теплым полом.

17. Рулонный уплотненный бетон

Это знакомое зрелище на многих американских автомагистралях — тяжелый каток, уплотняющий слой бетона.Рулонный бетон — это прочный плотный бетон, используемый на автомагистралях с интенсивным движением транспортных средств, перевозящих большие грузы. Этот бетон выделяет меньше выбросов в процессе производства, что приносит пользу окружающей среде.

Рулонный уплотненный бетон можно найти на дорожных работах, взлетно-посадочных полосах аэропортов, автостоянках, тротуарах и при промышленном обслуживании.

18. Стеклобетон

Другой, более современный вид бетона — стеклобетон, в котором используется переработанное стекло. Эта форма бетона используется, когда эстетическая привлекательность является важным элементом конструкции бетона.

Обычно используемый в широкоформатных плитах для полов или на декоративных фасадах, этот бетон может иметь блестящее или цветное стекло, встроенное во время процесса смешивания, чтобы придать ему характерный всплеск цвета или блеск.

19. Асфальтобетон

Более известный как «асфальт» или «асфальтобетон», это форма бетона, часто используемая на дорогах, взлетно-посадочных полосах аэропортов, на автомагистралях, на стоянках, тротуарах — практически везде, где требуется тротуар. Асфальт — это темный минерал, состоящий из смеси углеводородов, называемых битумами.

Потребность в асфальте росла вместе с автомобильной промышленностью. Известный своей долговечностью, удобоукладываемостью, сопротивлением скольжению, стабильностью, сопротивлением усталости, гибкостью и проницаемостью, он по-прежнему требует правильно разработанной смеси. Это композитная смесь заполнителей и асфальта. Различные смеси асфальта используются для разных целей.

20. Торкрет-бетон

Торкрет-бетон отличается от других форм бетона прежде всего способом его нанесения. Торкретбетон впрыскивается через сопло на раму или опалубку.Поскольку для этого применения требуется более высокое давление воздуха, процесс уплотнения происходит одновременно с укладкой.

Торкрет-бетон можно использовать для ремонта поврежденных деревянных, бетонных или стальных конструкций. Он также часто используется, когда доступ к рабочей зоне затруднен, или когда опалубка непрактична или является непозволительной по стоимости.

Нужен надежный источник для бетононасоса? Свяжитесь с Dynamic Concrete Pumping, Inc.

Обладая более чем 40-летним опытом работы в районе Калгари, наши специалисты могут предоставить вам услуги по бетононасосу, необходимые для повышения вашей производительности и улучшения результатов.Если вам нужна перекачка бетона на всей территории Альберты, вы можете доверить нам эффективные, доступные и безопасные решения, которые помогут вам улучшить вашу прибыль и решить самые сложные задачи.

Если вы хотите поговорить о том, как мы можем помочь вам с бетононасосом, вы можете позвонить нам по телефону 403-236-9511 или по бесплатному телефону 1-877-236-9511. Вы также можете посетить нашу страницу контактов. Член нашей команды свяжется с вами в ближайшее время.

— Обновлено 25.09.2020

Стандарты совокупного тестирования

— EnviroMINE, Inc.

Автор Лиза Мар.

Совокупное качество и использование

Заполнитель является основным ингредиентом портландцементного бетона и асфальтобетона. Весь заполнитель, используемый для строительных целей, должен быть испытан физически и химически, чтобы подтвердить его пригодность для этих целей. Каждая потенциальная производственная площадка должна быть протестирована, чтобы убедиться, что материалы соответствуют спецификациям для конкретного применения, и для определения требований к обработке. Несколько агентств установили стандарты для заполнителя, используемого в строительстве.Некоторые из этих агентств 6 :

Большинство агентств следуют стандартным процедурам испытаний агрегатов, установленным: 6

Американское общество испытаний и материалов (ASTM) было основано в 1898 году химиками и инженерами Пенсильванской железной дороги. 2 Сегодня он признан всемирной некоммерческой организацией, членами которой являются представительные пользователи, производители и группы с общими интересами. Целью организации является разработка добровольных согласованных стандартов для материалов, продуктов, систем и услуг. 4

Американская ассоциация государственных служащих автомобильных дорог (AASHTO) — некоммерческая, беспартийная ассоциация, представляющая дорожные и транспортные департаменты 50 штатов, округа Колумбия и Пуэрто-Рико. Он представляет все пять видов транспорта: воздушный, автомобильный, общественный, железнодорожный и водный. Его основная цель — способствовать развитию, эксплуатации и обслуживанию интегрированной национальной транспортной системы. 1

Спецификации на портландцементный бетон и асфальтобетон

были разработаны для обеспечения производства прочных, долговечных конструкций, способных противостоять физическим и химическим воздействиям погодных условий и эксплуатации.Некоторые минералы, такие как гипс, пирит, цеолит, опал, халцедон, кремний, кремнистый сланец, вулканическое стекло и некоторые вулканические породы с высоким содержанием кремнезема, могут повредить связку, необходимую для производства прочного бетона. Гипс замедляет схватывание портландцемента; пирит может разделяться с образованием серной кислоты и пятен оксида железа; кремнезем может реагировать с щелочными веществами в цементе, что приводит к появлению трещин и «выскакиваний». Все эти реакции в конечном итоге повредят бетон, что сделает его нежелательным или непригодным для использования заполнителем.Спецификации материала основания, основания и наполнителя класса II менее строгие, чем спецификации для бетона из портландцемента и асфальтобетона. 6

Добавки для бетона

Пуццолановые добавки можно добавлять в портландцементный бетон для минимизации щелочных реакций. Пуццолановые материалы представляют собой кремнеземистые или кремнеземистые и глиноземистые материалы природного или искусственного происхождения. В присутствии влаги он реагирует с гидроксидом кальция с образованием вяжущих соединений. Кизельгур, диатомит, вулканический пепел, опаловый сланец, пумицит, туф и некоторые глины, такие как каолинит, — все это природные пуццалоновые материалы. 6

Портлендская цементная ассоциация (PCA) выделяет четыре основные причины использования добавок. Эти причины (Мамлук, 2006) 7 :

  1. Уменьшить стоимость бетонного строительства
  2. Достижение определенных свойств бетона более эффективно, чем другими способами
  3. Обеспечение качества бетона на этапах смешивания, транспортировки, укладки и выдержки в неблагоприятных погодных условиях
  4. Преодоление определенных аварийных ситуаций во время конкретных операций (стр.219)

Добавки классифицируются по следующим химическим и функционально-физическим характеристикам (Mamlouk, 2006) 7 :

  1. Воздухововлечение (ASTM C 260): образуют крошечные пузырьки воздуха в затвердевшем бетоне, чтобы вода могла расширяться при замерзании.
  2. Водоредукторы: увеличивают подвижность частиц цемента в пластиковой смеси, обеспечивая удобоукладываемость при более низком содержании воды.
  3. Замедлители схватывания: используются для задержки начального схватывания бетона.
  4. Добавки для регулятора гидратации: останавливает и повторно активирует процесс гидратации бетона, позволяя длительное время использовать товарный бетон.
  5. Ускорители (ASTM D 98): используются для развития ранней прочности бетона с большей скоростью, чем у обычного бетона.
  6. Дополнительные вяжущие добавки: побочные продукты других отраслей промышленности, которые используются для улучшения некоторых свойств бетона и уменьшения проблемы их утилизации. Зола-унос (ASTM C 618), измельченный гранулированный доменный шлак (ASTM 989, AASHTO M 302), микрокремнезем (ASTM C 1240, AASHTO M 307) и природные пуццоланы (ASTM C595) являются обычными добавками.
  7. Специальные добавки: доступно несколько добавок для улучшения качества бетона различными способами. Эти добавки включают, но не ограничиваются ими, агенты, улучшающие обрабатываемость, ингибиторы коррозии, вспомогательные средства для перекачивания и связующие.

Со всеми добавками инженер должен подробно изучить их применение, а также стоимость каждой смеси перед их использованием. (стр. 219-230)

Распределение частиц по размерам

Гранулометрический состав важен для различных применений заполнителя.Заполнитель подразделяется на два основных размера: крупнозернистый и мелкозернистый. Крупный заполнитель задерживается на 3/8-дюймовом сите (сито США № 4). Мелкие заполнители проходят через сито 3/8 дюйма и задерживаются на сите № 200 США. 6

Мелкий заполнитель

Мелкозернистый заполнитель состоит из природного песка, искусственного песка или их комбинации. Спецификации ASTM C33 для мелкозернистых заполнителей для бетона приведены в таблице 1. 3

Таблица 1 3
Спецификации градации ASTM для мелкозернистых заполнителей
для портландцементного бетона

Сито Проходящий процент
9.5 мм (3/8 дюйма) 100
4,75 мм (№ 4) 95-100
2,36 мм (№ 8) 80-100
1,18 мм (№ 16) 50-85
0,60 мм (№ 30) 25-60
0,30 мм (№ 50) 10-30
0,15 мм (№ 100) 0-10

Примечание: Бетон с мелким заполнителем около 0,30 мм (№ 50) и ниже может иметь проблемы с удобоукладываемостью, перекачкой и утечкой.Чтобы облегчить эти проблемы, в смесь могут быть добавлены добавки.

Количество допустимых вредных веществ в мелкодисперсных заполнителях описано в Таблице 2. 3

Таблица 2 3
Пределы содержания вредных веществ в мелкозернистом заполнителе для бетона

Элемент Массовый процент от общего количества образца, не более
Куски глины и рыхлые частицы 3,0
Материал мельче, чем No.200 сито:
— Бетон, подверженный истиранию
— Все остальные Бетоны
3,0 A
5,0
Уголь и лигнит:
— Там, где важен внешний вид поверхности бетона
— Все прочие виды бетона
0,5
1,0

A В случае искусственного песка, если материал мельче, чем сито № 200, состоит из пыли трещин, практически не содержащей глины или сланца, эти пределы разрешается увеличить до 5 и 7% соответственно. .

Прочность мелких заполнителей можно определить, подвергнув материал пяти циклам испытания на прочность. Средневзвешенные потери не могут превышать 10% при использовании сульфата натрия или 15% при использовании сульфата магния. 3

Общий курс

Согласно ASTM C33 крупнозернистый заполнитель состоит из гравия, щебня, щебня, доменного шлака с воздушным охлаждением, дробленого гидроцементного бетона или их комбинации. Использование дробленого гидроцементного бетона может потребовать дополнительных мер предосторожности.Хотя он регулярно дает удовлетворительные результаты; может потребоваться дополнительное тестирование воды для смешивания и влияние сопротивления замораживанию-оттаиванию и свойств воздушных пустот. 3

См. Таблицу 3, где приведены спецификации градации ASTM C33 для крупнозернистых заполнителей бетона. 3

Таблица 3 3
Требования к сортировке грубых заполнителей

5

Размер № Номинальный размер (сита с квадратными отверстиями) Количество мельче, чем каждое лабораторное сито (квадратные отверстия), массовый процент
100 мм (4 дюйма) 90 мм (3.5 дюймов) 75 мм (3 дюйма) 63 мм (2,5 дюйма) 50 мм (2 дюйма) 37,5 мм (1,5 дюйма) 25 мм (1 дюйм) 19 мм (3/4 дюйма) 12,5 мм (1/2 дюйма) 9,5 мм (3/8 дюйма) 4,75 мм (№ 4) 2,36 мм (№ 8) 1,18 мм (№ 16) 300 мкм (№ 50)
1 90–37,5 мм
(3,5–1,5 дюйма)
100 90–100 25–60 0–15 0–5
2 От 63 до 37.5 мм
(от 2,5 до 1,5 дюйма)
100 от 90 до 100 от 35 до 70 от 0 до 15 от 0 до 5
3 от 50 до 25 мм
(от 2 до 1 дюйма)
100 от 90 до 100 от 35 до 70 от 0 до 15 от 0 до 5
357 от 50 до 4,75 мм
(от 2 до No.4)
100 95–100 35–70 10–30 0–5
4 37,5–19 мм
(1,5–3 / 4 дюйма)
90–100 20–55 0–15 0–5
467 от 37,5 до 4,75 мм
(от 1,5 до № 4)
95 до 100 от 35 до 70 от 10 до 30 от 0 до 5
5 От 25 до 12.5 мм
(от 1 до 1/2 дюйма)
100 от 90 до 100 от 20 до 55 от 0 до 10 от 0 до 5
56 от 25 до 9,5 мм
(от 1 до 3/8 дюйма)
100 от 90 до 100 от 40 до 85 от 10 до 40 от 0 до 15 5
57 от 25 до 4,75 мм
(от 1 до No.4)
100 от 95 до 100 от 25 до 60 от 0 до 10 от 0 до 5
6 19–9,5 мм
(3/4–3 / 8 дюйма)
100 90–100 20–55 0–15 0–5
67 от 19 до 4,75 мм
(от 3/4 до № 4)
100 90 до 100 от 20 до 55 от 0 до 10 от 0 до 5
7 12.От 5 до 4,75 мм
(от 1/2 до № 4)
100 от 90 до 100 от 40 до 70 от 0 до 15 от 0 до 5
8 от 9,5 до 2,36 мм
(от 3/8 дюйма до № 8)
100 от 85 до 100 от 10 до 30 от 0 до 10
89 От 9,5 до 1,18 мм
(от 3/8 дюйма до No.16)
100 90–100 20–55 5–30 0–10 0–5
9 A от 4,75 до 1,18 мм
(от 4 до 16)
100 от 85 до 100 от 10 до 40 0 до 40 от 0 до 5

Пределы содержания вредных веществ в грубых заполнителях можно найти в Таблице 4 и на Рисунке 1. 3

Таблица 4 3
Предельные значения для вредных веществ и требования к физическим свойствам грубого заполнителя для бетона

№200) Сито C

Обозначение класса * Тип или расположение бетонной конструкции Максимально допустимое значение,% Уголь и
Лигнит
Истирание A Магний
Сульфатная стойкость (5 циклов) B
Районы сурового выветривания
1S Фундаменты, фундаменты, колонны и балки, не подверженные воздействию погодных условий, внутренние плиты перекрытия, подлежащие покрытию 10 1.0 1.0 50
2S Внутренние полы без покрытия 5.0 1,0 0,5 50
3S Фундаментные стены над уровнем земли, подпорные стены, опоры, опоры,
фермы и балки, подверженные воздействию погодных условий
5,0 5,0 7,0 1,0 0,5 50 18
4S Тротуары, настилы мостов, проезды и бордюры, дорожки, патио, полы в гаражах, открытые полы и подъезды или конструкции у воды, подверженные частому увлажнению 3.0 5,0 5,0 5,0 0,5 50 18
5S Открытый архитектурный бетон 2,0 3,0 3,0 1,0 0,5 50 18
Районы умеренного выветривания
1M Фундаменты, фундаменты, колонны и балки, не подверженные воздействию погодных условий, внутренние плиты перекрытия, подлежащие покрытию 10 1.0 1,0 50
2M Внутренние полы без покрытий 5,0 1,0 0,5 50
3M Фундаментные стены над уровнем земли, подпорные стены, опоры, опоры, балки и балки, подверженные воздействию погодных условий 5,0 8,0 10 1,0 0,5 50 18
4M Тротуары, настилы мостов, проезды и бордюры, дорожки, патио, полы гаражей, открытые полы и подъезды или водные конструкции, подверженные частому увлажнению 5.0 5,0 7,0 1,0 0,5 50 18
Незначительные районы выветривания
5M Открытый архитектурный бетон 3,0 3,0 5,0 1,0 0,5 50 18
1N Плиты, подверженные дорожному истиранию, настилы мостов, полы, тротуары, тротуары 5,0 1.0 0,5 50
2N Все остальные классы бетона 10 1.0 1.0 50

ПРИМЕЧАНИЕ. На Рисунке 1 показано расположение регионов, подверженных атмосферным воздействиям в Калифорнии.
* S: Регион с суровыми погодными условиями — холодный климат, где бетон подвергается воздействию химикатов для борьбы с обледенением или других агрессивных агентов, или где бетон может стать насыщенным из-за постоянного контакта с влагой или свободной водой перед повторным замерзанием и оттаиванием.
* M: Район умеренного атмосферного воздействия — климат, при котором время от времени ожидается замерзание, но при котором бетон при наружных работах не будет постоянно подвергаться замораживанию и оттаиванию в присутствии влаги или химикатов для борьбы с обледенением.
* N: Незначительный регион выветривания — климат, при котором бетон редко подвергается замерзанию в присутствии влаги.
A Измельченный доменный шлак с воздушным охлаждением исключается из требований к истиранию.
B Допустимые пределы прочности должны составлять 12%, если используется сульфат натрия.
C Этот процентный показатель при любом из следующих условий: (1) разрешается увеличивать до 1,5, если материал практически не содержит глины или сланца; или (2) если
известно, что источник мелкого заполнителя, который будет использоваться в бетоне, содержит меньше указанного максимального количества, проходящего через 75-мкм (№ 200)
сито (Таблица 1) процентный предел (L) количества грубого заполнителя разрешается увеличивать до L = 1 + [(P) / (100 — P)] (T — A), где P =
процентное содержание песка в бетоне от общего количества заполнителя, T = предел Таблицы 1 для количества, разрешенного в мелкозернистом заполнителе, nd A = фактическое
сумма в мелком агрегате.(Это обеспечивает взвешенный расчет, предназначенный для ограничения максимальной массы материала, проходящего через сито 75 мкм (№ 200) в
бетон до того, который был бы получен, если бы и мелкий, и крупный заполнитель поставлялись с максимальным процентным соотношением, указанным в таблице для каждого из них.
ингредиенты.)

Факторы, влияющие на качество совокупных отложений

Все природные агрегаты образуются в результате разрушения больших массивов горных пород.
Типы горных пород и степень выветривания являются основными факторами, влияющими на качество строительного заполнителя.Тип породы определяет твердость, долговечность и потенциальную химическую реакционную способность породы при смешивании с цементом для изготовления бетона. Используются все классы горных пород, и их необходимо оценить с помощью комбинации тестов, чтобы проверить их пригодность для конкретного применения. 6

Отложения аллювиального песка и гравия изменчивы и отражают породы, которые можно найти в водосборном бассейне ручья или реки. Эти отложения обычно имеют округлые зерна. Месторождения щебня обычно имеют острые края и небольшое разнообразие размеров зерен. 6

Выветривание обычно снижает физическую прочность породы и может сделать материал непригодным для использования с высокой прочностью и долговечностью. Он также может изменять химический состав заполнителя, делая его менее подходящим для некоторых применений заполнителя. Если погодные условия достаточно сильны, осадок может не подходить для использования в качестве портландцементного бетона или асфальтобетона. Таблица 5 демонстрирует типичные агрегатные свойства. 6

Таблица 5 4
Типичные физические свойства общего заполнителя

Объект Гранит Известняк Кварцит Песчаник
Масса устройства (шт. Фут) 162-172 117-175 165-170 119-168
Прочность на сжатие (x 10 3 psi) 5-67 2.6-28 16-45 5-20
Прочность на растяжение (psi) 427-711 427-853 NA (1) 142-427
Прочность на сдвиг (x 10 3 psi) 3,7-4,8 0,8-3,6 NA (1) 0,3-3,0
Модуль упругости при разрыве (фунт / кв. Дюйм) 1380-5550 500-2000 NA (1) 700-2300
Модуль упругости (x 10 6 psi) 4.5-8,7 4,3-8,7 NA (1) 2,3-10,8
Водопоглощение (% по массе) 0,07-0,30 0,50-24,0 0,10-2,0 2,0-12,0
Средняя пористость (%) 0,4-3,8 1,1-31,0 1,5-1,9 1,9-27,3
Линейное расширение (x 10 -6 дюйма / дюйм / ° C) 1,8-11,9 0,9-12,2 7,0-13.1 4,3-13,9
Удельный вес 2,60–2,76 1,88–2,81 2,65–2,73 2,44–2,61

Природный песок и гравий по сравнению с заполнителем из щебня

В строительстве регулярно используются природный песок и щебень. Использование зависит от технических требований и экономических соображений. При производстве портландцементного бетона, как правило, предпочтение отдается аллювиальному гравию. Благодаря округлым частицам получается влажная смесь, с которой легче работать.Удобоукладываемость портландцементной бетонной смеси можно улучшить при использовании щебня. В смесь необходимо добавить больше песка, воды и цемента, чтобы улучшить удобоукладываемость. Из-за этого производство смеси более дорогое. Угловые фрагменты, образующиеся при дроблении камня, увеличивают износ и повреждения насосного оборудования. Сделать щебень дороже для использования на участках, где требуется перекачка бетона. Щебень обычно дороже в производстве из-за дополнительных затрат, связанных с бурением, взрывными работами и дроблением, необходимыми для производства заполнителей различных размеров. 6

Щебень предпочтительнее природного гравия в асфальтобетоне. Асфальт лучше сцепляется с шероховатыми поверхностями. Сцепление угловатых частиц укрепляет асфальтобетон и дорожное основание. 6

Экологические ограничения, географическое распределение и требования к качеству сделали добычу песка и гравия в некоторых случаях нерентабельной. Наиболее важными коммерческими источниками песка и гравия были ледниковые отложения, русла рек и поймы рек.Использование морских месторождений в США в основном ограничивается борьбой с эрозией пляжей и восполнением запасов. В результате щебень остается преобладающим выбором для использования в строительных заполнителях. Все чаще рециклированный асфальт и портландцементный бетон заменяют чистый заполнитель, хотя процент от общего количества заполнителя, поставляемого из вторичных материалов, в 2010 г. оставался очень низким. 5 По данным Геологической службы США; из-за растущих экологических проблем и нормативных ограничений во многих районах Калифорнии, вероятно, что добыча ресурсов песка и гравия в ручьях и поймах станет менее распространенной в будущем.Если эта тенденция сохранится, щебень может стать все более важным для рынка Калифорнии. 6

Таблица 6 дополнительно описывает физические, химические и механические характеристики заполнителя и его относительную важность при использовании. 7

Таблица 6 7
Основные агрегатные свойства

основание

Свойство Относительная важность для конечного использования *
портландцемент бетон асфальт бетон
ФИЗИЧЕСКИЕ
Форма частицы (угловатость) M V V
Форма частицы (шелушение, удлинение) M M M
Размер частиц — максимальный M M M
Размер частиц — распределение M M M
Текстура поверхности частицы M V V
Структура пор, пористость V M U
Удельный вес, абсорбция V M M
Прочность — атмосферостойкость V M M
Масса устройства, пустоты без пор, уплотненные V M M
Объемная стабильность — термическая M U U
Объемная стабильность — влажный / сухой M U M
Объемная стабильность — замораживание / оттаивание V M M
Целостность при нагревании U M U
Вредные компоненты V M M
ХИМИЧЕСКИЙ
Растворимость M U U
Поверхностный заряд U V U
Сродство к асфальту U V M
Реакционная способность к химическим веществам V U U
Стабильность объема — химическая V M M
Покрытия M M U
МЕХАНИЧЕСКИЕ
Прочность на сжатие M U U
Прочность (ударопрочность) M M U
Сопротивление истиранию M M M
Характер продуктов истирания M M U
Стабильность массы (жесткость, упругость) U V V
Полируемость M M U
* V = очень важно, M = умеренно важно, U = неважно или неизвестно

Сводные характеристики и требования

Все потенциальные совокупные источники должны быть тщательно проверены, чтобы гарантировать качество совокупности.Следующие тесты представляют некоторые из отраслевых стандартов:

  1. Ситовой анализ (ASTM C 136, AASHTO T-27): этот метод испытаний оценивает градацию агрегата с использованием ряда сит. Затем результаты наносятся на полулогарифмическую диаграмму градации агрегированных значений. Эта диаграмма показывает гранулометрический состав любого данного заполнителя и может быть лучше оценена для его использования в портландцементном бетоне и асфальтобетоне. 2,7
  2. Лос-Анджелес Раттлер (ASTM C 131 / C 535, AASHTO T-96): Это испытание оценивает прочность агрегатов и сопротивление истиранию.Результаты показывают способность агрегатов противостоять разрушающему воздействию нагрузок. Заполнитель должен быть в состоянии противостоять раздавливанию, деградации и дезинтеграции при складировании, уплотнении и смешивании. 2,7
  3. Прочность и долговечность (ASTM C 289): Испытание на прочность и долговечность используется для демонстрации способности заполнителей противостоять атмосферным воздействиям. Испытание имитирует атмосферные воздействия путем замачивания заполнителей в растворе сульфата натрия или магния. Затем образцы сушат, взвешивают и повторно замачивают.После 5 циклов агрегаты промывают, сушат и взвешивают. Затем вычисляется средневзвешенная процентная потеря для всего образца и наносится на полулогарифмический график. Результаты покажут вам, является ли совокупность «безвредной», «потенциально вредной» или «вредной». Для заполнителей, которые считаются вредными, в смесь можно добавлять такие примеси, как летучая зола, чтобы улучшить стабильность бетонной смеси. 2,7
  4. Удельный вес и абсорбция (ASTM C 127 / C 128, AASHTO T-85 / T-84): Удельный вес оценивает, как учитываются пустоты в частицах заполнителя.Абсорбция оценивает количество воды, которое впитает заполнитель. Оба они важны для проектирования бетонной смеси. Высокая степень абсорбции означает, что в конструкции потребуется большее количество воды или связующего, что сделает смесь менее экономичной. 2,7
  5. R-Value (Калифорнийский тест 301, ASTM D 2844, AASHTO T-190): метод R-value используется для измерения потенциальной прочности земляного полотна, основания и материалов основного слоя, используемых для транспортные тротуары. 2,7

В таблице 7 представлен ряд процедур тестирования, которые можно использовать для определения совокупной пригодности для различных применений.Дополнительные стандарты можно найти в AASHTO и ASTM или в различных государственных и местных агентствах, которые определяют требования к испытаниям для совокупных продуктов. (Национальная каменная ассоциация, 1993) 4

Таблица 7
Процедуры испытаний и руководство для заполнителя

Категория Метод испытания Эквивалентный / аналогичный тест Краткое описание или использование
Крупный заполнитель AASHTO M-43 ASTM C448 Стандартные размеры грубого заполнителя
Заполнитель основания, основания и грунта AASHTO M-283 Крупнозернистый заполнитель для строительства автомагистралей и аэропортов
ASTM D 2940 Градуированный агрегат для баз или подоснов
AASHTO M-147 ASTM D 1241 Материалы для грунтовых и грунтовых заполнителей, грунтовых и поверхностных слоев
AASHTO M-155 Гранулированный материал для контроля закачки под бетонное покрытие
Заполнитель для битумных дорожных покрытий AASHTO M-29 ASTM D 1073 Мелкозернистый заполнитель для битумных смесей для дорожных покрытий
ASTM D 692 Грубый заполнитель для битумных смесей для дорожных покрытий
AASHTO M-17 ASTM D 242 Минеральный наполнитель для битумных смесей для дорожных покрытий
AASHTO R-12 Расчет битумной смеси с использованием процедур Маршалла и Хвима (см. Также публикацию Института асфальта MS-2)
ASTM D 3515 Горяче-смешанные битумные смеси для дорожного покрытия (включает совокупные спецификации для смесей открытого сорта)
ASTM D 693 Дробленый заполнитель для дорожных покрытий из щебня
ASTM D 1139 Щебень, шлаковый щебень и гравий для битумной обработки поверхности
Заполнитель для портландцементного бетона AASHTO M-6 Мелкозернистый заполнитель для портландцементного бетона
AASHTO M-80 Крупнозернистый заполнитель для портландцементного бетона
ASTM C 33 Бетонные заполнители (мелкие и крупные)
AASHTO M-195 ASTM C 330 Легкие заполнители для конструкционного бетона
Практика — Общие AASHTO R-1 ASTM E 380 Метрическое практическое руководство
AASHTO R-10 Определения терминов для спецификаций и процедур
AASHTO R-11 ASTM E 29 Практика указания, какие места на рисунках должны считаться значимыми в заданных предельных значениях
AASHTO M-145 Классификация грунтов и грунтов-заполнителей, насыпных материалов и основных материалов
AASHTO M-146 Термины, относящиеся к земляному полотну, грунтовым заполнителям и насыпным материалам
ASTM D 8 Определения терминов, относящихся к материалам для дорог и тротуаров
ASTM C 125 Терминология, относящаяся к бетону и бетонным заполнителям
ASTM D 3665 Случайная выборка строительных материалов
Общие испытания AASHTO M-92 ASTM E 11 Сита из проволочной ткани для целей тестирования
AASHTO M-132 ASTM D 12 Термины, относящиеся к плотности и удельному весу
AASHTO M-231 Гири и весы, используемые при тестировании
ASTM D 3666 Оценка контролирующих и испытательных агентств для битумных материалов для мощения
ASTM C 1077 Практика лабораторных испытаний бетона и бетонных заполнителей
Руководство ASTM по испытаниям заполнителя и бетона (находится в томе ASTM 04.02 на обратной стороне серых страниц)
Отбор проб и подготовка проб AASHTO T-2 ASTM D 75 Отбор проб агрегатов
AASHTO T-248 ASTM C 702 Уменьшение полевых образцов заполнителя до размера для испытаний
AASHTO T-87 ASTM D 421 Сухая подготовка нарушенной почвы и проб грунтовых заполнителей для испытаний
AASHTO T-146 ASTM D 2217 Влажная подготовка образцов нарушенного грунта для испытаний
Анализ размера частиц заполнителя AASHTO T-27 ASTM C 136 Ситовой анализ мелких и крупных заполнителей
AASHTO T-11 ASTM C 117 Количество материала мельче, чем No.200 Сито
AASHTO T-30 Механический анализ извлеченных агрегатов
AASHTO T-88 ASTM D 422 Анализ размера частиц почвы
AASHTO T-37 ASTM D 546 Ситовой анализ минерального наполнителя
Свойства мелких фракций в заполнителях AASHTO T-176 ASTM D 2419 Испытание на эквивалент песка для пластиковых мелких частиц в сортированных заполнителях и почвах
ASTM D 4318 Объединяет AASHTO
Т-89 и Т-90
Предел жидкости, предел пластичности и индекс пластичности грунтов
AASHTO T-210 ASTM D 3744 Совокупный индекс прочности
Испытания для оценки общего качества заполнителя (неограниченного или в бетоне) AASHTO T-104 ASTM C 88 Прочность заполнителя при использовании сульфата натрия или сульфата магния
AASHTO T-103 Прочность заполнителей при замораживании и оттаивании
ASTM D 4792 Возможное расширение агрегатов в результате реакций гидратации
AASHTO T-161 ASTM C 666 Устойчивость бетона к быстрому замерзанию и оттаиванию
ASTM C 671 Критическое расширение бетонных образцов, подверженных замерзанию
ASTM C 682 Оценка морозостойкости крупных заполнителей в бетоне с воздухововлекающими добавками с помощью процедур критического расширения
AASHTO T-96 ASTM C 131 или C 535 Устойчивость к истиранию (истиранию и ударам) мелкого или большого размера грубого заполнителя при использовании машины Los Angeles
Вредные материалы в совокупности AASHTO T-21 ASTM C 40 Органические примеси в песках для бетона
AASHTO T-71 ASTM C 87 Влияние органических примесей в мелкозернистом заполнителе на прочность строительного раствора
AASHTO T-112 ASTM C 142 Куски глины и рыхлые частицы в агрегате
AASHTO T-113 ASTM C 123 Легкие детали в совокупности
ASTM C 294 Номенклатура компонентов природного минерального агрегата
ASTM C 295 Практика петрографических исследований заполнителей для бетона
ASTM C 227 Потенциал реакционной способности щелочей комбинаций цемент-заполнитель
ASTM C 289 Потенциальная реакционная способность агрегатов (химический метод)
ASTM C 586 Потенциальная щелочная реакционная способность карбонатных пород для бетонного заполнителя (метод каменного цилиндра)
ASTM D 4791 Плоские или удлиненные частицы в крупном заполнителе
ASTM C 342 Возможность изменения объема комбинаций цемент-заполнитель
ASTM C 441 Эффективность минеральной добавки в предотвращении чрезмерного расширения из-за реакции щелочных агрегатов
Испытание заполнителя в битумных месторождениях AASHTO T-165 ASTM D 1075 Влияние воды на когезию уплотненных битумных смесей
AASHTO T-182 ASTM D 1664 Покрытие и удаление битумно-агрегатных смесей
AASHTO T-195 ASTM D 2489 Определение степени покрытия частиц смеси битумных заполнителей
AASHTO T-270 Центрифуга Эквивалент керосина и приблизительное соотношение битума (ABR)
AASHTO T-283 Устойчивость уплотненной битумной смеси к повреждениям, вызванным влагой
ASTM D 4469 Расчет процента поглощения заполнителем в смеси асфальтового покрытия
ASTM D 1559 Сопротивление пластическому течению — Аппарат Маршалла
ASTM D 1560 Деформация и когезия — аппарат Hveem
Взаимосвязь агрегированной основной влаги — плотности — проницаемости AASHTO T-99 ASTM D 698 Соотношение влага — плотность с использованием 5.5-фунтовый трамбовщик и 12-дюймовый трамбовщик
AASHTO T-180 ASTM D 1557 Зависимость влажности от плотности с использованием 10-фунтовой трамбовки и 18-дюймового опускания
AASHTO T-215 ASTM D 2434 Проницаемость сыпучих грунтов (постоянный напор)
AASHTO T-224 ASTM D 4718 Поправка на крупные частицы при испытаниях на уплотнение грунта
AASHTO T-238 ASTM D 2922 Плотность почвы и агрегатов почвы на месте ядерными методами (малая глубина, методы обратного рассеяния и прямой передачи)
AASHTO T-239 ASTM D 3017 Влагосодержание почвы и грунтовых агрегатов на месте ядерными методами (малая глубина, только метод обратного рассеяния)
ASTM D 4253 Индекс плотности почв с использованием вибростола (применимо к несвязным, самодренирующимся почвам или почвенным агрегатам)
AASHTO T-191 ASTM D 1556 Плотность грунта на месте по методу песчаного конуса
AASHTO T-205 ASTM D 2167 Плотность грунта на месте по методу резинового шара
Параметры прочности заполнителя основания AASHTO T-190 ASTM D 2844 Значение сопротивления R и давление расширения уплотненных грунтов
AASHTO T-193 ASTM D 1883 Калифорнийское передаточное отношение
AASHTO T-234 ASTM D 2850 Параметры прочности грунтов при трехосном сжатии (статическая нагрузка)
AASHTO T-274 Модуль упругости грунтов земляного полотна (многократное нагружение)
AASHTO T-212 ASTM D 3397 Трехосная классификация основных материалов, грунтов и грунтовых смесей (Техасский метод, статическая нагрузка, прекращено в качестве стандарта в 1989 г.)
Удельный вес, абсорбция и удельный вес заполнителя AASHTO T-84 ASTM C 128 Удельный вес и абсорбция мелкозернистого заполнителя
AASHTO T-85 ASTM C 127 Удельный вес и поглощение грубого заполнителя
AASHTO T-19 ASTM C 29 Удельный вес и пустоты в заполнителе
Фрикционные свойства заполнителя и дорожных покрытий AASHTO T-242 ASTM E 374 Фрикционные свойства поверхностей с твердым покрытием с использованием полноразмерной шины (прицепы с салазками)
AASHTO T-279 ASTM D 3319 Ускоренная полировка заполнителей с использованием британского колеса
AASHTO Т-278
ASTM E 303 Измерение фрикционных свойств поверхности с помощью британского маятникового тестера (BPT)
ASTM D 3042 Нерастворимый остаток в карбонатных агрегатах
ASTM E 707 Сопротивление скольжению вымощенных поверхностей с использованием тестера трения с переменной скоростью в состоянии NC
ASTM E 660 Ускоренная полировка заполнителей или поверхностей дорожного покрытия с использованием круглошлифовального станка с малым колесом
Измерения и показатели формы и текстуры частиц ASTM D 4791 Плоские или удлиненные частицы в крупномасштабном агрегате
ASTM D 3398 Индекс формы и текстуры агрегатных частиц (стр.3-74 — 3-79)

Все потенциальные совокупные ресурсы должны быть оценены квалифицированным инженером и протестированы в соответствии с потребностями и условиями каждого объекта.

Список литературы

  1. ААШТО. Видение и цели. 2 ноября 2011 г.
    www.transportation.org/Pages/VisionandGoals.aspx
  2. Американское общество испытаний и материалов. О ASTM. 2 ноября 2011 г.
    www.astm.org/ABOUT/overview.html
  3. «ASTM C 33-03, Стандартные спецификации для бетонных заполнителей», Ежегодный сборник стандартов ASTM , том 04.02, Американское общество испытаний и материалов, Филадельфия, Пенсильвания, 2001.
  4. Барксдейл, Ричард Д. (ред.), 1991, The Aggregate Handbook . Вашингтон, округ Колумбия: Национальная каменная ассоциация.
  5. Болен, Уоллес П., 2011, Строительство из песка и гравия, Геологическая служба США, Сводки по минеральным товарам.
  6. Колер, С.Л., 2006, Общая доступность в Калифорнии, Геологическая служба Калифорнии, лист карты 52.
  7. Мамлук, Майкл С. и Заневски, Джон П., 2006, Материалы для инженеров-строителей (2-е изд.). Аппер-Сэдл-Ривер, Нью-Джерси: Pearson Prentice Hall.

WLL = 24 кН / м. WDL = 26 кН / м. PLL = 122 кН / м. PDL = 123 кН / м. | Chegg.com

Расшифрованный текст изображения: WLL = 24kN / m. WDL = 26 кН / м. PLL = 122 кН / м. PDL = 123 кН / м. L = 6м. S (марка стали) = 420. C (класс бетона) = 20. d ‘= 5 мм. Lav = 3м
Для данного момента RC спроектируйте балку и колонны (рассматривайте колонну как короткую колонну): -Проектируйте балку на изгиб и сдвиг в ее критическом сечении и нарисуйте детали сечения (сечение балки показано на рисунке) -Спроектируйте колонну и нарисуйте Детали раздела (Все свойства приведены в следующей таблице для каждого студента.Только для расчета конструкций вы можете использовать любое программное обеспечение.) Wu 12cm 2,8 m bw Beam Section
ТАБЛИЦА 1: Марки бетона: Setik food (МПа) Марка бетона C16 C18 C20 C25 C30 C35 C40 C45 C50 fok (МПа) 16 18 20 25 30 35 40 45 50 (МПа) 1,4 1,5 1,6 1,8 1,9 2,1 2,2 2,3 2,5 подаваемого (МПа) ) 10,7 12,0 13,3 16,7 20,0 23,3 26,7 30,0 33,3 f’d = 0,85 подача (МПа) 9,1 10,2 11,3 14,2 17,0 19,8 22,7 23,5 28,3 0,90 1,00 1,00 1,15 1,25 1,35 1,45 1,55 1,65 ТАБЛИЦА 2: Марки стали: S220 220 S420 420 365 S500 500 1

Марки арматурной стали fyk (МПа) Syd = lyk / 1.15 (МПа) C14 C16 C20 C25 C30 C35 C40 C45 C50 Syuf ‘= = 1 / 0,85 подача 24,1 21,1 16,9 13,5 11,3 9,6 8,4 7,5 6,8 46,0 40,3 32,2 25,8 21,5 18,4 16,1 14,3 12,9 54,8 48,0 38,4 30,7 25,6 21,9 19,2 17,1 15,3
ТАБЛИЦА 3: Площадь и вес арматурных стержней: Размер 2 мм 6 8 10 12 14 16 18 20 22 24 25 26 28 30 32 34 36 38 40 42 44 46 48 50 Вес Количество стержней 3 4 5 6 7 8 9 10 Н / м 2,18 28 57 85113 141170 198 226 254 283 3,87 50 101 151 201 251 302 352 402 452 503 6,05 79 157 236 314 393471550 628 707 785 8.71 113 226 339 452 565 679 792 905 1018 | 1131 11,85 154 308 462 616 770 924 1078 1232 | 1385 1539 15,48 201402 603 804 1005 1206 1407 1608 | 1810 2011 19.60 254 | 509 763 1018 | 1272 1527 1781 2036 2290 2545 24,19 314 | 628 942 1257 1571 1885 | 2199 2513 28273142 29,27 380 760 114015211

812661 30413421 3801 34,84 452 905 1357 1810 2262 2714 3167 361940724524 37,80 497 | 982 1473 1963 2454 29453436 3927 4418 4909 40,89 531 1062 1593 2124 | 265531863717 4247 47785309 47,42 616 | 1232 1847 2463 307936954310 4

  • 426158 54.43 70714142121 2827353442414948 5655 63627069 61,93 804 | 1608 2413 32174021 48255630643472388042 69,92 908 1816 | 2724 3632 454054486355 7263 8171 9079 78,39 1018) 2036 | 305440725089 610771258143 | 9161 10179 87,34 1134 2268 340245365671 6805 | 79399073 | 10207 11341 96,77 1257 2513 37705027628375408796 100531131012566 106,69 1385 2771 41565542 6927 8313 9698 11084 | 12469 | 13854 117,09 | 1521 3041 4562 6082 7603

    064412164 | 1368515205 12714533713

    362961662 1368515205 127145337166235 1810 3619 54297238 9048 108571266714476 16286 | 18096 151,21 | 1963 3927 58

    4 9817 11787 | 1374415708 17671 | 19635
    Таблица расчета колонн 3 S420-zs / h = 0,80 25 c / h: 01 Nd b • Ast A’s + W = 0,0 20 975 47444777 07 0,65 0,6 0,2 Zs — hp = ofca / fyd As = A ‘; = pbh 0,55 045 so 15 0,4 0,35 04 Na / bhfcd 03025 0,5 02 0,15 07 Coi 10 005 1,5 05 20 30 Сбалансированное состояние 01 0,2 03 04 05 0,6 07 08 09 Ma / bh? Fcd
    Таблица расчета колонн 4 S420-zs / h = 0,90 2,5 e / h = 0,1 Nd b 0,75 20 0,2: A +: A’s + Zs — h p = ofca / fyd As = A’s = pbh 0.65 2,6 055 as 1,5 0,45 0,4 0,35 0,3 0,25 0,4 05 Nd / bhfcd 0,16 0,7 10 Сбалансированное состояние FWF005 1,5 as! 20 30 01 0,2 03 04 07 0,8 0,9 0,5 0,6 млн. Тонн в час

    Предыдущий вопрос Следующий вопрос

    Все, что вам нужно знать о прочности бетона

    Многие считают бетон прочным и долговечным материалом, и это справедливо. Но есть разные способы оценки прочности бетона.

    Возможно, что еще более важно, каждое из этих прочностных свойств придает бетону различные качества, что делает его идеальным выбором в различных случаях использования.

    Здесь мы рассмотрим различные типы прочности бетона, почему они важны и как они влияют на качество, долговечность и стоимость бетонных проектов. Мы также демонстрируем разницу в прочности между традиционным бетоном и более новой инновационной технологией бетона — бетоном со сверхвысокими характеристиками (UHPC).

    Терминология: Прочностные свойства бетона и почему они важны

    Прочность бетона на сжатие

    Это наиболее распространенное и общепринятое измерение прочности бетона для оценки характеристик конкретной бетонной смеси.Он измеряет способность бетона выдерживать нагрузки, которые уменьшают размер бетона.

    Прочность на сжатие испытывают путем разрушения цилиндрических образцов бетона на специальной машине, предназначенной для измерения этого типа прочности. Он измеряется в фунтах на квадратный дюйм (psi). Тестирование проводится в соответствии со стандартом C39 ASTM (Американское общество испытаний и материалов).

    Прочность на сжатие важна, поскольку это главный критерий, используемый для определения того, будет ли конкретная бетонная смесь соответствовать потребностям конкретной работы.

    Бетон, фунт / кв. Дюйм

    фунтов на квадратный дюйм (psi) измеряет прочность бетона на сжатие. Более высокое значение psi означает, что данная бетонная смесь прочнее, поэтому обычно она дороже. Но эти более прочные бетоны также более долговечны, то есть служат дольше.

    Идеальный бетонный фунт на квадратный дюйм для данного проекта зависит от различных факторов, но абсолютный минимум для любого проекта обычно начинается от 2500 до 3000 фунтов на квадратный дюйм. Каждая бетонная конструкция имеет обычно приемлемый диапазон фунтов на квадратный дюйм.

    Бетонные опоры и плиты на уровне грунта обычно требуют плотности бетона от 3500 до 4000 фунтов на квадратный дюйм. Подвесные плиты, балки и фермы (часто встречающиеся в мостах) требуют от 3500 до 5000 фунтов на квадратный дюйм. Традиционные бетонные стены и колонны, как правило, имеют диапазон от 3000 до 5000 фунтов на квадратный дюйм, в то время как для покрытия требуется от 4000 до 5000 фунтов на квадратный дюйм. Бетонным конструкциям в более холодном климате требуется более высокое давление на квадратный дюйм, чтобы выдерживать большее количество циклов замораживания / оттаивания.

    Прочность на сжатие обычно проверяется через семь дней, а затем снова через 28 дней для определения psi.Семидневный тест проводится для определения раннего прироста силы, а в некоторых случаях его можно даже провести уже через три дня.

    Но конкретный фунт на квадратный дюйм основан на результатах 28-дневного испытания, как указано в стандартах Американского института бетона (ACI).

    Предел прочности бетона на разрыв

    Прочность на растяжение — это способность бетона противостоять разрушению или растрескиванию при растяжении. Это влияет на размер трещин в бетонных конструкциях и степень их возникновения.Трещины возникают, когда растягивающие усилия превышают предел прочности бетона.

    Традиционный бетон имеет значительно более низкую прочность на разрыв по сравнению с прочностью на сжатие. Это означает, что бетонные конструкции, испытывающие растягивающее напряжение, должны быть усилены материалами с высокой прочностью на разрыв, такими как сталь.

    Непосредственно проверить прочность бетона на разрыв сложно, поэтому используются косвенные методы. Наиболее распространенными косвенными методами являются прочность на изгиб и разделенная прочность на растяжение.

    Прочность бетона на раздельное растяжение определяют с помощью испытания на раздельное растяжение бетонных цилиндров. Испытание следует проводить в соответствии со стандартом ASTM C496.

    Прочность бетона на изгиб

    Прочность на изгиб используется как еще один косвенный показатель прочности на разрыв. Он определяется как мера неармированной бетонной плиты или балки, способная противостоять разрушению при изгибе. Другими словами, это способность бетона противостоять изгибу.

    Прочность на изгиб обычно составляет от 10 до 15 процентов прочности на сжатие, в зависимости от конкретной бетонной смеси.

    Существует два стандартных теста ASTM, которые используются для определения прочности бетона на изгиб — C78 и C293. Результаты выражаются в модуле разрыва (MR) в фунтах на квадратный дюйм.

    Испытания на изгиб очень чувствительны к подготовке, обращению с бетоном и его отверждению. Испытание следует проводить, когда образец влажный. По этим причинам результаты испытаний прочности на сжатие чаще используются при описании прочности бетона, поскольку эти числа более надежны.

    Дополнительные факторы

    Прочие факторы, влияющие на прочность бетона, включают:

    Соотношение вода / цемент (Вт / см)

    Относится к соотношению воды и цемента в бетонной смеси.Более низкое соотношение воды и цемента делает бетон более прочным, но также затрудняет работу с ним.

    Необходимо соблюдать правильный баланс для достижения желаемой прочности при сохранении удобоукладываемости.

    Дозирование

    Традиционный бетон состоит из воды, цемента, воздуха и смеси песка, гравия и камня. Правильная пропорция этих ингредиентов является ключом к достижению более высокой прочности бетона.

    Бетонную смесь со слишком большим количеством цементного теста легко залить, но она легко потрескается и не выдержит испытания временем.И наоборот, при слишком малом количестве цементного теста получается шероховатый и пористый бетон.

    Смешивание

    Оптимальное время перемешивания важно для прочности. Хотя прочность имеет тенденцию увеличиваться со временем перемешивания до определенного момента, слишком долгое перемешивание может фактически вызвать испарение избыточной воды и образование мелких частиц в смеси. В результате бетон становится труднее работать и становится менее прочным.

    Не существует золотого правила для оптимального времени перемешивания, так как оно зависит от многих факторов, таких как: тип используемого миксера, скорость вращения миксера, а также конкретные компоненты и материалы в данной партии бетона.

    Методы отверждения

    Чем дольше бетон остается влажным, тем он прочнее. Для защиты бетона необходимо соблюдать меры предосторожности при отверждении бетона при очень низких или высоких температурах.

    Неопровержимые факты: традиционный бетон против UHPC

    Доступна новая технология производства бетона, которая имеет более высокие прочностные характеристики, чем традиционный бетон, во всех диапазонах прочности. Этот инновационный материал называется бетоном со сверхвысокими характеристиками (UHPC), и он уже внедряется во многих инфраструктурных проектах штата и федерального правительства, учитывая его исключительную прочность и долговечность.

    UHPC очень похож на традиционный бетон по составу. Фактически, примерно от 75 до 80 процентов ингредиентов одинаковы.

    Что делает UHPC уникальным, так это интегрированные волокна. Эти волокна добавляются в бетонную смесь и составляют от 20 до 25 процентов конечного продукта.

    Волокна варьируются от полиэстера до стержней из стекловолокна, базальта, стали и нержавеющей стали. Каждое из этих интегрированных волокон создает все более прочный конечный продукт, причем сталь и нержавеющая сталь обеспечивают наибольший прирост прочности.

    Вот более подробное сравнение UHPC с традиционным бетоном:

    • Прочность на растяжение —UHPC имеет предел прочности на разрыв 1700 фунтов на квадратный дюйм, в то время как у традиционного бетона обычно измеряется от 300 до 700 фунтов на квадратный дюйм.
    • Прочность на изгиб —UHPC может обеспечить прочность на изгиб более 2000 фунтов на кв. Дюйм; Традиционный бетон обычно имеет прочность на изгиб от 400 до 700 фунтов на квадратный дюйм.
    • Прочность на сжатие —Усовершенствованная прочность на сжатие UHPC особенно важна по сравнению с традиционным бетоном.В то время как традиционный бетон обычно имеет прочность на сжатие в диапазоне от 2500 до 5000 фунтов на квадратный дюйм, UHPC может иметь прочность на сжатие до 10 раз больше, чем у традиционного бетона.

    Всего через 14 дней отверждения UHPC имеет прочность на сжатие 20 000 фунтов на квадратный дюйм. Это число увеличивается до 30 000 фунтов на квадратный дюйм при полном отверждении в течение 28 дней. Некоторые смеси UHPC даже продемонстрировали прочность на сжатие 50 000 фунтов на квадратный дюйм.

    Другие преимущества UHPC включают:

    • Устойчивость к замерзанию / оттаиванию — Исследования показали, что UHPC выдерживает более 1000 циклов замораживания / оттаивания, в то время как традиционный бетон начинает разрушаться всего за 28 циклов.
    • Ударопрочность —UHPC может поглощать в три раза больше энергии, чем обычный бетон. При ударной нагрузке UHPC был вдвое прочнее обычного бетона и рассеивал до четырех раз больше энергии. Это делает материал отличным кандидатом для сейсмостойких мостов и зданий.
    • Влагостойкость — Из-за более высокой плотности, чем у традиционного бетона, воде труднее проникать в UHPC.
    • Пластичность —UHPC может быть растянут на более тонкие секции под действием растягивающего напряжения, в отличие от обычного бетона.
    • Более длительный срок службы —UHPC служит более 75 лет по сравнению с 15–25 годами для традиционного бетона.
    • Меньший вес —Несмотря на то, что UHPC прочнее, требуется меньше материала, поэтому торцевая конструкция легче по весу, что снижает требования к опорам и опорам.

    Неудивительно, что UHPC используется во многих американских инфраструктурных проектах для ремонта стареющих мостов и дорог в стране. Материал увеличивает срок службы мостов, снижая общую стоимость жизненного цикла этих конструкций.UHPC предъявляет более низкие требования к техническому обслуживанию, учитывая его увеличенный срок службы, что еще больше способствует более низкой стоимости срока службы.

    Идеальное применение для UHPC:

    При оценке конкретной бетонной смеси для проекта важно знать различные прочностные свойства этой смеси. Знание этих цифр и того, какие свойства прочности бетона обеспечивают проекту, является ключом к выбору правильной бетонной смеси.

    Бетонные инновации, такие как UHPC, превосходят традиционный бетон во всех областях прочности, что делает его разумным выбором для любых бетонных проектов.Снижение затрат на техническое обслуживание и увеличенный срок службы UHPC обеспечивает беспроигрышную надежность и более низкие затраты на жизненный цикл.

    Фотография предоставлена ​​Peter Buitelaar Consultancy, дизайн — FDN в Эйндховене, Нидерланды.

    Классификация бетонных труб

    | Cemcast Pipe & Precast

    Таблицы высоты заполнения LRFD

    Выбор класса бетонных труб является относительно простым процессом. Использование таблиц высоты заполнения LRFD для бетонных труб делает правильный выбор трубы простым и беспроблемным процессом.

    Таблицы высоты заполнения бетонных труб LRFD очень консервативны. Предполагается, что труба будет установлена ​​в выступающей насыпи с удельным весом грунта 120 фунтов на кубический фут. Динамическая нагрузка приведена на основе AASHTO HL-93. Высота заполнения измеряется до верха трубы.

    Стандартные железобетонные трубы относятся к классам 2–5. Также доступны специальные конструкции. Существует четыре типа засыпки: от типа 1 до типа 4. Тип 4 позволяет использовать глины и илы для засыпки с небольшим уплотнением или без него, что обеспечивает наименьшую поддержку.Тип 1 состоит из сильно уплотненного гранулированного материала и обеспечивает максимальную поддержку. Класс бетонных труб и тип установки можно комбинировать, чтобы оптимизировать использование грунта на стройплощадке, предоставляя владельцу лучший монтаж при минимальных затратах.

    Стандартные железобетонные трубы Классы

    Стандартные железобетонные трубы Cemcast производятся в следующих классах:

    • Класс V 12 дюймов RCP
    • Класс IV 15 дюймов RCP
    • Класс III 18 дюймов — 72 дюйма RCP

    Обращение к таблице высоты заполнения LRFD позволяет легко определить необходимый класс RCP, сочетая глубину заглубления и тип напластования.Например, уровни уплотнения типа 3 включены в таблицы и могут быть легко достигнуты подрядчиком.

    Для стандартной установки RCP от 12 до 72 дюймов с покрытием от 1 до 13 футов над трубой, стандартный класс материала Cemcast и подстилка типа 3 будут обрабатывать все, кроме 2 из 143 возможных сценариев. Класс 4 RCP требуется для размеров 18 дюймов и 30 дюймов, когда только 1 фут покрытия доступен с подстилкой типа 3. От 1 до 13 футов покрытия, это единственные два исключения, в которых стандартного класса акций Cemcast будет недостаточно.

    Расчетные таблицы позволяют очень легко определить надлежащий класс трубы. Короче говоря, наши стандартные стандартные RCP и постельные принадлежности Типа 3 справятся практически со всеми возможными сценариями покрытия до 13 футов, с которыми вы столкнетесь при разработке проектов.

    Для сравнения, при планировании установки пластиковых труб инженеру необходимо проработать 21 уравнение для каждого диаметра трубы, глубины заглубления и типа почвы. Структурная целостность RCP упрощает все этапы процесса — от анализа почвы и укладки до установки.При проектировании трубопровода вы не можете контролировать, кто будет предлагать самую низкую цену, но можете контролировать материал трубы.

    Ничего не найдено для Wp Content Uploads 2012 10 Concrete Forming Designconstruction Guide Pdf

    Каковы основные изменения в стандарте сертификации цепочки поставок FSC?

    Скачать Что нового в обновленном стандарте FSC COC. Кроме того, предыдущая программа обязательной проверки FSC была заменена протоколом комплексной проверки с новой системой оценки рисков.Учить больше. Надлежащая практика лесонасаждения в США поддерживает цели EUTR. Его устойчиво управляемые леса соответствуют требованиям одного или нескольких из пяти ведущих агентств по сертификации, ответственных за проверку надлежащей практики ведения лесного хозяйства.

    Могут ли EPD, сертифицированные американскими лабораториями Underwriters Laboratories, использоваться для оценки экологических характеристик в системе BREEAM?

    Отвечает ли фанера APA самой низкой категории (E1) по выделению формальдегида без необходимости дальнейших испытаний?

    В соответствии с гармонизированным европейским стандартом для древесных плит, EN 13986, приложение B, «древесные плиты, склеенные смолами, не выделяющими формальдегид или не выделяющие незначительное количество формальдегида после производства, как e.грамм. изоцианатный или фенольный клей »должны быть отнесены к классу E1 (самый низкий класс выделения формальдегида) без дополнительных испытаний.

    См. Руководство APA «Формальдегид и изделия из конструкционной древесины». Фанера APA отнесена к самой низкой категории E1 по выделению формальдегида и не требует дополнительных испытаний. Фанера APA US PS 1 и PS 2 прошла испытания на соответствие стандарту EN 717-1, и уровень формальдегида уже соответствует требованиям предела классификации E1.

    См. Также: формальдегид (фанера) и формальдегид (OSB).

    Можно ли использовать фанеру APA и OSB не в строительстве?

    Фанера и OSB

    в США одинаково эффективны как прочные, прочные и экономичные решения для не связанных со строительством применений — от стеллажей, щитов на стройплощадках, защитных покрытий в грузовом отсеке транспортных средств до упаковки и мебели. См. Панели производительности APA. Нужна помощь, чтобы решить, какой класс или тип панели использовать для конкретного приложения? Руководство APA по выбору промышленных панелей (форма T200) — еще один простой в использовании ресурс.

    Как мне приравнять классы использования продукции к классам обслуживания, указанным в Еврокоде 5, для проектирования зданий с использованием деревянных изделий?

    См. Руководство APA по классам обслуживания и классам использования. Для максимальной биологической долговечности при указании панелей с маркировкой CE в США необходимо учитывать как классы обслуживания, так и классы использования. Это руководство поможет вам сделать правильный выбор.

    «Классы опасности» были заменены (см. Обновленный стандарт EN 335: 2013) на классы использования для фанеры и OSB.Они также будут охватывать LVL, когда стандарты LVL завершат свое текущее обновление. Классы использования основаны на различных воздействиях окружающей среды, которые могут сделать панель восприимчивой к порче. Классы обслуживания, указанные в Еврокоде 5, используются для определения значений прочности и расчета деформации в условиях нагрузки. Они определяются влажностью панели, соответствующей влажности и температуре окружающей среды во время эксплуатации.

    Как продукты члена APA учитываются при оценке устойчивости при новом строительстве или проектах реконструкции?

    Британский исследовательский институт и американская лаборатория страховщиков теперь признают сертифицированные EPD друг друга, что упрощает предприятиям-членам APA получение рейтингов экологической эффективности в соответствии с методом экологической оценки BRE (BREEAM).Это ведущий и наиболее широко используемый в Великобритании метод экологической оценки зданий и населенных пунктов. Он устанавливает стандарт передовой практики в области устойчивого проектирования и стал де-факто мерой, используемой для описания экологических характеристик здания. Узнайте, как продукты APA влияют на рейтинг здания по BREEAM.

    Что такое «стадия жизненного цикла» и как они связаны с экологической оценкой всего здания?

    Как правила основной категории связаны с экологическими декларациями продуктов?

    Кто несет ответственность за проверку того, что изделия из древесины, импортируемые в ЕС, не происходят из поставок древесины из незаконных источников?

    Регламент Европейского Союза по древесине ( EUTR ) налагает определенные обязательства на операторов и торговцев.Операторы (или импортеры) — это любое (физическое или юридическое) лицо, впервые разместившее древесину на рынке ЕС . Они должны вести учет всех торговцев, которым они поставляют древесину. Они должны внедрить систему должной осмотрительности, чтобы свести к минимуму риск выпуска нелегальной древесины или любых производных продуктов на рынок. Учить больше.

    Требует ли EUTR от заводов предоставления дополнительной документации для таможенного въезда в Европейский Союз?

    Должна ли вся фанера и панели OSB иметь маркировку CE?

    Что такое строительная продукция согласно CPR?

    Это относится к любому продукту или комплекту, которые производятся и размещаются на рынке для постоянного включения в строительные работы или их части и выполнение которых влияет на выполнение строительных работ в отношении основные требования к строительным работам.’

    Продукция

    должна иметь четкую маркировку CE и надлежащую документацию о Декларации характеристик качества. Для получения дополнительной информации: Маркировка CPR и CE.

    Что такое Декларация характеристик качества, упоминаемая в Постановлении о строительной продукции?

    Согласно CPR, производители, желающие торговать на европейском рынке, по закону обязаны устанавливать уровни производительности для любой строительной продукции.Они должны быть указаны в официальном документе, который называется Декларацией характеристик качества.

    В чем разница между Structural 1 и Exposure 1?

    Знак CE на фанерной панели APA означает, что она соответствует европейским стандартам, но каким?

    Информация о конструкции фанеры касается фанеры классов A-A, A-B, A-C; B-B, B-C; C-C, C-D и соответствующие стандарты, которым соответствуют панели с товарными знаками.

    Я хочу использовать панель с номинальной обшивкой для покрытия полов / кровли. Какая информация мне нужна?

    Какие дополнительные преимущества по прочности имеют панели Structural 1 OSB по сравнению со стандартными панелями с номинальной обшивкой?

    Чем отличается отшлифованная панель от сенсорной панели?

    Шпон в готовой фанерной панели с торговой маркой США должен соответствовать одному из шести классов, перечисленных в стандарте US PS 1-09: N, высшая классификация (редко производится), за которым следуют A, B, C с заглушкой, C и D. .Панели из фанеры APA без покрытия бывают трех уровней отделки поверхности — шлифованной, шлифованной и нешлифованной.

    См. Также сорта шпона для популярных фанерных панелей APA.

    Насколько марки шпона APA соответствуют европейским стандартам

    APA выпустила два простых в использовании руководства, которые помогают сопоставить номера классов, указанные на фанерных панелях, готовых в США, с требованиями стандарта EN 635-3.

    Подробный справочник с указанием допустимых дефектов — с максимальными размерами.

    Упрощенное руководство по правилам классификации шпона US PS 1-19 и классам внешнего вида в стандарте EN 635-3, основанным на внешнем виде внешних шпонов. Эквиваленты нельзя точно сравнивать, поскольку применяются два разных набора правил выставления оценок.

    Как правильно определить внешний вид фанерной сайдинговой панели?

    Я хочу указать панель APA для бетонной опалубки — что мне нужно знать?

    Имеются ли у панелей APA гребни и пазы на всех четырех краях?

    Панели

    APA имеют профиль «гребень и паз» на двух длинных краях.Это устраняет необходимость в опоре (блокировании) под соседними краями панели, чтобы предотвратить их отклонение независимо друг от друга при приложении нагрузки. См. Раздел «Язычок и канавка» (фанера) и «Язычок и канавка» (OSB).

    Я не знаком с термином «Размер для интервала» — в чем его значение?

    «Размер для зазора» на обшивке с рейтингом APA, товарными знаками с рейтингом APA Sturd-I-Floor и сайдингом с рейтингом APA указывает на то, что производитель произвел панель с размером немного меньше традиционного номинального размера 2440 мм (96 дюймов) на 1220 мм (48 дюймов). ).Это сделано для обеспечения правильного размещения панелей во время строительства. См. Раздел «Размер промежутка (фанера)» и «Размер промежутка (OSB)». Дополнительные технические сведения см. В разделе «Продукт и товарные знаки».

    Как связаны категория характеристик и толщина?

    Я хотел бы узнать больше о рейтинге пролета панели и о том, как он связан с толщиной.

    Что такое Span Rating на торговой марке APA и почему это важно?

    Номинальный пролет обозначает максимальное рекомендованное расстояние между центрами опор в дюймах, на котором панель должна быть размещена так, чтобы ее ось прочности попала на две или более опоры.Фанера: Пролетный рейтинг. OSB: рейтинг пролета

    В чем разница между фанерными панелями Exposure 1 и Exterior? Каковы их подходящие применения?

    Классификация

    Bond относится к влагостойкости клеевого соединения и, следовательно, к структурной целостности панели. См. Классификацию прочности клеевого соединения (фанера) и стойкость к воздействию внешних воздействий (OSB).

    Какие основные панели OSB будут доступны в Европе?

    Какие основные фанерные панели будут доступны в Европе?

    Каковы основные европейские стандарты, о которых мне нужно знать для панелей OSB?

    Каковы основные европейские стандарты, о которых мне нужно знать для фанерных панелей?

    Типы цемента

    В строительной документации часто указывается тип цемента в зависимости от требуемых характеристик бетона или условий укладки.Некоторые заводы по производству цемента производят только определенные типы портландцемента. В чем разница между этими типами цемента и как они проверяются, производятся и идентифицируются на практике?

    В самом общем смысле портландцемент получают путем нагревания источников извести, железа, кремнезема и глинозема до температуры клинкера (от 2500 до 2800 градусов по Фаренгейту) во вращающейся печи с последующим измельчением клинкера до мелкого порошка. Нагрев, происходящий в печи, превращает сырье в новые химические соединения.Таким образом, химический состав цемента определяется массовым процентом и составом исходных материалов извести, железа, кремнезема и глинозема, а также температурой и продолжительностью нагрева. Именно это изменение в источнике сырья и характеристиках завода, а также в процессах отделки (например, измельчение и возможное смешивание с гипсом, известняком или дополнительными вяжущими материалами) определяют производимый цемент.

    Стандарты?

    Для обеспечения согласованности между заводами по производству цемента на цемент устанавливаются определенные химические и физические ограничения.Эти химические пределы определены множеством стандартов и спецификаций. Например, портландцементы и смешанные гидравлические цементы для бетона в США соответствуют требованиям Американского общества испытаний и материалов (ASTM) C150 (Стандартные спецификации для портландцемента), C595 (Стандартные спецификации для смешанного гидравлического цемента) или C1157 (Технические характеристики для Гидравлические цементы).

    Некоторые государственные агентства ссылаются на очень похожие спецификации: AASHTO M 85 для портландцемента и M 240 для смешанных цементов.Эти спецификации относятся к стандартным методам испытаний, чтобы гарантировать, что испытания проводятся таким же образом. Например, ASTM C109 (Стандартный метод испытания прочности на сжатие для гидравлических цементных растворов с использованием 2-дюймовых кубических образцов) подробно описывает, как изготовить и испытать кубики раствора для испытания прочности на сжатие стандартизованным образом.

    Различия в номенклатуре

    В США могут применяться три отдельных стандарта в зависимости от категории цемента. Для портландцементов ASTM C150 описывает:

    Тип цемента Описание
    Тип I Нормальный
    Тип II Умеренная сульфатостойкость
    Тип II (MH) Умеренная теплота гидратации (и умеренная сульфатостойкость)
    Тип III Высокая ранняя прочность
    Тип IV Низкотемпературная гидратация
    Тип V Высокая сульфатостойкость

    Для смешанных гидравлических цементов, указанных в стандарте ASTM C595, используется следующая номенклатура:

    Тип цемента Описание
    Тип IL Портланд-известняковый цемент
    Тип IS Портланд-шлаковый цемент
    Тип IP Портланд-Поццонланский цемент
    Тип IT Трехкомпонентный смешанный цемент

    Кроме того, некоторые смешанные цементы обладают особыми эксплуатационными свойствами, подтвержденными дополнительными испытаниями.Они обозначаются буквами в скобках после типа цемента. Например, тип IP (MS) представляет собой портланд-пуццолановый цемент с умеренной сульфатостойкостью. Другие особые свойства обозначены (HS) для высокой сульфатостойкости; (А) для воздухововлекающих цементов; (MH) для умеренной теплоты гидратации; и (LH) для низкой теплоты гидратации. Обратитесь к ASTM C595 для более подробной информации.

    Тем не менее, учитывая интерес промышленности к спецификациям, основанным на характеристиках, ASTM C1157 описывает цементы по их эксплуатационным характеристикам:

    Тип цемента Описание
    Тип GU Общее использование
    Тип HE Высокая ранняя прочность
    Тип MS Умеренная сульфатостойкость
    Тип HS с высокой сульфатостойкостью
    Тип MH с умеренной теплотой гидратации
    Тип LH с низкой теплотой гидратации

    Примечание: подробный обзор типов цемента в США и их характеристик см. В документе PCA «Проектирование и контроль бетонных смесей» , EB001 или Эффект характеристик цемента на свойствах бетона , EB226.


    Требования к физическим и химическим характеристикам

    Химические испытания подтверждают содержание и состав цемента, а физические испытания демонстрируют физические критерии.

    У C150 / M 85 и C595 / M 240 как химические, так и физические свойства ограничены. В C1157 ограничения почти полностью связаны с физическими требованиями.

    Химические испытания включают анализ оксидов (SiO 2 , CaO, Al 2 O 3 , Fe 2 O 3 и т. Д.) для расчета фазового состава цемента. Цементы типа II ограничены содержанием C150 / M 85 максимум 8% по массе трикальцийалюмината (цементная фаза, часто сокращенно C 3 A), что влияет на сульфатостойкость цемента. Некоторые оксиды сами по себе ограничены спецификациями: например, содержание магнезии (MgO) ограничено максимум 6% по весу для портландцементов, поскольку это может повлиять на прочность при более высоких уровнях.

    Типичные физические требования к цементам: содержание воздуха, крупность, расширение, прочность, теплота гидратации и время схватывания.Большинство этих физических испытаний проводится с использованием раствора или пасты, созданной из цемента. Это испытание подтверждает, что цемент может хорошо работать с бетоном; однако характеристики бетона в полевых условиях определяются всеми ингредиентами бетона, их количеством, а также окружающей средой и используемыми процедурами обращения и укладки.

    Хотя процесс производства цемента относительно схож в Северной Америке и на большей части земного шара, ссылки на спецификации цемента могут отличаться в зависимости от юрисдикции.Кроме того, методы испытаний также могут различаться, поэтому требования к прочности на сжатие (например) в Европе не «переводятся» напрямую на требования в Северной Америке. Заказывая бетон для строительных проектов, проконсультируйтесь с местным производителем бетона, чтобы убедиться, что используемый цемент соответствует требованиям, предъявляемым к среде проекта и области применения, а также требованиям соответствующих спецификаций на цемент.

    .

  • Добавить комментарий

    Ваш адрес email не будет опубликован.